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The endogenous opioid system is largely expressed in the brain, and both endogenous opioid peptides and receptors are
present in areas associated with reward and motivation. It is well known that this endogenous system plays a key role in
many aspects of addictive behaviours. The present review summarizes the modifications of the opioid system induced by
chronic treatment with drugs of abuse reported in preclinical and clinical studies, as well as the action of opioid antagonists
and agonists on the reinforcing effects of drugs of abuse, with therapeutic perspectives. We have focused on the effects of
chronic psychostimulants, alcohol and nicotine exposure. Taken together, the changes in both opioid peptides and opioid
receptors in different brain structures following acute or chronic exposure to these drugs of abuse clearly identify the opioid
system as a potential target for the development of effective pharmacotherapy for the treatment of addiction and the
prevention of relapse.

Abbreviations
CPP, conditioned place preference; DOP receptor, δ-opioid receptor; KO, knockout; KOP receptor, κ-opioid receptor;
Leu-enkephalin, leucine-enkephalin; Met-enkephalin, methionine-enkephalin; MOP receptor, μ-opioid receptor; NAc,
nucleus accumbens; PDYN, prodynorphin; PENK, proenkephalin; PFC, prefrontal cortex; POMC, proopiomelanocortin;
VTA, ventral tegmental area
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Buprenorphine Dynorphin Methadone Nor-BNI

Cocaine Ethanol Methylphenidate Prodynorphin

CTAP Glutamate Nalmefene U50,488

Glutamine Naloxonazine

These Tables list key protein targets and ligands in this article which are hyperlinked to corresponding entries in http://
www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Pawson et al., 2014) and are
permanently archived in the Concise Guide to PHARMACOLOGY 2013/14 (Alexander et al., 2013).
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Introduction
Addiction is a worldwide public health problem for which
there are currently no satisfactory treatments. While the
existing medications permit efficient detoxification, methods
for curing this condition are not yet available. Whatever the
drugs of abuse used, a very high percentage of patients relapse
into drug use, even after a long period of abstinence. There is
an urgent need for new therapeutic strategies that should be
based on our new understanding of the neurobiological
mechanisms of addiction.

Drug addiction vulnerability is affected by a combination
of genetic, epigenetic and environmental factors coupled
with drug-induced effects. Neurochemical alterations in the
brain caused by addictive drugs have a cellular and molecular
basis and, in the setting of repeated self-exposure, leading to
addiction, these changes may be persistent. However, the
understanding of the cellular and biochemical mechanisms
underlying both compulsive drug-seeking behaviour and the
very long persistence of addictive effects is still very limited.

The brain network mediating the rewarding properties of
drugs and craving phenomena has been identified. The
system has been shown to involve such structures as the
nucleus accumbens (NAc), ventral tegmental area (VTA), pre-
frontal cortex (PFC) and limbic structures, in particular the
so-called extended amygdala. The enhancement of dopamine
secretion in the NAc is a common effect of drugs of abuse.
This effect can result from both a direct action on dopamin-
ergic neurons (e.g. cocaine and amphetamine) and an indi-
rect effect by modifying the activity of certain populations of
neurons such as GABAergic interneurons that interact with
dopaminergic VTA neurons (e.g. ethanol, opioids). The last
60 years of research has provided extraordinary advances in
our knowledge of the reward system. For a long time, research
on reward mechanisms traditionally focused on brain dopa-
mine. However, from all the results reported in the literature
using dopamine agonists or antagonists, it clearly appears
that while dopamine plays a key role in reward, it is not the
only neurotransmitter involved.

Research on the endogenous opioid system has substan-
tially contributed to our understanding of the molecular
mechanisms of drug addiction. Opioid receptors and their
endogenous peptide ligands are largely distributed through
the CNS and peripheral tissues. The existence of opioid recep-
tors in the brain was demonstrated for the first time in 1973
by three independent groups (Pert and Snyder, 1973; Simon
et al., 1973; Terenius, 1973), and it is only in the mid-1990s
that the different opioid receptors were cloned: δ (DOP), μ
(MOP) and κ (KOP) receptors (Evans et al., 1992; Kieffer et al.,
1992; Chen et al., 1993; Li et al., 1993; Meng et al., 1993;
Thompson et al., 1993; Yasuda et al., 1993). Three precursors
of endogenous peptides have also been cloned, proopiomel-
anocortin (POMC), proenkephalin (PENK) or prodynorphin
(PDYN). These precursors generate several final active pep-
tides: β-endorphin from POMC, methionine-enkephalin
(Met-enkephalin) and leucine-enkephalin (Leu-enkephalin)
from PENK, dynorphins and neo-endorphins from PDYN.
These endogenous opioid ligands exhibit different affinities
for each opioid receptor. β-Endorphin shows a higher affinity
for MOP receptors, Met- and Leu-enkephalin bind to DOP
receptors with an affinity 20-fold greater than that for MOP

receptors, and dynorphins are the endogenous ligands for
KOP receptors (for review, see Corbett et al., 1993).

The different components of the endogenous opioid
system are highly expressed in brain areas involved in reward
and motivation (for review, see Mansour et al., 1995). Thus,
opioid peptides and receptors are present in the VTA, NAc,
PFC, hypothalamus and extended amygdala (Mansour et al.,
1993; 1994a,b; 1995; Delfs et al., 1994), and participate in the
modulation of the reward circuits.

The main goal of this review is to describe the current
knowledge concerning the contribution of the endogenous
opioid system to the addictive properties of the different
drugs of abuse. Considering the substantial amount of data
from animal studies implicating the endogenous opioid
system in reward and addiction, combined with the results
from human post-mortem brains or obtained by neuroimag-
ing in addicts, several questions about their clinical relevance
arise: to what extent is the endogenous opioid system a valu-
able target for developing new treatments for the manage-
ment of addiction? How successful are pharmacotherapies
targeting the opioid system for the treatment of addiction?
What could be the future directions?

