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Relationships Between Pharmacovigilance, Molecular,
Structural, and Pathway Data: Revealing Mechanisms for
Immune-Mediated Drug-Induced Liver Injury

SS Ho, AJ McLachlan, TF Chen, DE Hibbs* and RA Fois

Immune-mediated drug-induced liver injury (IMDILI) can be devastating, irreversible, and fatal in the absence of successful
transplantation surgery. We present a novel approach that combines the methods of pharmacoepidemiology with in silico
molecular modeling to identify specific features in toxic ligands that are associated with clinical features of IMDILI.
Specifically, from pharmacovigilance data multivariate logistic regression identified 18 drugs associated with IMDILI (P <
0.00015). Eleven of these drugs, along with their known and proposed metabolites, constituted a training set used to develop
a four-point pharmacophore model (sensitivity 75%; specificity 85%). Subsequently, this information was combined with
information from immune-pathway reviews and genetic-association studies and complemented with ligand-protein docking
simulations to support a hypothesis implicating two putative targets within separate, possibly interacting, immune-system
pathways: the major histocompatibility complex within the adaptive immune system and Toll-like receptors (TLRs), in
particular TLR-7, which represent pattern recognition receptors of the innate immune system.
CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 426–441; doi:10.1002/psp4.56; published online on 18 June 2015.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? � Idiosyncratic drug-induced liver injuries (iDILI) are rare,
but are serious when they occur, often leading to the withdrawal of the offending drug from the market. While it is thought
that the immune system is involved in many of these reactions, the mechanisms or the proteins that may be mediating
the toxicity remain elusive. • WHAT QUESTION DID THIS STUDY ADDRESS? � How can a multidisciplinary approach
combining pharmacovigilance data with structural chemistry be used in the study of complex diseases? • HOW THIS
STUDY ADDS TO OUR KNOWLEDGE � Molecules implicated in immune-mediated DILI share 3D patterns of molecular
features. These patterns reveal evidence to support the involvement of HLA-B*5701 and TLR-7 as potential toxicity tar-
gets for immune-mediated DILI. • HOW THIS MIGHT CHANGE CLINICAL PHARMACOLOGY AND THERAPEUTICS �
Understanding the mechanisms behind DILI may enable the development of screening methods to identify at-risk patients,
allowing for individualized therapy. Knowledge of toxicity targets will facilitate the development of in vitro and in vivo assays
to aid in identifying toxic drugs early in drug development.

Of the barriers that need to be overcome in bringing a new
drug to market, idiosyncratic drug reactions rank among the
most dreaded due to their unpredictable and rare, but often
serious nature. Traditional approaches involving exposure
to cells, animals, and humans during drug development
have proven incapable of identifying rare idiosyncratic reac-
tions or the characteristics or circumstances of individuals
that place them at risk of these reactions. Although such
approaches remain in use for predicting and understanding
common reactions to drugs, they are beginning to be com-
plemented by data-driven computational methods that draw
on and link knowledge across a number of chemical, bio-
logical (including genetic), and clinical disciplines to predict
the potential for idiosyncratic reactions. A communication
by Sara Reardon, a reporter for the journal Nature, in
20131 described an exciting effort in the field of computa-
tional toxicology linking drug molecular structure with vari-
ous biological receptor sites, enabling researchers to
predict potential unintended adverse drug effects that can
be detrimental to both patients and the prospect for a

drug’s further development as a pharmacotherapeutic agent
(www.drugable.com, presented by Timothy Cardozo at the
US National Institutes of Health’s High Risk-High Reward
Symposium held in November 2013). Similarly, Liebler and
Guengerich identified the importance of moving beyond the
reductionist science of monodisciplinary methods towards
multidisciplinary and systems biology approaches in the
study of drug toxicity.2 A number of studies have also pro-
posed network pharmacology as a way of understanding
the on- and off-target effects of drugs.3,4

We present a novel approach that combines the methods
of pharmacoepidemiology with in silico molecular modeling
to identify specific features in toxic ligands that are associ-
ated with the clinical features of immune-mediated drug-
induced liver injury (IMDILI).

