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Disease Progression/Clinical Outcome Model for
Castration-Resistant Prostate Cancer in Patients Treated
With Eribulin

JGC van Hasselt1,2,3*, A Gupta4, Z Hussein4, JH Beijnen1,5, JHM Schellens2,5 and ADR Huitema1,2

Frameworks that associate cancer dynamic disease progression models with parametric survival models for clinical outcome
have recently been proposed to support decision making in early clinical development. Here we developed such a disease
progression clinical outcome model for castration-resistant prostate cancer (CRPC) using historical phase II data of the
anticancer agent eribulin. Disease progression was captured using the dynamics of prostate-specific antigen (PSA). For
clinical outcome, overall survival (OS) was used. The model for PSA dynamics comprised parameters for baseline PSA (23.2
ng/ml, relative standard error (RSE) 16.5%), growth rate (0.00879 day21, RSE 12.6%), drug effect (0.241 mg�h�l21 day21, RSE
32.6%), and resistance development (0.0113 day21, RSE 44.3%). OS was modeled according to a Weibull distribution.
Predictors for survival included model-predicted PSA time to nadir (TTN), PSA growth rate, Eastern Cooperative Oncology
Group (ECOG) score, and baseline PSA. The developed framework can be considered to support informative design and
analysis of drugs developed for CRPC.
CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 386–395; doi:10.1002/psp4.49; published online on 30 June 2015.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? � Prostate-specific antigen (PSA) is an important biomarker
for prostate cancer disease progression and PSA-derived metrics are key endpoints in prostate cancer trials. • WHAT
QUESTION DID THIS STUDY ADDRESS? � Can metrics derived from a model for PSA dynamics be of use to predict
overall survival in prostate cancer patients? • WHAT THIS STUDY ADDS TO OUR KNOWLEDGE � This is the first dis-
ease progression-clinical outcome framework for castration-resistant prostate cancer, describing both the dynamics of
PSA and its relationship with overall survival. • HOW THIS MIGHT CHANGE CLINICAL PHARMACOLOGY AND THER-
APEUTICS � This model may be of use to support early clinical development of cancer therapeutics for castration-
resistant prostate cancer based on observed PSA dynamics.

Prostate cancer
Prostate cancer (PC) is one of the most common malig-
nancies in men in Europe1 and the United States.2 Local
PC is potentially curable with radiation therapy, hormone
therapy, and/or radical prostectomy.3–5 However, up to
40% of the patients who are diagnosed with localized dis-
ease ultimately develop advanced PC, even after initial
treatment of local disease.5,6 In advanced PC, androgen
deprivation is the standard first-line therapy,7 which has
been shown to improve quality of life and survival.8 Ulti-
mately, however, disease progression to castration-
resistant PC (CRPC) occurs, which is associated with a
high mortality rate.7

Approved treatments of CRPC include docetaxel,9 caba-
zitaxel,10 enzalutamide,11 the immunotherapeutic vaccine
sipuleucel-T,12 and abiraterone,13 the latter two being
approved only for minimally symptomatic CRPC. These
treatments, however, are not curative, so the need exists to
develop novel treatment options14–17 and a range of new
agents are still in development.18 Combination treatments

with docetaxel are currently not approved, although several
studies investigating such combination treatments have
been performed.19

Quantifying treatment response
Disease progression of PC can be monitored by measuring
the serum levels of prostate-specific antigen (PSA), which
have been associated with survival.15,20,21 Indeed, the use
of PSA as a biomarker for disease progression is associ-
ated with a number of advantageous properties—compared
to imaging-based disease progression markers—as it is
easily quantifiable, reproducible, and inexpensive.22 PSA-
based endpoints, however, are associated with some chal-
lenges.21,23 First, in some cases, inconsistent relationships
between PSA-derived endpoints and clinical outcome
measures have been reported.22 Second, in the case of
bone-targeting agents, PSA may not be a relevant marker
of disease activity.19 Nonetheless, PSA-derived study end-
points are still considered as a primary biomarker for
efficacy.21
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The Response Evaluation Criteria in Solid Tumors
(RECIST)24 are widely used to evaluate treatment response
in solid tumors. The RECIST criteria, however, do not
adequately capture some key properties of PC.21 In 1999,
the Prostate Specific Antigen Working Group (PSWG1) pro-
vided a number of recommendations for the design and
conduct of clinical trials in PC,25 focusing specifically on
trial design in patients with CRPC.25 More recently, new
recommendations for design of PC studies have been pub-
lished by the Prostate Cancer Working Group (PCWG2),
which included further guidance on some important issues
in PC drug development such as assessment of postther-
apy changes in PSA and bone scans.21