This review gives an overview of how the opioid system is
regulated by different drugs of abuse, to achieve a better
knowledge regarding the use of opioid ligands in addiction
treatments. With this aim, a specific focus has been done on
psychostimulants (i.e. cocaine, amphetamine, methylpheni-
date), alcohol and nicotine. Opioid and cannabinoid addic-
tions have not been considered as opioid ligands are already
largely used in clinic to treat opioid addiction. Moreover,
although numerous preclinical evidences indicate interplay
between opioid and cannabinoid systems, only few studies
have investigated the potential therapeutic interest of opioid
ligands in cannabis addiction.

Cocaine

Modification of endogenous opioid system by
psychostimulant treatment
Acute and chronic administration of psychostimulants
produce adaptive changes in opioid peptide content, gene
expression and receptor densities in brain structures related
to reward circuits. However, one of the major difficulties is
the discrepancies in the results reported in the literature,
which is not surprising as it is now well established that
neuroadaptations depend on different factors, including drug
administration pattern and withdrawal period (see Conclu-
sion section).

The most reliable finding in terms of psychostimulant-
induced regulation of opioid peptide gene expression is the
increase in PDYN mRNA and peptide levels in the striatum,
but only shortly after chronic treatment (30 min, 1 h or 3 h
after the last injection of cocaine or methylphenidate; Smiley
et al., 1990; Steiner and Gerfen, 1993; Daunais and McGinty,
1995; Spangler et al., 1996a; Torres and Horowitz, 1999;
Brandon and Steiner, 2003; Fagergren et al., 2003; Bailey
et al., 2005), which is abolished by a selective antagonist or
deletion of D1 receptors (Daunais and McGinty, 1996;
Moratalla et al., 1996). A return to control levels was observed
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within 24 h (Smiley et al., 1990), and in animals treated for
10 days with cocaine followed by a 10-day drug free period, a
decrease of PDYN mRNA was reported (Svensson and Hurd,
1998). Regarding dynorphin peptide levels, while a single
dose of cocaine did not affect the level of dynorphin, a
repeated treatment (4 days) increased striatal content of
dynorphin, which persisted for at least 4 days and returned to
the basal level 12 days after the last injection (Sivam, 1989).
Using a microdialysis approach, methamphetamine was also
shown to elevate extracellular levels of dynorphin peptide
in the striatum, suggesting an increase in peptide release
(Bustamante et al., 2002).

In other brain structures, preclinical studies provide con-
flicting data. For instance, repeated administration of cocaine
or amphetamine (three injections per day for 5 days) was
reported to induce a long-lasting increase in PDYN mRNA
levels in the NAc (Turchan et al., 1998), whereas other studies
(three injections per day for 10 or 14 days) failed to detect
cocaine-induced changes in PDYN gene expression in the
same nucleus (Daunais and McGinty, 1995; Mathieu-Kia and
Besson, 1998; Romualdi et al., 2001).

Regarding changes in PENK mRNA following chronic
cocaine treatment in rodents, the results are highly inconsist-
ent whatever the brain structures studied and the specific
pattern of drug administration, with increase (Branch et al.,
1992; Hurd et al., 1992; Steiner and Gerfen, 1993; Przewlocka
and Lason, 1995; Spangler et al., 1996b; Mathieu-Kia and
Besson, 1998; Svensson and Hurd, 1998; Crespo et al., 2001;
Zhang et al., 2012), or no change (Hurd et al., 1992; Daunais
and McGinty, 1995; Mathieu-Kia and Besson, 1998; Alvarez
Fischer et al., 2001; Bailey et al., 2005; Ziolkowska et al.,
2006). Taken together, the results of the studies reviewed here
suggest that the magnitude and significance of the changes in
PENK gene expression are complex and clearly depend upon
the brain region (e.g. NAc, hypothalamus, central amygdala,
frontal cortex, olfactory tubercle), the type of drug adminis-
tration (self-administration, repeated injections) and also the
duration of the withdrawal period. A post-mortem study in
humans with a history of cocaine abuse, reported a decrease
in PENK mRNA in the caudate putamen, with a reduction in
enkephalin peptide levels (Hurd and Herkenham, 1993).

The involvement of β-endorphin in the acquisition of
cocaine self-administration has also been reported, with a
transient increase in extracellular levels of β-endorphin in the
NAc during cocaine self-administration (Roth-Deri et al.,
2003; 2008). The rewarding action of acute cocaine was
reduced in β-endorphin-deficient mice (Nguyen et al., 2012).
The release of β-endorphin in the NAc may function as a
mechanism for lowering of cue-induced craving. However,
this mechanism appears to be short-lived as 30 days after, cue
exposure did not induce an increase in β-endorphin levels
(Dikshtein et al., 2013).

The influence of cocaine on MOP, DOP and KOP receptor
immunoreactivity and binding remains controversial, and
changes are dynamic and vary according to the stage of the
addiction cycle and brain regions (Azaryan et al., 1998; Bailey
et al., 2007; Gorelick et al., 2008). In a post-mortem study, the
density of KOP receptors in the NAc and other limbic brain
regions was increased twofold in cocaine users as compared
with control subjects (Staley et al., 1997). In a preclinical
study, a decrease in KOP receptor density has been reported in

the NAc only after chronic cocaine treatment, whereas this
decrease was observed in the striatum after both acute and
chronic injections (Turchan et al., 1998). This decrease in the
striatum may reflect a compensatory down-regulation of KOP
receptors in response to PDYN induction.

Neuroimaging of cocaine users using PET showed
increased MOP receptor binding in several brain regions (e.g.
frontal, lateral temporal, anterior cingulate cortex and amyg-
dala) that correlated positively with cocaine craving and
prevalence to relapse (Zubieta et al., 1996; Gorelick et al.,
2005; Ghitza et al., 2010). These results are in agreement with
those reported in preclinical studies. Thus, acute binge
cocaine administration increased MOP receptor mRNA levels
in the frontal cortex, NAc and amygdala, but not in the
striatum, thalamus, hippocampus and hypothalamus
(Yuferov et al., 1999). In addition a significant increase in the
level of MOP receptor mRNA was detected in the NAc after 3
days of cocaine treatment with no modifications of DOP
receptors in rats (Azaryan et al., 1996). In another study, DOP
receptor mRNA levels were elevated in the VTA of rats
expressing amphetamine behavioural sensitization after
short-term withdrawal (2 days; Magendzo and Bustos, 2003).