We then investigate whether the structural features of
identified toxic molecules are shared with ligands for which
putative immunological mechanisms and targets have been
proposed, and provide evidence in support of coincident
pharmacological interactions in IMDILI.
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Drug-structure and intrinsic features such as particular
molecular functional groups and substructures that serve
as precursors to reactive intermediate metabolites have
been identified as factors associated with idiosyncratic hep-
atotoxic reactions.5

Genetic studies have also revealed a number of host-
related factors that are associated with increased risk of idio-
syncratic drug-induced liver injuries (iDILI) from certain medi-
cines. Ann Daly (2012)6 summarizes the major associations
that have emerged from Genome-Wide Association Studies
(GWAS). For example, iDILI due to ximelagatran, flucloxacil-
lin, lumiracoxib, and amoxicillin/clavulanate is associated with
specific human leukocyte antigen (HLA) class I and II
genotypes.6 The association with HLA genotypes serves to
classify and provide a mechanistic understanding of other
IMDILI. The correlation is not perfect, however, with only 1 in
every 500–1,000 people who possess the genetic predispo-
sition to flucloxacillin DILI (HLA-B*5701) developing liver
toxicity upon exposure to the drug.7

Endeavors in unraveling the mechanisms that lead to
iDILI have focused on identifying the manifestation patterns
of toxicity features in individuals and the drugs that are
associated with these reactions. It has been suggested that
the low incidence of iDILI may be explained by a require-
ment for a number of factors to be present coincidentally
for toxicity to develop. The rare "perfect storm" that mani-
fests as a serious hepatic reaction is most likely the result of
the coexistence of a number of critical drug- and host-related
and environmental factors.8 Coincidental factors may involve
the generation of a second signal required for immune (T
cell) activation from interaction of a drug and/or its metabo-
lites with a second immune-pathway target or from other
exogenous factors (e.g., infection or another drug) that primes
or augments the immune response. An example in support of
this is the observation that lipopolysaccharides from cell walls
of Gram-negative bacteria, through interaction with Toll-like
receptor 4 (TLR-4), activate immune reactivity and reduce the
exposure threshold required for a number of compounds to
induce liver injury.9–11

Due to the infrequent nature of iDILI, clinical information
regarding drug exposure and the clinical and pathological
features of toxicity is limited and is largely derived from
case reports and from postmarketing pharmacovigilance
data. The quality of such data and levels of suspicion attrib-
uted to particular medicine exposure in patients are
dependent on the clinical expertise of case reporters, which
can vary from specialist physicians to consumers them-
selves. Nonetheless, postmarketing pharmacovigilance
databases can provide sufficient clinical data to signal
drug-event associations for rare adverse drug reactions.12

Drug-event association information from analysis of phar-
macovigilance data is now being integrated with chemical
and biological data in silico to reveal features of drugs and
biological targets and infer toxicity mechanisms.13–17 New
computational technologies are transforming the field of
regulatory science, with the US Food and Drug Administra-
tion (FDA) working towards replacing animal studies with a
combination of in silico and in vitro approaches.18

We present an approach to expose relationships between
IMDILI and the 3D structural features of toxic drug mole-

cules and their metabolites. We hypothesize that drugs (or
their metabolites) that produce similar patterns of toxicity
interact with targets within common toxicological pathways
and that activation of the underlying mechanisms depends
on structural features that are shared among toxic mole-
cules. We chose to focus on immune-mediated DILI since
these reactions have defined clinical characteristics that
allow us to identify cases from population adverse drug
event data. Briefly, drugs with the potential to cause IMDILI
were identified from population adverse drug reaction
(ADR) data. We then identified similarities in molecular
structures between toxic drugs using in silico pharmaco-
phore modeling. Subsequently, we test the hypotheses that
these similarities are important in molecular interactions
between toxic drugs and the immune system proteins HLA
and TLR-7 (Figure 1).