Quantitative models to support prostate cancer drug
development
For hormone-sensitive PC, several mathematical models
have been developed describing the dynamics of PSA in
response to androgen ablation therapy.26,27 Furthermore,
for CRPC, Stein et al.14,15 developed a basic mathematical
model that included growth and inhibition parameters to
describe individual PSA timecourses in patients under treat-
ment with anticancer agents.

Quantitative integrated disease-specific models describ-
ing the relationship between biomarkers of disease progres-
sion (DP) and clinical outcome (CO), such as overall
survival, have been developed for various malignancies
including colorectal cancer28 and nonsmall-cell lung can-
cer.29 These models typically consist of two components: a
DP model describing the timecourses of a disease progres-
sion biomarker for each individual, and a parametric sur-
vival model for CO which includes metrics derived from the
DP model as covariates. For the DP model, the sum of lon-
gest tumor diameters (e.g., derived from computed tomog-
raphy (CT) or positron emission tomography (PET) scans)
is typically used as a disease progression biomarker,
although any other biomarker for disease progression can
also be considered. In the case of tumor size-based bio-
markers, such DP models are mostly referred to as tumor
growth inhibition (TGI) models.

Previous approaches relating PSA dynamics as DP met-
ric to CO metrics include time-to-event models that studied
prognostic30 and diagnostic31 purposes in early PC. More-
over, a number of correlative analyses between PSA met-
rics and overall survival have been described.14,15,32 In
addition to previously described approaches studying PSA
dynamics to various outcome metrics (Table 1), a quantita-
tive DP-CO model consisting of a dynamical DP model and
a parametric survival model for CO, such as established for

other indications,28,29 has, to our knowledge, not been
established yet for CRPC. Such a DP-CO model may be
useful to support decision making during drug development
of CRPC agents.

Objectives
The aim of the current analysis was to develop an inte-
grated quantitative DP-CO model for CRPC, using indi-
vidual PSA timecourse data and overall survival of
patients included in a phase II trial of the anticancer
agent eribulin mesilate,33 which can be used to further
support informative design and analysis of clinical stud-
ies in CRPC.

METHODS
Clinical study
The analysis was performed using data from 108 patients
from a phase II clinical trial investigating the efficacy of eri-
bulin mesilate in CRPC patients who were either pretreated
with docetaxel- (n 5 50) or taxane-na€ıve (n 5 58).33 Further
details on the included patient population and trial design
are described by de Bono et al.33 Key demographic and
treatment information is provided in Supporting Table S1.
The study was approved by an Institutional Review Board
or Independent Ethics Committee and conducted in accord-
ance with International Conference on Harmonization
guidelines and the Declaration of Helsinki. All patients
signed written informed consent.

Disease progression model
Pharmacokinetic model. No PK data were available for
this study. In order to obtain estimates of drug exposure, a
previously developed systematically covariate population
PK model, based on pooled PK data from multiple other
clinical studies, was used together with the individual dos-
ing histories to predict typical area under the curve (AUC)
values, taking individual patient characteristics into account.
The model used in this analysis was a 3-compartment PK
model with linear elimination with albumin, alkaline phos-
phatase, and bilirubin as covariates on clearance.34,35 Our
analysis used an earlier version of this model, but this had
no relevant impact for the current data.

The individual AUC value after each dose administration
(not the cumulative AUC) was used as input to the DP
model, i.e., using a K-PD approach.36 The use of patient
characteristic-based AUC was preferred above using dose
(e.g., a classical K-PD model), as it somewhat better
reflects interindividual variability (IIV) in exposure (see
Table S1).