Action of opioid antagonists or agonists on
reinforcing effects of psychostimulants
MOP receptor antagonists were able to block the develop-
ment of cocaine-induced behavioural sensitization, as well as
the rewarding properties of cocaine, measured by the condi-
tioned place preference (CPP) model. Given the evidence that
MOP and dopamine receptors are co-localized within indi-
vidual neurons of the striatum (Ambrose et al., 2004), it is not
surprising that the blockade of MOP receptors could have
profound effects on behaviours mediated in part by the stri-
atal dopamine system. Thus, μ preferential opioid antago-
nists, naloxone and naltrexone, and μ-selective antagonists
(CTOP, CTAP, naloxonazine) were able to reduce cocaine-
induced CPP in rodents (Rademacher and Steinpreis, 2002;
Schroeder et al., 2007). Moreover, MOP receptor antisense
attenuated the expression of cocaine-induced behavioural
sensitization and cocaine-induced CPP (Hummel et al., 2006).
In MOP receptor knockout (KO) mice, cocaine-induced CPP
was maintained (Contarino et al., 2002; Hall et al., 2004;
Nguyen et al., 2012) or decreased (Hall et al., 2004) depending
on the dose and experimental conditions (number and dura-
tion of conditioning sessions). These data suggest that acti-
vation of MOP receptors by endogenous opioid peptides
subsequent to cocaine administration plays an important role
in the subjective rewarding effects of cocaine and the devel-
opment of cocaine-induced CPP.

Systemic administration of naloxone or naltrexone was
able to reduce cocaine self-administration in rats (Corrigall
and Coen, 1991; Giuliano et al., 2013), in good agreement
with the results obtained in MOP receptor KO mice, where
cocaine self-administration was reduced (Mathon et al.,
2005). Other studies have also shown that, following their
microinfusion in the VTA, a selective μ-opioid receptor
antagonists (CTOP) produced a small decrease in cocaine
self-administration (Corrigall et al., 1999), and a selective
μ-agonist has been shown to enhance the reinforcing effects
of the drug (Corrigall et al., 1999). No effect was found fol-
lowing naltrexone microinjection in the caudate, amygdala,
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NAc or medial PFC, while in the VTA, blockade of endog-
enous opioid receptors attenuated cocaine self-
administration (Ramsey et al., 1999).

Strikingly, high doses of methadone were able to block
the acquisition and expression of cocaine-induced CPP, and
to interfere with incubation of cocaine sensitization and asso-
ciated alterations in gene expression (Leri et al., 2012), while
they did not alter self-administration (Leri et al., 2009). There
is also evidence that buprenorphine can reduce cocaine use in
patients with a history of i.v. cocaine, inhibit cocaine self-
administration in rats, reduce cocaine seeking during
extinction in the self-administration model, and block
cocaine-induced sensitization (Kosten et al., 1991; Foltin and
Fischman, 1996; Kuzmin et al., 2000; Sorge et al., 2005; Sorge
and Stewart, 2006; Wee et al., 2012). It remains puzzling that
buprenorphine reduces cocaine seeking; one hypothesis
could be that buprenorphine is able to increase basal levels of
glutamate in the NAc, which could contribute to its moder-
ating effects on cocaine-induced effects (Placenza et al.,
2008).

DOP receptors also seem to play an important role in the
reinforcing effects of cocaine. Thus, naltrindole was able to
significantly block cocaine-induced CPP, and inhibit cocaine
self-administration (Menkens et al., 1992; Suzuki et al., 1994;
Reid et al., 1995). These data further support the role of pro-
cesses associated with DOP receptors in the ability of cocaine
to reinforce its own use. However, other studies have shown
that naltrindole, at doses that did not modify the locomotor
activity of animals (0.03–3.0 mg·kg−1), did not alter the
number of cocaine infusions taken by the rats in the self-
administration paradigm, while a higher dose of naltrindole
(10 mg·kg−1), which markedly depressed locomotor activity,
resulted in a low (16%) reduction of cocaine self-
administration behaviour (de Vries et al., 1995). In a more
recent study, using brain microinjection, it has been demon-
strated that naltrindole 5′-isothiocyanate decreased cocaine
self-administration when injected into the NAc, but increased
this behaviour when administered in the VTA (Ward and
Roberts, 2007). Interestingly, administration of the δ-selective
antagonist into the amygdala was without effect. This sug-
gests that the modulation of cocaine rewarding effects by
δ-opioid antagonists is brain region-dependent.

Several studies have investigated the role of κ-opioid
ligands on the reinforcing effects of cocaine. Thus, it has been
shown that κ-opioid agonists were able to reduce cocaine-
induced CPP, cocaine self-administration and cocaine-
induced decreases in intracerebral self-stimulation thresholds
(Suzuki et al., 1992; Glick et al., 1995; Tomasiewicz et al.,
2008), suggesting that activation of KOP receptors reduces
the reward-related effects of cocaine. Regarding cocaine-
induced behavioural sensitization, the results are controver-
sial. While it has been shown that a single injection of the
KOP receptor agonists attenuated the expression of cocaine-
induced behavioural sensitization in rats (Collins et al., 2001;
Morani et al., 2012), it has also been reported that the
κ-opioid antagonist nor-BNI blocked cocaine locomotor sen-
sitization, but in a model of food restriction in rats (Allen
et al., 2013). The results obtained with the κ-antagonists
remain highly controversial. While some authors suggest
that these antagonists are able to reduce cocaine self-
administration (Kuzmin et al., 1998), others show that they

produced either no effects or small effects that did not show
consistent trends with doses (Corrigall et al., 1999). Further-
more, blockade of KOP receptors attenuated the development
of depressive-like behaviours induced by cocaine withdrawal
in rats (Chartoff et al., 2012).