METHODS
Identification of drugs that share signals for IMDILI
Pharmacovigilance data were obtained from Australia’s Data-
base of Adverse Event Notifications (DAEN) (http://www.tga.
gov.au/safety/daen.htm#.UzAVgc4VXjs). This database is
curated by the Australian Therapeutic Goods Administration
(TGA) and includes information on patient demographics;
drug exposure (generic name, dose, frequency, dose form);
and adverse reaction terms recorded using the Medical Dic-
tionary for Regulatory Activities (MedDRA) (www.meddra.
org) coded as preferred terms (PT) and lower-level terms
(LLT). The subset of data used from the DAEN contained
240,137 ADR reports voluntarily reported to the TGA from
1972 to December 2008. Reports were excluded when data
were absent for patient age, gender, drug name, or adverse
reaction term. This led to 37,293 reports being excluded,
leaving 204,844 records for analysis.

Training set. Cases of IMDILI were defined as reports that
included a combination of at least one MedDRA preferred
term indicative of liver injury (e.g., hepatic failure) and at least
one MedDRA preferred term that indicated an immunological
reaction (e.g., drug allergy) (Supplementary Table 1). In all,
780 cases of IMDILI were identified. Noncases were defined
as all reports that do not meet the case definition.

All drugs from a therapeutic class were selected for inclu-
sion in disproportionality analyses where literature evidence of
IMDILI exists for at least one member of the drug class,
defined according to the Australian Medicines Handbook
(2010). A total of 328 drugs were included (Supplementary
Table 2).

Patient gender and age (as a continuous variable) were
included as covariates to account for the increased inci-
dence of DILI in females and the increased risk of the
elderly due to a greater number of concomitant medications.
Antiviral drugs indicated for viral hepatitis were also included.
These were used as surrogate markers of underlying liver
disease to account for cases where liver injury may not be
due to an administered drug. Covariates were included as
variables in the multiple logistic regression model.

We investigated a set of candidate drugs for the posses-
sion of signals for IMDILI using a case/noncase method,
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exposing disproportionality of drug-event combinations in
pharmacovigilance data.

Univariate analyses were carried out to measure the
association of each drug with IMDILI. Those drugs that
were significantly associated with IMDILI were then
included in multivariate logistic regression analysis. This
was carried out using the forward stepwise inclusion

method based on the likelihood ratio statistic to determine
the association of each drug with IMDILI (expressed as a
reporting odds ratio (ROR) and 95% confidence interval
(95% CI)).

The overall alpha level was set at 0.00015 following the
use of the Bonferroni adjustment to account for the 328
drugs investigated simultaneously.19 Drugs for which the

Identify drugs associated with IMDILI from population data (18 drugs) 

Abacavir contains the pharmacophore hypothesis 

Literature confirmation of IMDILI toxicity (11 drugs) 

Look for structural similarities with pharmacophore determination 

Validate pharmacophore hypothesis using an external set of drugs 

Abacavir hypersensitivity and flucloxacillin 
IMDILI are both associated with HLA-B*5701 

The molecular interactions by which abacavir 
interacts with HLA-B*5701 is known 

Hypothesis that flucloxacillin IMDILI is mediated 
by a similar mechanism 

Perform computational modelling to compare the  
molecular interactions of abacavir and flucloxacillin 

metabolites with HLA-B*5701 

Toll-Like Receptor 7 agonists share structural features 
with drugs associated with IMDILI 

Screen a set of compounds with and without activity 
on Toll-Like Receptor 7 using the  pharmacophore?

Figure 1 Workflow diagram outlining the approach taken in this study.
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lower limit of the 95% CI of the ROR exceeds 1 were
included in the training set for pharmacophore analysis.
Drugs with fewer than four ADR reports in the database
were excluded. Statistical analyses were conducted using
the SPSS 20.0.0 software (SPSS, Chicago, IL).

Test set. We defined the activity of a drug as its IMDILI
potential, i.e., active drugs are drugs that have known
IMDILI potential and inactive drugs are drugs that are not
known to cause IMDILI.

Drugs withdrawn from the market because of DILI con-
cerns as identified by Guengerich (2011)20 were included in
the active test set.

We searched through Australia’s DAEN database for
drugs with >200 case reports, none of which contain ADR
descriptors indicative of DILI. Six drugs met these criteria
and were included in the inactive test set.