Table 1 Overview of studies investigating the relationship between PSA and clinical outcome metrics

Patient population Model Purpose Reference

Localized PC patients Joint latent class model PSA, risk of recurrence Prognosis prediction 30

No PC 1 early PC patients Joint latent class model PSA, risk of PC Diagnosis of PC onset 31

Metastatic CRPC Logistic regression model of PSA metrics and survival Prognosis prediction for

application as primary trial endpoint

32

Metastatic CRPC Correlation analysis PSA metrics and survival Prognosis prediction 14,15

Metastatic CRPC Cox regression analysis PSA metrics and survival Prognosis prediction 50

PC, prostate cancer; CRPC, castration-resistant prostate cancer.
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Structural model. We considered a DP turnover model
with a factor accounting for resistance development to
describe the PSA dynamics as previously described by
Claret et al.28 for other malignancies. First, in the drug
effect compartment D the predicted AUC enters the system
after each dose event. Subsequently, with a rate KP, the
drug effect washes out again (Eq. 1).

dD
dt
¼ 2KP AUC Dð0Þ ¼ 0 (1)

Subsequently, the PSA dynamics is described by Eq. 2,
which comprises a first-order PSA growth rate KG, a PSA
inhibition rate KD, an exponential resistance development
term exp(-kt0), where t0 represents the time after start of
treatment, and k represents the resistance development
coefficient, and a relationship with the drug effect D(t),
described by Eq. 1.

dPSA
dt
¼ KGPSA2½KDexpð2kt0ÞDðtÞ� � PSA tð0Þ ¼ PSA0;i (2)

with PSA0,i representing the individual estimate of pretreat-
ment baseline PSA for individual i. If several pretreatment
PSA values were available, these were all included in the
analysis to support estimation of baseline PSA as well as
PSA growth rate.

Observed PSA concentrations were log-transformed prior
to model fitting and were analyzed using a log-transform
both-sides approach.37

Statistical model. IIV random effects were considered for
all fixed effect parameters, and were implemented as
follows:

Pi ¼ Pg � expðgiÞ (3)

where Pi represents the individual estimate of P for the ith

individual, Pg represents the fixed effect parameter, which
can be corrected by patient-specific characteristics (see
next section), and gi was considered to be distributed
according to N(0,x2).

For residual unexplained (RUV) random effects, additive,
proportional, and combined models were considered to
account for deviations between individually predicted and
observed PSA values.

The criteria for the selection of random effects including
off-diagonal elements was based on a combination of eval-
uation of the magnitude of decrease in the minimum objec-
tive function value (OFV) of at least 3.84 points for IIV
variances, by the assessment of parameter standard errors,
by assessment of shrinkage, by assessment of their magni-
tude (e.g., magnitudes near 0), and by assessment of
trends in residual plots for the RUV.

Covariates model development. Selection of covariates
was based on a statistical significance of P<0.01 (likeli-
hood ratio test), a relevant decrease in the variance of IIV,
and adequate estimation precision. Inclusion and selection
of parameter–covariate relationships was also strongly
guided by clinical and biological relevance.

The following covariate–parameter relationships were
considered to be potentially relevant to the PSA dynamics:
age on PSA0, body weight on PSA0, and prior taxane treat-
ment on all model parameters.

Continuous covariates were scaled by their median val-

ues and were evaluated as both linear and power functions.

Specifically, the covariate prior taxane treatment was

included either as a dichotomous covariate, but in addition

was also parameterized using a continuous function based

on the number of cycles of prior taxane treatment (NCYCL)

and as the number of days of prior taxane treatment

(NTRT) for each individual i as follows, normalized by their

respective median values, e.g., 720 treatment days or 30

cycles.

Pg ¼ hP � 11
NTRTi

720

� �hNTRT

(4)

Pg ¼ hP � 11
NCYCLi

30

� �hNCYCL

(5)

where Pg represents the patient-characteristic scaled fixed-
effect parameter estimate, and hP represents the unscaled
fixed effect estimate for parameter P.

Model evaluation. Throughout model building, models
were evaluated by the assessment of goodness-of-fit and
residuals diagnostic plots, by assessment of parameter
standard errors, and based on the change in OFV. Covari-
ates and structural model parameters were included based
on the likelihood ratio test (P< 0.01).

Clinical outcome model
Base parametric survival model. Normal, log-normal,
Weibull, logistic, exponential, and log-logistic parametric
survival models were fitted to the observed survival data. A
base parametric survival model was selected based on vis-
ual assessment of goodness of fit.

Covariate model development. A univariate covariate
analysis was conducted evaluating covariates predictive for
survival. We distinguished between covariates related to
treatment effect, disease-specific effects, patient-specific
characteristics, and effects potentially related to combina-
tions of these previously identified to be relevant to
survival.