Therapeutic perspectives
Effective medications to treat cocaine dependence have not
been identified. Numerous studies have pointed out a role for
endogenous opioid systems in behavioural effects induced
by cocaine (see also for recent reviews, Yoo et al., 2012;
Charbogne et al., 2014). Overall, these findings suggest that
endogenous opioid transmission facilitates cocaine-
influenced behaviour and that MOP and KOP receptors may
represent specific target sites for therapeutic or behavioural
intervention related to cocaine addiction. Mixed κ- and
μ-ligands have been developed, with either agonist or antago-
nist properties, which are able to decrease cocaine self-
administration in rats (Archer et al., 1996; Glick et al., 1998;
Neumeyer et al., 2001). The use of buprenorphine in preclini-
cal studies consistently induced a reduction in cocaine self-
administration (Mello et al., 1989; Carroll and Lac, 1992). In
the clinic, the efficacy of buprenorphine in reducing cocaine
use among opiate-dependent subjects has been demonstrated
(Mendelson et al., 1992; Strain et al., 1994; Foltin and
Fischman, 1996; Kouri et al., 1996; Montoya et al., 2004), but
with differences in subject characteristics (e.g. differences in
cocaine use or in comorbid psychiatric disorders) or differ-
ences in study methods that may affect treatment outcome.
Buprenorphine together with naltrexone is being investi-
gated as a potential combination treatment in response to the
need to expand treatment options for cocaine dependence
(Mooney et al., 2013). Interestingly, similar results to those
obtained with buprenorphine were obtained with metha-
done (Strain et al., 1994; Foltin and Fischman, 1996).

The effects of naltrexone on the subjective and physi-
ological effects of amphetamine were also investigated, using
dexamphetamine as a model substance in patients diagnosed
with amphetamine dependence (Jayaram-Lindstrom et al.,
2008). This study was performed on a small homogeneous
population of male amphetamine-dependent patients, and
needs to be extended. However, the results clearly demon-
strated that naltrexone attenuated the subjective effects and
the craving for dexamphetamine.

Alcohol

Modification of endogenous opioid system by
alcohol treatment
Many data have demonstrated a change in the opioid system
(peptides and receptors) upon acute or chronic ethanol treat-
ment. Similar to cocaine, the most consistent effect of alcohol
on opioid peptides is an increase in dynorphin in reward-
related brain structures. Indeed, the dynorphin level (mRNA
or protein) was increased in the NAc (Przewlocka et al., 1994;
Lindholm et al., 2000) and amygdala (D’Addario et al.,
2013b), a stress-related brain area, following chronic ethanol
exposure. This increase, especially after a protracted with-
drawal would contribute to the negative effects of ethanol
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withdrawal (Gillett et al., 2013). Recent data suggested that
dynorphin up-regulation by alcohol could be caused by epi-
genetic modifications (D’Addario et al., 2013a). Data are
scarce concerning the influence of ethanol on opioid peptides
in humans but they seemed to match with those obtained in
animals. Thus, in post-mortem human brains of alcoholics,
PDYN mRNA was increased in the dorsolateral PFC (Bazov
et al., 2013).

The results with enkephalins are more controversial, as
an increase, decrease or no change have been observed
whatever the duration of ethanol exposure (acute or
chronic), type of administration (contingent or non-
contingent), the withdrawal period or the brain structure
considered (Schulz et al., 1980; Seizinger et al., 1983;
Przewlocka et al., 1997; Lindholm et al., 2000; Marinelli
et al., 2005; Mendez and Morales-Mulia, 2006; Jarjour et al.,
2009). For instance, following an acute injection of ethanol,
the Met-enkephalin level was increased in the NAc
(Seizinger et al., 1983; Marinelli et al., 2005; Mendez et al.,
2010) but not in the VTA (Jarjour et al., 2009). In humans,
no change in PENK mRNA was detected in any brain struc-
tures tested (dorsolateral PFC, orbitofrontal cortex and hip-
pocampus; Bazov et al., 2013). This result supports a minor
role of enkephalins in ethanol addiction as evidenced by the
ability of enkephalin KO mice to still prefer ethanol in a
two-bottle choice (Koenig and Olive, 2002) and self-
administration paradigms (Hayward et al., 2004).

There are few data on the effects of ethanol exposure on
β-endorphin in reward-related brain structures. However,
most of the data demonstrates that acute ethanol promotes
an increase in β-endorphin, and chronic ethanol had mixed
effects (increase, decrease or no changes). Using microdialy-
sis, Gianoulakis and co-workers found an increase in
β-endorphin after an acute injection of ethanol in the central
amygdala and VTA (Lam et al., 2008; Jarjour et al., 2009) that
could involve corticotropin-releasing hormone receptors
(Lam and Gianoulakis, 2011). In rats continuously exposed in
a one-bottle access situation to ethanol, no variation in
β-endorphin was measured in the NAc or VTA (Leriche and
Mendez, 2010). However, in a protocol of voluntary alcohol
ingestion using the two-bottle choice paradigm, POMC
mRNA was increased in the NAc Shell (Zhou et al., 2013). In
humans the β-endorphin neuropeptide level was augmented
in blood during ethanol intoxication (Barret et al., 1987;
Aguirre et al., 1995b), whereas it was diminished during with-
drawal (Aguirre et al., 1990; 1995a) contributing to anxiety
(Kiefer et al., 2002).

Chronic ethanol exposure might lead to different effects
on opioid receptors with opposite results on DOP and MOP
receptors. In rats with free access to an ethanol-containing
liquid diet, immunohistochemistry analysis revealed a
decrease in MOP receptors in NAc, cortex and hippocampus
whereas DOP receptors were decreased in the hippocampus
(Saland et al., 2005). Interestingly, after acute exposure using
an intra-gastric injection, the number of MOP receptors in
the striatum was not modified (Mendez et al., 2003; Leriche
and Mendez, 2010). With regard to the KOP receptors, a
recent study found a transient increase (only observed
30 min after the last injection, but no later) of its coding
mRNA in the amygdala after a 5 day treatment of intra-gastric
administration of ethanol (D’Addario et al., 2013b).