Since the number of inactive drugs was significantly smaller
than the number of active drugs (in the training and test
sets), we decided to identify a second set of inactives from
the literature. Chen et al.21 list two datasets of drugs and the
DILI potential of each drug as identified by two different sour-
ces. The seven drugs identified in both data sources as with-
out DILI potential were added into the inactive test set.

Literature confirmation of toxicity classification. The
IMDILI potential (or lack thereof) of all the drugs included in
the training and test sets was confirmed by reviewing pub-
lished literature. A drug was only included in the training or
active test set if there was published evidence of DILI with

immune features (e.g., fever, rash, or eosinophilia), or if
there are genetic associations with proteins known to acti-
vate the adaptive immune system. Drugs were excluded
from the inactive test set if there was any published evi-
dence of hepatotoxicity. Drugs with molecular weight >500
were excluded from all in silico analyses.

Identifying similarities between probe drugs
The published literature was reviewed to identify known and
proposed metabolites of all drugs in the training and test
sets (Supplementary Table 3).

All molecules investigated in this study were built with the
molecular modeling and graphical user interface package
Maestro (v. 9.3, Schr€odinger, New York, NY, 2012). Parent
drug structures were downloaded in Simple Data Format
(sdf) from the DrugBank database (www.drugbank.ca).
Metabolites were drawn in using Maestro’s 2D sketcher tool.

The global minimal energy state of all molecules was deter-
mined with MacroModel (v. 9.9, Schr€odinger). The OPLS_2005
forcefield was used with a constant dielectric of 1.0.

Conformers were generated with Confgen (v. 2.3,
Schr€odinger).22 The OPLS_2005 forcefield was used with a
distance-dependent electrostatic treatment and a dielectric
constant of 1.0. Redundant conformers were eliminated
using a root mean square deviation cutoff of 0.5Å.

Generation of pharmacophore hypothesis
Pharmacophore development was conducted using Phase
(v. 3.4, Schr€odinger)23 in the Maestro modeling environ-
ment, in accordance with the Phase 3.4 user manual.
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Figure 2 Adjusted reporting odds ratio (with 95% CI) for drugs significantly associated with immune-mediated drug induced liver injury
as identified from Australia’s postmarketing adverse drug reaction surveillance system (P < 0.00015, Bonferroni adjusted).
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Each drug of the training set was grouped with its known
and proposed metabolites as an active ligand group. Phar-
macophore sites were identified using both point and vector
geometries for the following features: H-bond donor,
H-bond acceptor, ring, ionic, and hydrophobe. Phase was
then asked to identify common four-point pharmacophore
hypotheses that match at least 9 of 11 active groups. The
maximum tree depth was set to 7. Hypotheses were scored
using the default survival formula.

The analysis was repeated on four different computers
across Linux (Ubuntu 12.04), UNIX (iOS), and Windows
(Windows 7) platforms.

The primary pharmacophore hypothesis was chosen on
the basis of reliability across the different platforms, the
Phase survival score, and visual inspection.

Validation of pharmacophore hypothesis
The Phase (v. 3.4, Schr€odinger) Advanced Pharmaco-
phore Screening tool was used to screen the active
and inactive test sets for matches. The intersite dis-
tance matching tolerance was set to 2.0Å. The predic-

tive performance measures sensitivity, specificity, and
Matthews Correlation Coefficient were calculated based
on the number of drug/metabolite groups containing at
least one molecule matching the pharmacophore
hypothesis.24

Computational modeling of the interaction of abacavir
and flucloxacillin metabolites
The crystal structure of HLA-B*5701 complexed with pep-
tide V and abacavir was obtained from the protein data
bank (PDB: 3UPR Biological Assembly 1). Similarly, HLA-
B*5703 (PDB: 2BVP) was also obtained. All waters were
removed and the proteins were optimized and minimized
using Maestro’s Protein Preparation Wizard.25