The following individual predicted treatment effect covari-
ates from the DP model were considered: (i) TTN; (ii) rela-
tive maximum change from PSA baseline prior to start of
treatment CFB; (iii) AUC above the PSA inhibition curve
(PSAAUC); (iv) PSA inhibition rate KD.

The PSAAUC for individual i was computed as the differ-
ence between the baseline PSA0 and area under the indi-
vidual predicted PSA time–curve, until time t where the
individual predicted PSA becomes larger than PSA0

(Eq. 6), e.g., the area above the PSA curve with an upper
constraint of baseline PSA across time.

The following patient-specific covariates were considered:
(i) prior taxane treatment PTAX; (ii) age; (iii) observed East-
ern Cooperative Oncology Group (ECOG) score. Finally,
the following disease-specific covariates were considered:
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(1) baseline PSA prior to start of treatment PSA0, (2) PSA
growth rate KG.

PSAAUC;i ¼
ðtPSAðtÞ>PSA0

0

½PSA0;i 2PSAiðtÞ� dt (6)

All continuous covariates, except for age, were log-
transformed prior to inclusion in order to obtain more sym-
metric distributions. When the covariate could contain zero
(Tnadir, CFB), they were log-transformed as log(n11).

For the multivariate model, a treatment effect parameter
was included first, as it was considered of key relevance for
this analysis. Subsequently, the multivariate survival model
was further developed in a stepwise fashion according to the
rank order of the level of significance (P< 0.05) and only cova-
riates which remained significant were retained in the model.

Model evaluation. Survival models were evaluated based
on visual assessment of predicted survival curves stratify-
ing for covariate levels, and using the likelihood ratio test.

External evaluation. External evaluation of the final multi-
variate model was performed using previously published
patient-level data from Stein et al.,15 from which relevant
covariates (i.e., baseline PSA, growth rates, time to PSA
nadir, survival) could be extracted. Patients had CRPC and
were treated with alendronate plus ketoconazole and hydro-
cortisone (AKH), ketoconazole and hydrocortisone (KH),
docetaxel and thalidomide (DT), or docetaxel (D) only.
Since the ECOG score (a covariate in this analysis) was
not available, we assumed an ECOG score of 1. Visual
evaluation was performed comparing the observed and pre-
dicted survival–time curves. Predictions were depicted as
the median prediction and the standard error derived from
the uncertainty in survival model parameter estimates.
Uncertainties in individual covariates derived from the DP
model were not included.

Software
The PK and DP models were fit using NONMEM v. 7.238

using first-order conditional estimation. The survival model
was fit using the parametric survival analysis function surv-
reg in the R package Survival using R v. 3.0.39

RESULTS
Disease progression model
Structural model. The structure of the PSA DP model is
depicted in Figure 1. The final model parameter estimates
for the DP model are provided in Table 2. Structural model
parameters could be estimated with adequate precision
(RSE<44.3%). The optimal value of the drug exposure
parameter (KP) was selected based on evaluation of differ-
ent fixed values in the model. We selected a large value of
6,000 to allow for a nearly instantaneous dosing event.
Similar large values resulted in the same parameter esti-
mates. The only relevance of this parameter was to include
variability in predicted exposure. The baseline PSA (PSA0)
was estimated at 23.2 ng/mL (RSE 16.5%), the growth rate
parameter was estimated at 0.00879 day21 (RSE 12.6%),

the drug-induced inhibition parameter (KD) was estimated
at 0.241 mg�h�l21 day21 (RSE 32.6%), and the drug resist-
ance development parameter (k) was estimated at 0.0113
day21 (RSE 44.3%).

Statistical model. Variances for IIV could be estimated for
all structural model parameters (Table 2). Covariances
between IIV random effects could be estimated for all
model parameters, except for the correlation between the
drug effect parameter KD and PSA0, which approached
zero in the final obtained estimate. The individual g-
distributions appeared reasonably symmetric. Shrinkage
was <26% except for the drug resistance development
parameter k (40%). The proportional residual error variance
was considerable, with 34.2 CV%. However, there were no
trends that suggested model misspecification.