Using [11C]-diprenorphine (a non-selective opioid recep-
tor ligand), Williams and co-workers found an increase in
opioid receptor availability in the early abstinence period
of ethanol-dependent patients and a positive correlation
between [11C]-diprenorphine volume distribution and
craving (Williams et al., 2009). The same correlation was
found with MOP receptors using a selective ligand, [11C]-
carfentanil. Indeed, an increase in MOP receptors was found
in detoxified patients and correlated with the severity of
alcohol craving (Heinz et al., 2005). Apparent opposite results
were found by Bencherif and co-workers, where a lower MOP
receptor binding potential in some sub-regions of the cortex
was associated with a higher craving in alcohol-dependent
subjects (Bencherif et al., 2004). This discrepancy might be
explained by the different structures analyzed as Heinz and
collaborators observed these changes in the ventral striatum,
a structure not tested in Bencherif’s study.

Action of opioid antagonists or agonists on
reinforcing effects of alcohol
Numerous papers have been published on the role of opioid
receptors in ethanol intake and reinforcing effects. Using
naloxone, it was shown that the blockade of opioid receptors
reduced ethanol intake and preference in Sprague-Dawley
rats (Reid and Hunter, 1984; Barson et al., 2009) or in rats
selectively bred for high ethanol preference (Froehlich et al.,
1990).

The three opioid receptors were individually tested for
their role in ethanol addiction. In MOP receptor KO mice, no
operant self-administration of ethanol was observed and the
two-bottle choice test even revealed an aversion for alcohol
(Roberts et al., 2000). Microinjection of CTAP revealed that
the NAc and ventral pallidum are important regions for these
MOP receptor-mediated effects on ethanol consumption
(Perry and McNally, 2013a,b). The VTA is also important as a
knockdown of MOP receptors in this region with small
hairpin-RNA reduced ethanol intake in the two-bottle choice
paradigm in mice (Lasek et al., 2007). However, results for the
involvement of the DOP receptor are less consistent. DOP
receptor KO mice showed a preference for ethanol measured
in the two-bottle choice paradigm and have an increased
ethanol intake in this same test only after operant ethanol
administration (Roberts et al., 2001). In contrast, other
authors found that ICI-174,864 and naltrindole, two DOP-
selective antagonists, reduce ethanol intake in the two-bottle
choice test in rats selectively bred for ethanol preference
(Krishnan-Sarin et al., 1995), whereas other authors did not
observe such results in regular (not ethanol preferring) rats
(Stromberg et al., 1998) or rhesus monkeys (Williams and
Woods, 1998). KOP receptor agonists such as U50,488H
(Lindholm et al., 2001) or bremazocine (Nestby et al., 1999)
decreased ethanol intake in the two-bottle choice paradigm.
U50,488H has also been found to block acquisition of
ethanol in CPP (Logrip et al., 2009). According to these data,
nor-BNI had no effects on ethanol intake (Holter et al., 2000)
or operant self-administration (Doyon et al., 2006) in naive
animals. However, in certain conditions, the role of KOP
receptors in ethanol addiction switches. Indeed, in a rat
strain, selectively bred for alcohol preference, or in ethanol-
dependent animals, KOP antagonists reduce operant self-
administration (Walker and Koob, 2008; Kissler et al., 2014;

BJP F Noble et al.

3968 British Journal of Pharmacology (2015) 172 3964–3979



Rorick-Kehn et al., 2014). Taken together, these findings indi-
cate that whereas KOP receptor activation reduces ethanol
reinforcement in non-dependent animals probably via an
aversive effect, the κ-opioid system may participate in
ethanol seeking in dependent subjects (Wee and Koob, 2010).

Therapeutic perspectives
Preclinical data strongly suggest that blocking opioid recep-
tors might be helpful in reducing some characteristics of
ethanol addiction. Naltrexone, a preferential MOP receptor
antagonist that is able to bind to other opioid receptors at
higher concentrations (Raynor et al., 1994; Wang et al., 2007),
was the first drug acting on opioid receptors approved for
the treatment of ethanol dependence and the second drug
specific for the treatment of this condition 40 years after
disulfiram. Naltrexone has been shown to reduce ethanol
intake in the two-bottle choice paradigm (Stromberg et al.,
1998; Parkes and Sinclair, 2000) and inhibit operant self-
administration of alcohol in rodents (Bienkowski et al., 1999;
Walker and Koob, 2008). Naltrexone is rapidly absorbed
when taken orally and is converted into several metabolites
including 6β-naltrexol, the main metabolite, which has been
shown to reduce ethanol drinking in rodents (Stromberg
et al., 2002). Using [11C]-carfentanil, a PET study demon-
strated that 50 mg of naltrexone (corresponding to the daily
dose) block 90% of brain MOP receptors after 48 h (Lee et al.,
1988) explaining its long-term action. Studies have also
shown that oral administration of naltrexone for a few weeks
reduces craving (Chick et al., 2000) and prevents relapse
(Morris et al., 2001). However, its efficacy fades over time as
demonstrated by studies investigating long-term treatment
(Balldin et al., 2003; Krystal et al, 2001). Interestingly, some
factors that contribute to a naltrexone-positive response have
been identified, such as the MOP receptor single-nucleotide
polymorphism A118G (Oslin et al., 2003; Anton et al., 2008)
and adherence to treatment (Chick et al., 2000; Krystal et al,
2001). This could explain the differences in the ratio between
responding versus non-responding patients among clinical
studies. To avoid a lack of adherence to treatment, an inject-
able extended-release formula of naltrexone has been devel-
oped and has been shown to be effective at blocking MOP
receptors in rats for 1 month (Bartus et al., 2003). It seems to
be well-tolerated and promoted reductions in heavy drinking
among treatment-seeking alcohol-dependent patients during
6 months of therapy (Garbutt et al., 2005). More interest-
ingly, it improved their quality of life, specifically in numer-
ous domains such as mental health and social functioning
(Pettinati et al., 2009).