Glide (v. 5.8, Schr€odinger)25 was used to generate a 14Å
cubic receptor grid centered on the crystallized abacavir in
HLA-B*5701. In the case of HLA-B*5703, the grid was cen-
tered around the F-pocket (residues: Y24, N77, A81, Y123,
I95, Y11626). The structures of flucloxacillin and its metabo-
lites were energy minimized to their most stable conforma-
tions. Conformers were generated using Confgen (v. 2.3,
Schr€odinger).22 Extra precision flexible docking of flucloxacil-
lin and its metabolites into both proteins was performed with
a 0.8 scaling factor of van der Waals radii and a partial charge
cutoff of 0.15. Ligand interaction diagrams were generated
using Maestro’s Ligand Interaction Diagram tool.25

Pharmacophore screening of TLR-7 agonists
Structures of 36 compounds, including 23 TLR-7 agonists
and 13 without activity on TLR-7, were identified from Yoo
et al.27 and drawn into Masetro using the 2D sketcher tool.

The Phase (v. 3.4, Schr€odinger) Advanced Pharmaco-
phore Screening tool was used to screen the compounds
for matches. The intersite distance matching tolerance was
set to 2.0Å. The predictive performance measures, sensitiv-
ity, specificity, accuracy, Matthews Correlation Coefficient,
positive predictive value, and negative predictive value were
calculated.24

RESULTS
Identifying structural similarities among IMDILI drugs
Multivariate logistic regression identified 18 drugs (repre-
senting 12 drug classes) that were significantly associated
with IMDILI (P < 0.00015, Bonferroni-adjusted limit for sig-
nificance) (Figure 2). Seven of these drugs had fewer than
four reports in the database or had molecular weight
>500 Da and were excluded from subsequent analyses.

The remaining 11 drugs (Table 1) formed the basis of a
training set for the in silico development of pharmacophore
models. Schr€odinger’s Phase program (v. 3.4)23 identified a
number of four-point pharmacophore hypotheses that were
common to 9 out of 11 drug/metabolite groups of the training
set. Given the diverse pharmacological actions of these com-
pounds, these structural similarities are unlikely to relate to
primary pharmacological targets and effects and we propose
that these pharmacophore hypotheses may mirror as-yet
unidentified target sites within the toxicity pathways.

Using a combination of the Phase survival score and vis-
ual inspection, we selected a primary pharmacophore
hypothesis for validation and further study. This hypothesis

Table 1 List of drug/metabolite groups in the training and test sets and

whether or not members of the group contain the pharmacophore

hypothesis

Drug/metabolite group Pharmacophore

Training set Allopurinol Yes

Carbamazepine Yes

Celecoxib Yes

Clavulanate No

Flucloxacillin Yes

Lamotrigine Yes

Nevirapine Yes

Phenytoin Yes

Propylthiouracil Yes

Sulfasalazine Yes

Sulindac No

Active test set Bromfenac Yes

Chlormezanone No

Lumiracoxib Yes

Nomifensine Yes

Oxyphenisation Yes

Pemoline No

Tienilic acid Yes

Ximelagatran Yes

Inactive test set Alprazolam No

Aripiprazole No

Baclofen No

Fluvoxamine No

Ketorolac Yes

Pregabalin No

Diphenhydramine No

Betaine hydrochloride No

Clemastine No

Isoproterenol Yes

Methysergide No

Oxybutynin No

Phenoxybenzamine No
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consisted of two hydrogen bond acceptors, a hydrogen
bond donor, and a ring (Figure 3).

External validation of pharmacophore model
Validation of the pharmacophore using an external test set
of drugs showed that our model exhibits predictive perform-
ance characterized by a Matthews Correlation Coefficient
of 0.60 and sensitivity and specificity of 75% and 85%,
respectively. The full list of drugs and metabolites possess-
ing the pharmacophore hypothesis is presented in Table 2.

Computational modeling of abacavir and flucloxacillin
metabolites
Extra precision flexible docking showed that the metabolites
of flucloxacillin were able to dock into abacavir’s binding
pocket. The pharmacophoric features are positioned to
interact with complementary amino acid residues within
the HLA binding groove. Furthermore, we demonstrated
in silico that the penicilloic acid metabolites of flucloxacillin
and of its 5-hydroxymethyl derivative contain structural fea-
tures positioned to interact with all of the amino acid resi-
dues that were associated with abacavir binding as
identified by Peters and co-workers28; specifically Tyr9, Tyr-

74, Ile-95, Val97, Tyr99, Tyr123, Ile-124, Trp147, Ile3, Leu7,
and Val9 (Figure 4).