Model evaluation. Based on inspection of observed and
predicted individual PSA timecourse plots (Figure 2) and
goodness-of-fit diagnostic plots (Figure S2), the model was
able to adequately capture the dynamics of the PSA–time
profiles (Figure 2). The visual predicted check (Figure S3)
suggested adequate description of the PSA–time profiles in
the first part of the dataset, where most patients were still
included in the trial. At later stages, there was a divergence
observed for observed and simulated PSA profiles due to
disease progression-related dropout. The incorporation of
dropout mechanisms in the simulation based on either pro-
tocol criterion defined dropout, or based on parametric sur-
vival models for dropout (including either last observed
PSA, individual predicted PSA at time of dropout, or individ-
ual predicted PSA growth rate), did not result in relevant
improvements of the VPC.

Covariate model. Age and weight were not significant
covariates for predicting IIV of PSA0 (dOFV< –0.4). Prior
taxane treatment as dichotomous covariate was only signifi-
cant for PSA0 and KD. When parameterizing prior taxane
treatment as a continuous covariate in terms of either

Figure 1 Schematic diagram of the disease progression model
for the dynamics of prostate-specific antigen (PSA). KG, growth
rate; KD, inhibition rate; k, drug resistance development; AUC,
predicted area-under-the-concentration-time curve.
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number of days of prior taxane treatment (NTRT) or num-
ber of prior taxane cycles received (NCYCL), only the rela-
tionship with KD was found significant, with a dOFV of 210
and 28, respectively, and was considered preferable over a
dichotomous covariate. Although the change in OFV was
relatively limited, the clinical relevance of taxanes as covari-
ate was also confirmed by previous identification of taxanes
as predictor for survival in the original study analysis.33

The precision of the estimate for the effect on KD was
relatively low (RSE 52.5%), while the precision of the
dichotomous effect of taxanes on PSA0 was adequate
(RSE 27.6%). Patients with prior taxane treatment had
lower drug growth inhibition rates. The final covariate DP
model included prior taxane treatment (yes/no) related to
PSA0, and NTRT related to KD (Table 2).

Survival model
A Weibull function best described the survival curve
(Figure 3A). The parameter estimates of the base survival
model are provided in Table 3, and could be estimated with
good precision (RSE <23.1%). Subsequently, in the univari-
ate covariate survival analysis we identified the following
covariates as significant (P<0.05): ECOG score, individual
predicted values for time to PSA nadir (Tnadir), baseline
(PSA0), relative maximum change from PSA baseline
(CFB), areas under the PSA-time curve (PSAAUC), and
PSA growth rate (KG).

The individual estimate for Tnadir was selected as best
treatment effect covariate. In addition to Tnadir, the final mul-
tivariate model (Table 3) included individual estimates for
KG and PSA0 as disease-specific parameters, and the
patient-specific ECOG performance score.

In Figure 3C, the relative impact of each of the covariates
in the multivariate model is illustrated. Tnadir showed the small-
est effect, although it was a significant parameter. The signifi-
cance was expected to be related to differentiation between
patients dropping out quickly due to disease progression, who
consequently also had poor subsequent survival. Other varia-
bles such as growth rate and PSA0 showed wider ranges of
variation with respect to impact on overall survival.

Model evaluation. Visual predictive checks of the separate
covariate effects identified in the final covariate survival
model are depicted in Figure 3B and indicated adequate
description of the empirical survival curves.

External evaluation. An external evaluation of the DP-
survival model was performed by predicting the reported
overall survival of previously reported15 individual values of
PSA0, KG, and Tnadir for two external clinical studies in
patients with CRPC investigating (i) docetaxel with and with-
out thalidomide and (ii) ketoconazole plus hydrocortisone with
and without alendronate (Figure 4). The predicted survival
without stratification is depicted in Figure S4. A high level of
uncertainty in the predictions was present, with some system-
atic overprediction of overall survival. The largest deviation
was seen for the most favorable covariate values (e.g.,
patients with low growth rates and low PSA0 values).

DISCUSSION

We successfully developed a model for PSA dynamics and
subsequently related PSA dynamics to overall survival in
patients with CRPC receiving eribulin mesilate.