Nalmefene, a naltrexone analogue, has been approved by
regulatory agencies in the treatment of alcohol dependence.
Nalmefene differs from naltrexone by the presence of a meth-
ylene group instead of the ketone at the 6-position, which
increases affinity towards opioid receptors (Emmerson et al.,
1994), and half-life (10 h; Dixon et al., 1987). In a preclinical
study, nalmefene reduced operant self-administration of
ethanol in rats (June et al., 1998). With the exception of one
study (Anton et al., 2004), clinical trials have demonstrated
the efficacy of nalmefene in treating ethanol dependence
(Mason et al., 1999; Karhuvaara et al., 2007; Gual et al., 2013;
Mann et al., 2013), with a reduced relapse rate to heavy drink-
ing when this treatment was combined with cognitive behav-

ioural therapy (Mason et al., 1999). Recently, a new opioid
receptor antagonist has been released, LY2196044 (WO 2004/
026305) and presents promising results in increasing the
abstinence period in ethanol-dependent, treatment-seeking
patients (Wong et al., 2014).

Nicotine

Modification of endogenous opioid system by
nicotine treatment
As with cocaine and alcohol exposures, tobacco smoking
induces functional alterations in the endogenous opioid
system. Because nicotine is considered as the main active
component responsible for the addictive properties of
tobacco, numerous studies have focused on the effects of
chronic nicotine administration on the endogenous opioid
system in various regions of the brain (for review, see
Berrendero et al., 2010; Drews and Zimmer, 2010;
Hadjiconstantinou and Neff, 2011). Chronic exposure to
nicotine alters the release of endogenous opioid peptides in
the brain and those alterations are specific to the nature of
the endogenous opioid peptide being investigated. In addi-
tion, these modifications are persistent, dynamic and time-
specific [e.g. it depends when the measure is done during
nicotine treatment, or when the measure is performed after
nicotine withdrawal (early vs. late)].

With regard to the effects on dynorphin synthesis and
release induced by chronic nicotine administration, a
decrease in dynorphin content was observed in the mice
striatum from 30 min to 72 h after the last nicotine injection
(Isola et al., 2008). A compensatory mechanism involving
opioid synthesis is also implemented, in which PDYN mRNA
was increased in the same reward-related brain structure from
8 h to 96 h after the last injection. However, no change was
observed in the biosynthesis and release of dynorphin in rat
striatum (Hollt and Horn, 1992; Mathieu et al., 1996;
Mathieu-Kia and Besson, 1998), indicating the importance of
nicotine dose, treatment schedule and species for the
observed changes.

The effects of chronic nicotine treatment on Met-
enkephalin and PENK have been extensively investigated by
many research groups. PENK mRNA was decreased in the
striatum of mice 2 h following nicotine cessation followed by
a rebound increase lasting for over 72 h (Houdi et al., 1998).
Similarly, following 14 days of chronic nicotine treatment,
Met-enkephalin levels were decreased in the rat striatum after
1 h of nicotine cessation (Wewers et al., 1999). PENK mRNA
was increased in striatum and NAc 24 h after the last injec-
tion of a chronic nicotine treatment in rats (Mathieu et al.,
1996) and mice (Dhatt et al., 1995) but not 2 h after nicotine
cessation in rats (Mathieu-Kia and Besson, 1998). From 4 to
over 72 h after nicotine cessation, Met-enkephalin levels and
PENK mRNA were increased in the NAc (Isola et al., 2002).
Overall, these findings highlight a biphasic change in the
levels of Met-enkephalin and PENK mRNA in striatum, with
a decrease during early withdrawal and an increase during a
more protracted withdrawal period. This biphasic response
may reflect alterations in the synthesis and metabolism of
Met-enkephalin.

BJPOpioid receptors as targets for drug abuse medication

British Journal of Pharmacology (2015) 172 3964–3979 3969



Chronic nicotine treatment was shown to have a biphasic
effect on the hypothalamic β-endorphin level in mice
(Rosecrans et al., 1985). Chronic nicotine exposure induced
first a decrease in hypothalamic β-endorphin levels 24 h after
the last injection (Gudehithlu et al., 2012). Within 7 days, the
β-endorphin levels returned to the baseline and even
increased above the baseline after 14 days of nicotine with-
drawal. In contrast, another study reported a long-lasting
inhibition of POMC gene expression in the mediobasohypo-
thalamus (Rasmussen, 1998). It seems that chronic nicotine
diminishes the synthesis of β-endorphin in the limbic areas
(e.g. striatum, hippocampus, hypothalamus, PFC) that might
contribute to aversive states associated with nicotine with-
drawal (Berrendero et al., 2010; Drews and Zimmer, 2010;
Hadjiconstantinou and Neff, 2011; Gudehithlu et al., 2012).
However, the situation is far less clear with the nicotine-
induced release of β-endorphin if we consider the clinical
studies. In current smokers, their levels of peripheral plasma
β-endorphin have been found to be increased (Backon, 1989;
del Arbol et al., 2000; Gilbert et al., 1992; Pomerleau et al.,
1983; Seyler et al., 1986). This apparent discrepancy between
animal and human findings may result from the lack of a
direct relationship between peripheral and central
β-endorphin levels (Berrendero et al., 2010).

Several studies have investigated the effects of chronic
nicotine treatment on the densities, affinities and functional
activities of MOP, DOP and KOP receptors. It has been shown
that a 14 day treatment with nicotine induces an
up-regulation of MOP receptors in rat striatum (Wewers et al.,
1999). Chronic nicotine administration decreased the density
of MOP receptors in the striatum and NAc in C57BL/6 mice
(Galeote et al., 2006) but not in NMRI mice (Vihavainen et al.,
2008). However, both the affinity and the functional activity
of MOP receptors were unchanged by the chronic treatment
in these two strains (Galeote et al., 2006; Vihavainen et al.,
2008). Finally, an uncoupling and desensitization of KOP and
DOP receptors in the striatum and NAc were observed during
nicotine withdrawal, whereas the densities of these receptors
were unaltered (McCarthy et al., 2010; 2011).