The binding affinity of abacavir and the metabolites of flu-
cloxacillin in HLA-B*5703 was significantly lower than that
for HLA-B*5701 (Supplementary Table 4).25

TLR-7 as a potential toxicity target
We noted that loxoribine, a model TLR-7 agonist, pos-
sesses an arrangement of structural features that is con-
sistent with our pharmacophore hypothesis.

Our primary pharmacophore hypothesis was able to dif-
ferentiate between active ligands and ligands without activ-
ity on TLR-7 with sensitivity and specificity of 74% and
70%, respectively (Table 3).

DISCUSSION

In this study we integrated the methods of pharmacoepi-
demiology and computational chemistry to reveal a
structure–activity relationship in the form of a four-point
pharmacophore associated with IMDILI. Since it is unknown
whether the clinical toxicity is due to the parent compound

Figure 3 Abacavir superimposed on our pharmacophore hypothesis which consists of two hydrogen bond acceptor sites (A3, A7), a
hydrogen bond donor site (D10), and a ring moiety (R14).
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or a metabolite, each drug was grouped with its known and
proposed metabolites into a drug/metabolite group. A
potential limitation of this approach is that by increasing the
number of molecules in each drug/metabolite group, we
increase the risk of identifying structural features from mol-
ecules not involved in the toxicity. In addition, given the lim-
ited size of the training and test sets our pharmacophore
hypothesis may not be generalizable. However, the strength
of this approach is the ability to identify new potential toxic-
ity targets. In essence, the patterns of exposure and toxicity
in the pharmacovigilance data have revealed part of a sus-
picious molecular fingerprint that may be interacting with
immune system targets in vulnerable individuals.

This observation provided a probe set of molecules shar-
ing a unique structural pattern that we used to explore two
putative targets within immune pathways that may precipi-
tate tissue injury in vulnerable individuals; namely, the
major histocompatability complex (HLA) that is involved in
activating T cells as part of the adaptive immune response
and TLR-7, a pattern-recognition receptor involved in the

innate immune system, which may be involved in priming
or augmenting the adaptive immune response.

The hapten hypothesis is the most longstanding theory of
IMDILI, and is based on the premise that small molecules
(<1,000D) are too small to stimulate an immune response.
Reactive metabolites formed from parent drugs act as hapt-
ens, binding covalently to cellular proteins that are subse-
quently processed and presented to T cells by the HLA on
antigen-presenting cells (APCs) in order to initiate the
adaptive immune response.29 This is supported by the
increased likelihood of hepatotoxicity from drugs with
greater fractional clearance via hepatic metabolism,30 sug-
gesting that it is metabolites, rather than the parent drug,
which are responsible for toxicity.31

However, hapten formation ability alone may be insuffi-
cient to induce an immune response. Rather, a secondary
signal may be required for the upregulation of costimulatory
molecules on APCs before the immune response is initi-
ated.32 This has been termed the "danger hypothesis" since
the secondary signal is thought to consist of cytokines
released as a result of cellular damage, indicating there is
"danger" to the tissue.33

A modification of the hapten hypothesis proposes that
rather than T-cell activation via APC presentation of hapten-
ated proteins, the small drug molecules themselves (or
their metabolites) can interact with HLA and/or T-cell recep-
tors in a noncovalent manner.34 This has been termed the
pharmacological-interaction (p-i) hypothesis, and may
explain the IMDILI of some drugs (e.g., ximelagatran35) that
do not generate reactive metabolites. Drug molecules and
metabolites are thought to reversibly bind to peptides com-
plexed with HLA molecules. The drug then acts like a
bridge, linking the T cell and the APC via HLA in order to
initiate an immune response.36

We explored this hypothesis in silico by comparing the
interaction of HLA-B*5701 with both abacavir and flucloxa-
cillin metabolites. The recently published article on abacavir
hypersensitivity28 provides evidence for a modified p-i
hypothesis, which the authors termed the altered self-
peptide repertoire model. In this model, abacavir binds in
the F-pocket at the base of the HLA-B*5701 groove. The
presence of abacavir alters the set of endogenous peptides
presented to T cells by HLA-B*5701, and this is thought to
be the mechanism behind abacavir’s observed HLA-B*5701
restricted hypersensitivity.28

We noted with interest that abacavir shares the same
four-point pharmacophore as the hepatotoxic molecules
identified in our analysis (Figure 3). Hence, we hypothe-
sized that other molecules of our training set may interact
with HLA in similar ways to abacavir.