Table 2 Parameter estimates for the PSA disease progression model

Description Parameter Units

Estimate (RSE)

[Shrinkage, %]

Bootstrap

(n 5 1,000)

Fixed effect parameters Median 95% PI

Drug effect hKP day21 6000‡ —

Drug inhibition hKD0 ng�h�l21 day21 0.241 (32.6) 0.260 0.136–0.472

� Days pretreated taxanes* hKD0-NTRT — -4.00 (52.5) -3.21 -8.96–0.123

Resistance development hk day21 0.0113 (44.3) 0.00949 0.00341-0.0262

Growth rate hKG day21 0.00879 (12.6) 0.00941 0.00731–0.0112

Baseline PSA hPSA0 ng/mL 23.2 (16.5) 23.1 17.3–31.6

� Prior taxane† hPSA0-PTAX — 3.23 (27.6) 3.09 1.84–5.33

Interindividual variability variances

Inhibition rate xKD0 CV% 127.3 (14) [26] 132 99.5–175

Resistance development a xk CV% 88.3 (37.5) [40] 110 62.9–189

Growth rate b xKG CV% 53.7 (13.5) [18] 56.3 40.9–70.8

Baseline PSA c xPSA0 CV% 130.4 (8.8) [1.0] 128 110–153

Residual variability variance

Proportional error rprop CV% 34.2 (27.5) [14] 24.8 18.8–43.4

*Power relationship; †proportional relationship; ‡estimate fixed.
aCorrelation coefficient xk�xKD0 5 0.802; bcorrelation coefficient xKG�xKD0 5 -0.293; xKG�xk 5 -0.111; ccorrelation coefficient xPSA0�xk 5 -0.094;

xPSA0�xKG 5 -0.032.

Individual parameters were defined as: KD0 5 hKD0* (11(hKD-NTRT/720)) *exp(gKD0); KP 5 hKP * exp(gKP); k 5 hk* exp(gk); KG = hKG *exp(gKG); PSA0= hPSA0

*hPSA0-PTAX *exp(gPSA0); with gP distributed according to N(0,x2
P) for parameter P.
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The DP model for PSA dynamics in CRPC adequately
described the individual and typically observed PSA–time
profiles. Alternative dynamic models for PSA could also
have been considered, such as a more simplified dose–
effect model, which is also supported by the use of a high
KP value for the decay of eribulin AUC. Nonetheless, the
developed DP model for PSA was merely developed to pro-
vide acceptable individual PSA predictions, and hence the
chosen model is justified for the aims of this project.

We identified prior taxane treatment as a significant cova-
riate for both baseline PSA level (PSA0), and drug-induced
PSA inhibition rate (KD). The effect of prior taxane treat-
ment on PSA0 was expected, considering that taxane pre-
treated patients may have more advanced disease. The
effect of prior taxane treatment on KD could be interpreted
as development of resistance, as both docetaxel and eribu-
lin act by inhibition of microtubule dynamics.33 Even after
inclusion of the taxane covariate in the model, the resist-
ance parameter remained significant.

The current PSA DP model included a number of impor-
tant features not included in a previously described model
for PSA dynamics in CRPC patients.15 First, PSA–time

curves were analyzed using an NLME approach in contrast
to Stein et al. This allowed for simultaneous quantification
of both parameters describing the typical PSA response, as
well as estimates for IIV in these parameters, thereby
describing the individual PSA responses. NLME models
allow “sharing” of information between individuals; hence,
the parameter estimates derived in the current analysis are
likely to be more informative. Second, in our analysis drug
exposure was included in the model, whereas the model by
Stein et al. did not consider an exposure–response relation-
ship, and therefore did not allow for differences in dosing
schedules between patients or treatments. Third, the model
by Stein et al. did not consider the development of drug
resistance, individual patient-specific covariates in the TGI
model, or a formal relationship between PSA dynamics and
a parametric survival model, which were all included in the
current analysis.

The final multivariate survival model included Tnadir (treat-
ment effect covariate), PSA0 and KG (disease-specific cova-
riates), and ECOG score (patient-specific covariates). We
consider the explicit separation of drug-, disease-, and
patient-specific covariates as a very relevant approach in

Figure 2 Selected individual plots for log-transformed prostate-specific antigen (PSA) vs. time after start of treatment (days) for
observed values (gray circles), individual model predictions (black solid line), population model predictions (solid gray line), and dose
events (vertical lines).

Prostate Cancer Disease Progression Model
van Hasselt et al.