In humans, using [11C]-carfentanil a down-regulation of
MOP receptors in the thalamus, ventral basal ganglia and
amygdala has been reported after smoking nicotine cigarettes
(Scott et al., 2007; Weerts et al., 2014). In addition, a basal
reduction in MOP receptor availability in different brain
structures (caudate, cingulate, globus pallidus, insula,
putamen, thalamus and ventral striatum) has been reported
to be negatively correlated to severity of nicotine dependence
(Weerts et al., 2014).

Action of opioid antagonists and agonists on
reinforcing effects of nicotine
Pharmacological and genetic approaches in preclinical
studies have provided evidence for the involvement of the
endogenous opioid system in nicotine-rewarding effects (for
review, see Berrendero et al., 2010; Maldonado, 2010;
Charbogne et al., 2014). The MOP receptor is particularly
involved in nicotine-rewarding effects and nicotine with-
drawal. Thus, administration of the glycyl-glutamine, a MOP
receptor antagonist, inhibited the acquisition and the expres-
sion of nicotine-induced CPP and attenuated withdrawal
signs in rats (Goktalay et al., 2006). The preferential MOP

antagonist naloxone abolished nicotine-induced CPP
(Zarrindast et al., 2003; Walters et al., 2005), attenuated
nicotine-induced conditioned place aversion in mice
(Zarrindast et al., 2003) and decreased nicotine self-
administration in rats (Ismayilova and Shoaib, 2010; but see
also, Corrigall and Coen, 1991). Activation of MOP receptors
is required for the reinforcement of nicotine in rats, as shown
by the reduction of nicotine self-administration in rats pre-
treated with the selective MOP receptor antagonist naloxona-
zine (Liu and Jernigan, 2011). In addition, naltrexone,
another preferential MOP antagonist, was able to attenuate
nicotine cue-maintained responding during extinction and
cue-induced reinstatement of nicotine-seeking behaviour
after extinction in a self-administration test, suggesting that
MOP antagonists would be good candidates for the preven-
tion of smoking relapse triggered by exposure to environmen-
tal smoking cues (Liu et al., 2009).

Studies using genetically modified mice have confirmed
the crucial role of MOP receptors in the rewarding effects
of nicotine. Indeed, nicotine-induced CPP was attenuated
in mice lacking MOP receptors, PENK or β-endorphin
(Berrendero et al., 2002; 2005; Trigo et al., 2009). These find-
ings strongly suggest that activation of MOP receptors by
endogenous enkephalins and β-endorphins are required to
obtain the reinforcing effects of nicotine (Berrendero et al.,
2010).

A KO study suggested that DOP/PENK signalling also con-
tributed to the reinforcing effects of nicotine (Berrendero
et al., 2012). In this study, DOP receptor KO mice did not
express a nicotine-induced CPP and displayed a lower per-
centage of acquisition of i.v. nicotine self-administration.
This result has been confirmed by a decrease in the rate of
acquisition in wild type mice pretreated with the DOP recep-
tor antagonist naltrindole. However, other pharmacological
studies failed to reveal an effect of naltrindole on nicotine
self-administration in rats (Ismayilova and Shoaib, 2010; Liu
and Jernigan, 2011).

KOP receptor agonist and antagonist studies are difficult
to interpret and how KOP receptor activity influences nico-
tine reinforcement needs to be investigated further. For
example, the KOP agonist U50,488 has revealed a dual role
of the endogenous κ-opioid system on nicotine self-
administration with a decrease in nicotine intake at the high
dose of agonist and a trend for an increase with a lower dose
in rats (Ismayilova and Shoaib, 2010), suggesting that
κ-agonists bind with lower affinity to other receptors, activa-
tion of which produces opposing effects to those resulting
from the activation of a higher affinity binding site. Never-
theless, using 5′-guanidinonaltrindole, a selective KOP
antagonist, Liu and Jernigan reported a lack of involvement
of KOP receptor activation by dynorphin on nicotine self-
administration (Liu and Jernigan, 2011). In addition, the
selective KOP antagonist JDTic failed to block the expression
of nicotine reward in the CPP paradigm (Jackson et al., 2010),
supporting a role for the KOP/dynorphin system in mediat-
ing dysphoric aspects during withdrawal rather than the
reinforcing properties of nicotine. This contribution of
dynorphin to aversive effects of nicotine has been supported
by a recent study in PDYN KO mice, showing a decrease in
self-administration of a low dose of nicotine (Galeote et al.,
2009).
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Therapeutic perspectives
The high prevalence of smoking among heroin addicts (Mello
et al., 1980) and methadone- or buprenorphine-maintained
patients (Chait and Griffiths, 1984; Mello et al., 1985;
Mutschler et al., 2002; Zirakzadeh et al., 2013) highlights
interactions between the opioid and nicotine systems that
may lead to an increase in the reinforcing effects of smoking.
Because of the critical role of MOP receptors in the reinforc-
ing effects of nicotine, one of the therapeutic strategies avail-
able is to attenuate the rewarding effects of cigarette smoking
by opioid antagonists. Thus, numerous clinical trials have
been performed to evaluate the effect of preferential μ-opioid
antagonists, naloxone and naltrexone, on smoking cessation
(see David et al., 2013 for review). However, it seems that
there were no or weak overall effects of naloxone alone or in
association with nicotine replacement therapy on long-term
smoking abstinence (Karras and Kane, 1980; Nemeth-Coslett
and Griffiths, 1986; Gorelick et al., 1988). Because naloxone
displays a short duration of action, a lot of recent studies
focused on naltrexone, an opioid antagonist with longer
acting effects, but the same inconclusive results have been
obtained (Covey et al., 1999; Wong et al., 1999; Ahmadi et al.,
2003; Krishnan-Sarin et al., 2003; O’Malley et al., 2006; Toll
et al., 2010; David et al., 2013). Moreover, evaluation of nal-
trexone effects in preventing nicotine relapse and craving did
not result in a clear picture (Wewers et al., 1998; Hutchison
et al., 1999; Krishnan-Sarin et al., 2003; Rohsenow et al.,
2007). Compared with placebo, significant trends towards a
cessation at the end of naltrexone treatments were recorded
among patients; however, these positive effects did not seem
long lasting, differences between both groups were attenu-
ated at 6 months (Covey et al., 1999). Interestingly, naltrex-
one in combination with nicotine replacement therapy
resulted in an increase in abstinence rates (Krishnan-Sarin
et al., 2003) and prevented weight gain following smoking
cessation (Krishnan-Sarin et al., 2003; O’Malley et al., 2006).