Metabolites of flucloxacillin and abacavir share common
interactions with HLA-B*5701 and the cocrystallized pep-
tide, inferring that T-cell activation via HLA-B*5701 may be
a common toxicity pathway for both abacavir and flucloxa-
cillin (Figure 4). Indeed, Wuillemin et al.37 recently demon-
strated the importance of cytotoxic T cells in mediating
flucloxacillin induced DILI in HLA-B*57011 patients.

In contrast, although both abacavir and the metabolites
of flucloxacillin are able to bind to abacavir-insensitive HLA-
B*5703, the binding affinities are lower as indicated by their

Table 2 List of molecules that contain the pharmacophore hypothesis

Training set Active test set Inactive test set

Allopurinol Bromfenac Ketorolac

Allopurinol M1 Bromfenac M2 Ketorolac M1

Allopurinol M2 Bromfenac M3 Isoproterenol

Allopurinol M3 Lumiracoxib Isoproterenol M1

Allopurinol M4 Lumiracoxib M2

Carbamazepine M1 Lumiracoxib M3

Carbamazepine M2 Lumiracoxib M5

Celecoxib Lumiracoxib M6

Celecoxib M1 Lumiracoxib M7

Celecoxib M2 Lumiracoxib M8

Flucloxacillin Lumiracoxib M9

Flucloxacillin M1 Lumiracoxib M10

Flucloxacillin M2 Lumiracoxib M11

Flucloxacillin M3 Lumiracoxib M12

Lamotrigine M1 Lumiracoxib M13

Nevirapine Lumiracoxib M15

Nevirapine M1 Lumiracoxib M16

Nevirapine M2 Lumiracoxib M17

Nevirapine M3 Lumiracoxib M18

Nevirapine M4 Nomifensine M4

Nevirapine M5 Oxyphenisatin

Phenytoin M3 Tienilic acid

Phenytoin M6 Tienilic acid M1

Propylthiouracil M6 Tienilic acid M2

Propylthiouracil M7 Tienilic acid M3

Sulfasalazine Tienilic acid M4

Sulfasalazine M1 Tienilic acid M5

Sulfasalazine M2 Ximelagatran

Sulfasalazine M3 Ximelagatran M1

Sulfasalazine M4 Ximelagatran M2

Sulfasalazine M5 Ximelagatran M3

Sulfasalazine M6 Ximelagatran M4

Ximelagatran M5

Ximelagatran M6
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greater GlideScores (Supplementary Table 4). This pro-
vides further evidence that abacavir and flucloxacillin may
share the same toxicity pathway.

It is increasingly recognized that the innate immune system
also plays a vital role in the pathogenesis of IMDILI.38,39 TLRs
are a class of pattern recognition receptors that form an integral
part of the innate immune system, as they recognize and
respond to pathogen-associated molecular patterns (PAMPs)
and damage-associated molecular patterns (DAMPs).

TLRs have a role in liver injury, with recent research link-
ing TLR-9 and liver fibrosis40 and TLR-2 with neutrophil
recruitment in acute and chronic liver injury.41 Lipopolysac-
charides from Gram-negative bacterial cell walls, TLR-4
ligands, have also been known to potentiate DILI of trova-
floxacin in animal models.42 TLR-7, a cytoplasmic endoso-
mal TLR, the subtype investigated in this study, is similar to
TLR-9 and is one of the few TLRs for which there are
known small molecule modulators. All TLRs are known to
activate the MyD88 pathway, the downstream effects of
which include the production of inflammatory cytokines and
the expression of costimulatory molecules required for the
activation of the adaptive immune system.43