391

www.wileyonlinelibrary/psp4



the development of DP-CO models. The use of Tnadir repre-
sents the net effect of a combined drug-induced inhibition
of PSA and the development of drug resistance, and was
therefore considered as a reasonable representation of
treatment effects. Moreover, from the different evaluated
treatment effect parameters, Tnadir was the most significant.
Inclusion of the PSA0 level was considered plausible, as
PSA is widely accepted as the marker for disease progres-
sion, and patients with more progressed disease can be
expected to show inferior survival benefit. The currently
identified relevance of PSA growth rate (KG) was also con-
firmed by Stein et al., while the PSA inhibition rate KD was
not identified as a relevant covariate in both the current
analysis and by Stein et al. Finally, DP-CO models for other
malignancies have shown that time to progression, baseline

tumor (biomarker) levels, tumor growth rates, and ECOG
score were identified as significant covariates in the respec-
tive survival models, further supporting the clinical rele-
vance of the identified covariates.40

Although the current model was developed on a rather
large phase II dataset, still the number of patients included
might be relatively small to estimate all the parameters with
high precision. This should be appropriately acknowledged
if the model is implemented for simulation purposes.

In our analysis we did not perform joint continuous-
categorical modeling between PSA and overall survival, as
our aim was to identify DP-model-derived predictors for over-
all survival only, i.e., not to identify a more accurate drug
effect. The justification for not performing such joint modeling
has been commented on before by Claret & Bruno.41

Figure 3 Observed and predicted survival vs. time (days). (a) Observed (Kaplan-Meier), median predicted (blue line) with associated
95% confidence interval (blue area). (b) Observed (Kaplan-Meier) and model predictions (median and 95% prediction interval) stratified
below and above the 50th percentile for covariates (ECOG, time to PSA nadir [days], KG [days21], PSA0 [ng/ml]) in the final covariate
survival, or stratified for different ECOG scores. C: Model predictions for different values of the covariates in the final survival model.
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Relatively high shrinkage (<15%) was identified for some
of the estimates of the PSA DP model. As such, individual
predictors derived from this model may not be informative
when they are evaluated for their ability to predict overall sur-
vival. The alternative would have been not to include covari-
ates with high shrinkage, but this would have greatly limited
our ability to identify any clinically relevant predictors for sur-
vival in this population, e.g., the whole aim of this analysis.
One should be aware, however, that it may not be possible to
obtain informative individual estimates for all patients regard-
less of the available study design, due to the very nature of
this advanced CRPC population in which a subset of patients
are expected to progress in disease (and drop out) quickly,
and in which it is known that not all patients who drop out will
show increases in PSA. Such lack of information will also be
a reality when either predicting or designing clinical trials in
another CRPC population. In addition, the final multivariate
model contains the parameter TTN, which is expected to
account for the effect where patients drop out quickly, which
may be indicative of their probability of survival. In summary,
it is important to be aware of the shrinkage in individual esti-
mates, but the current inclusion of individual estimates will
result in a model that has superior clinical and practical rele-
vance despite shrinkage.

We did not perform joint modeling with dropout in this work
because the mechanism of such dropout was unclear. Dropout
may be either completely at random of observed or unobserved
dependent variable (MCAR), depending on the observed
dependent variable (MAR), or depending on the unobserved
dependent variable (MNAR). In the case of MNAR dropout, joint
modeling is important in order to obtain unbiased estimates.
Based on the evaluation of different dropout mechanisms during

the generation of the VPC (see Results section, Figure S3),
none of the informative dropout mechanisms related to PSA
dynamics appeared to result in relevant improvements of VPC,
suggesting that informative dropout may not play a major role in
the dropout mechanism. The small size of the dataset together
with a small number of patients that stay in the trial much longer
is another potential reason why it was not possible to replicate
the mechanism of dropout. Nonetheless, for the initial part of the
PSA–time curves, the VPC indicated adequate model perform-
ance. When dropout mechanisms are complex, such as in our
case, the VPC may not be a very suitable diagnostic to assess
model performance.

The external model evaluation (Figure 4) showed high
uncertainty of overall survival predictions based on the
reported estimates of PSA0 and KG, with relevant deviations
between observations and predictions. The high uncertainty
and deviations between observations and predictions could
relate to differences in covariate distributions. Another poten-
tial cause could be the different drugs (see Methods) used in
this dataset, which partly have a different mechanism of
action. Therefore, when this model is applied to predict out-
come based on PSA dynamics of other drugs than eribulin
and related mitotic inhibitors such as taxanes, or when
extrapolating outside the covariate range of the current anal-
ysis, predictions should be handled with caution. Nonethe-
less, previously, Stein et al. demonstrated how PSA growth
rates consistently related to survival across different drugs,
thus supporting the overall relevance of the current analysis.