Conclusion

In the past decades, many advances in our understanding of
the underlying biology of addiction have opened the doors to
the development of novel pharmacotherapies. As reported in
this review, both endogenous opioid peptides and receptors
play a key role in many aspects of addictive behaviours. It
clearly appears that drugs of abuse modify the activity of the
endogenous opioid system, and produce adaptive changes
that play important roles in the development/maintenance
of addiction. Moreover, the modifications of endogenous
opioid systems induced by drugs of abuse are dynamic pro-
cesses and vary according to the stage of the addiction cycle.
These dynamic changes should be taken into consideration,
and may explain why clinical trials, using pharmacotherapies
to treat addiction, report modest efficacy, or describe efficient
results only on a sub-population of patients (Potenza et al.,
2011; Volkow and Skolnick, 2012).

This review shows that opioid ligands may be very useful,
whatever the drug of abuse used, as the endogenous opioid
system is a common neurobiological substrate for certain
components of addictive processes induced by the different

drugs of abuse. Nevertheless, it clearly appears throughout
the review that the data in the literature are not consistent.
Regarding the regulation of endogenous opioid system by
psychostimulants, alcohol or nicotine, numerous protocols
have been used (treatment duration, withdrawal period,
pattern of administration, strains of animals . . .) that may
explain the divergence, as it is now well established that
neuroadaptations depend on different factors. The time after
drug of abuse administration appears to be a determining
factor for detecting increased gene expression. Moreover,
numerous brain structures are heterogeneous (e.g. cortex,
striatum, amygdala, NAc), and discrete changes within the
larger structures may be missed, or different results may be
observed in subregions. Some technical approaches do not
allow us to discriminate between these subregions (e.g.
Western blot), and/or the precise areas of analyses in most
papers are not described, pointing out the limitations of the
methods that may explain the differences in the results
reported. Similarly, several discrepancies are reported in
the literature regarding the action of opioid ligands on the
reinforcing effects of psychostimulants, alcohol and nicotine.
Several animal models are used to investigate different
components of drug addiction, with different protocols.
Animal models of substance abuse include both non-
contingent (experimenter-administered) and contingent
(self-administered) drug administration. A simple animal
model to study the rewarding effect of drugs, CPP uses a
classical Pavlovian conditioning procedure to pair an uncon-
ditioned stimulus (e.g. cocaine) with a designated area and
measure the preference for the stimulus-paired area compared
with the unpaired area. An increase in preference for the
stimulus-paired area serves as a measure of its Pavlovian
rewarding effects (e.g. Bardo and Bevins, 2000; Tzschentke,
2007). Another model, behavioural sensitization, is defined as
a progressive enhancement of drug-induced responses that
develops during repeated drug treatment and then persists
even after weeks of withdrawal. It can be produced by expo-
sure to either contingent or non-contingent drugs of abuse.
The induction of sensitization involves brain structures
common to those known to play a role in reward processes,
and it is considered to be a good marker of neurochemical
changes that underlie addiction (e.g. (Vanderschuren and
Kalivas, 2000). The third model largely used in preclinical
studies is the self-administration paradigm that refers to
training rodents in an operant chamber to press a lever or
poke their nose in a hole in order to receive an i.v. infusion of
drug (e.g. Ahmed, 2012). Self-administration procedures can
differ in many ways, including whether training to respond
for food precedes drug self-administration, the dose of drug
available, the number of responses required to obtain the
drug, and the daily duration of drug access. Clinical studies
using opioid ligands also report some discrepancies. However,
they are generally conducted on a small or on a heterogene-
ous population of patients. In addition, the end points
defined in the clinical trials to measure the effects of a treat-
ment and how this treatment may improve health status are
often different, which makes it difficult to compare results
across studies. Whatever the reasons behind the variable
results, overall, the potential of opioid ligands as a pharma-
ceutical treatment for psychostimulants, alcohol and nico-
tine is promising and merits further investigation.
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Another therapeutic approach that could be helpful in the
future is the enkephalin-degrading enzyme inhibitors, as it
has been suggested that such inhibitors could represent effec-
tive treatments for addiction (Roques and Noble, 1996; Noble
and Roques, 2003). These inhibitors could be used alone or in
association with positive allosteric modulators (Burford et al.,
2013; 2014; 2015), which have the specific advantage of only
modulating the activity of the receptor when the orthosteric
site binds an endogenous agonist, thus maintaining spatial
and temporal control of receptor signalling in vivo. These
allosteric modulators have little or no detectable functional
activity when bound to the receptor in the absence of an
orthosteric agonist, but can potentiate the activity of bound
orthosteric agonist, seen as an increase in apparent potency
and/or efficacy of the orthosteric agonist.

However, in order for an effective treatment to prevent
the relapses in addicted patients, pharmacotherapies must be
associated with structured psychosocial therapies to enhance
strategies to prevent relapse and encourage compliance with
treatment. Moreover, a consideration of any genetic variants
of opioid receptors is important when determining treatment
options for different individuals, and possibly crucial in
determining which patients are likely to respond to opioid
ligand treatment (Oslin et al., 2006; Sturgess et al., 2011;
Thorsell, 2013; Garbutt et al., 2014). Benefits of such an
approach, in addition to increasing treatment response and
health, may increase the cost-effectiveness of a treatment, as
well as decreasing the risk of exposing individuals to medi-
cation that is ineffective.
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