Specifically for PC drug development, the use of the DP-
CO model is considered to be of relevance. The aforemen-
tioned robustness of PSA as biomarker for disease
progression is debateable,22 which can be a challenge in

Table 3 Parameter estimates of parametric Weibull survival models

Description Estimates (RSE) P-value*

Intercept Coefficient log(Scale)

Base model 6.556 (1.3) — -0.483 (23.1) —

Univariate models [unit]

Prior taxanes [0,1] 6.622 (1.7) -0.149 (110) -0.484 (22.9) 0.3632

ECOG score [0, 1, 2] 6.711 (1.7) -0.344 (46.8)a -0.681 (52.9)b -0.528 (21.1) 0.0130

Age [years] 7.535 (8.1) -0.014 (60.3) -0.489 (22.6) 0.0936

log (TTN) [days] 1 1) 6.433 (1.4) 0.091 (45.1) -0.507 (21.7) 0.0265

log (PSA0 [ng/mL]) 7.352 (3.6) -0.186 (29.1) -0.560 (19.9) 0.0006

log (CFB [%]) 6.880 (3.1) 0.206 (56.7) -0.505 (21.9) 0.0779

log (PSAAUC [ng*h/ml]1 1) 6.349 (1.9) 0.050 (49.9) -0.494 (22.2) 0.0486

log (KG [day21]) 6.798 (2.1) 0.155 (42.9) -0.492 (22.3) 0.0198

log (KD [day21]) 6.798 (2.1) 0.429 (42.9) -0.492 (22.3) 0.0145

Multivariate model [unit]

log(kG [day21]) 4.987 (16.1) -0.482 (34.7) -0.644 (16.8) <0.0001

log(PSA0 [ng/ml]) -0.144 (36.8)

ECOG [0, 1, 2] -0.313 (46.2)a -0.428 (75.3)b

log (Tnadir [days] 1 1) 0.049 (75.2)

*Likelihood ratio test, compared to base model.
aECOG 5 1, bECOG 5 2.

RSE, relative standard error (%); PSA, prostate-specific antigen; PSA0, predicted individual predicted baseline level of PSA; PSAAUC, AUC under the PSA-time

curve; CFB, relative maximum change from baseline (%); TTN, time (days) to PSA nadir; KD, PSA growth inhibition rate. The survival function S is given by:

S=1-(shape/scale)*(t/scale)(shape-1) with scale=(exp(Intercept1bn*covn 1(..) 1 bn*covn)) for covariate n and its associate regression coefficient bn.
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CRPC drug development. The DP-CO model provides a tool
to address this challenge to some extent, as it provides a
formal quantitative framework that allows integration of multi-
ple predictors which could be potentially relevant to clinical
outcome. Furthermore, the demonstrated disease-specific
nature of these models allows continuous updating of these
models, i.e., allowing for leveraging knowledge obtained
across clinical development programs of different drugs.

Increasingly, targeted therapies are or will be developed
in the area of PC.42 These therapies may have different
mechanisms of action, and as such these drugs might have
a different relationship between DP (as measured by PSA)
and CO. Therefore, the developed model may need to be
updated for targeted anticancer agents in CRPC. Poten-
tially, with the rapidly increasing knowledge of disease het-
erogeneity in PC,43,44 further improvements could be
gained in the development of predictive disease progres-
sion models, by implementation of systems pharmacology-
based modeling approaches45 to describe CRPC disease
progression in a mechanistic fashion, such as was recently
developed for hormone-sensitive PC27 or a model which
considered also immune system contributions.46

In conclusion, we successfully developed an integrated
model quantifying the dynamics and variability of PSA disease
progression and its relationship with overall survival in CPRC.
The identified patient characteristics as covariates in the
DPCO model could be used to assess the implications for spe-
cific patient groups. The developed model can potentially be
applied also for other drugs in CRPC to either generate
expected phase III clinical outcomes based on phase II results,
or to assess potential clinical trial designs47–49 with respect to
expected PSA dynamics and associated clinical outcome.
However, given the observed uncertainty in the external evalu-
ation this may require further model optimization.
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dataset (solid line) (top). Model-predicted (areas and bold solid lines) and observed (normal solid lines) in survival in external dataset,
stratified for PSA0 and KG.
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