Our pharmacophore hypothesis, generated from mole-
cules implicated in IMDILI, was able to accurately differenti-

ate between TLR-7 agonists and antagonists (Table 3). This
implies that molecules of our training set share structural fea-
tures with TLR-7 agonists, suggesting TLR-7 as a potential
target that is common to the toxicity pathways of these drugs.
It should be noted that TLR-7 is not usually detected in the
liver,44 and that our study does not account for relative liver
specificity. Nevertheless, we propose that this pathway may
be commonly activated in all individuals exposed to these
drugs and the factors differentiating toxic manifestations lie in
the HLA genotype, which may explain why evidence has not
emerged implicating toxicity from all of the "active" drugs in
our test and training sets with the same HLA genotype. In
other words, the identified structural features of our pharma-
cophore may be involved in activating the innate immune
response but that this only results in toxicity in individuals
with vulnerable HLA genotypes.

Given the degree of overlap in TLR signaling pathways, it
is not unreasonable to assume that other receptors may
also play a part in IMDILI. Although there was insufficient
data from our study to determine whether other TLR sub-
types are involved in the toxicity pathway, it is certainly wor-
thy of further investigation.

Accurate development and validation of pharmacophore
models relies on the correct assignment of activity. As

Figure 4 Comparison between the docking of abacavir and penicilloic acid, a metabolite of flucloxacillin. (a,b) Abacavir and penicilloic
acid respectively docked into HLA:B*5701 (3UPR). (c,d) Interaction of abacavir and penicilloic acid, respectively, with the amino acids
in the binding pocket.
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Table 3 List of compounds active and inactive on Toll-like receptor 7 and whether or not the compounds contain the pharmacophore hypothesis

Compound Structure Activity on TLR7 Pharmacophore

5 Yes No

6a No No

6b No No

11a No No

11b No No
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Table 3. cont.

Compound Structure Activity on TLR7 Pharmacophore

17 No No

19a Yes Yes

19b Yes Yes

19c Yes Yes

19d Yes Yes
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Table 3. cont.

Compound Structure Activity on TLR7 Pharmacophore

19e Yes Yes

19f Yes Yes

19g Yes Yes

19h Yes Yes

19i Yes Yes

19j Yes Yes
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Table 3. cont.

Compound Structure Activity on TLR7 Pharmacophore

19k Yes Yes

19l Yes Yes

19m Yes Yes

19n No Yes

19o Yes Yes
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Table 3. cont.

Compound Structure Activity on TLR7 Pharmacophore

19p Yes Yes

19q Yes Yes

19r Yes Yes

19s No Yes

23a Yes No

23b No No

23c No Yes
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Table 3. cont.

Compound Structure Activity on TLR7 Pharmacophore

23d No No

23e No No

23f No No

23g Yes No

23h Yes No
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such, our results are reliant on the accuracy of DILI case
data. Hence, literature confirmation and refinement of toxicity
classification was an important step in our method and acted
as a validation step to filter out potentially false signals gen-
erated from the pharmacovigilance data. In some cases
genetic associations with HLA were taken as evidence of
immune involvement even if DILI does not present with
prominent clinical hypersensitivity features. In the identifica-
tion of noncases, it is possible that drugs with very rare inci-
dences of DILI may have been inadvertently misclassified as
nontoxic due to a lack of evidence to the contrary. In this
study we demonstrated that postmarketing surveillance data
can be effectively used to study rare and unpredictable
ADRs. In particular, we report a set of probe molecules for
IMDILI that can be utilized with confidence. We also identi-
fied a relationship between drug structure and hepatotoxicity,
and were able to use this relationship to identify and investi-
gate potential immune-system targets: HLA-B*5701 and
TLR-7. These in silico results provide promising leads into
the mechanisms behind IMDILI and merit further investiga-
tion and validation using in vitro and in vivo studies. Our
results highlight the utility of linking information from clinical
and chemical databases with knowledge from biological
pathway and gene-association datasets to reveal potential
mechanisms behind idiosyncratic drug reactions. This

approach may assist in developing targeted experimental
methods; for example, assays to confirm whether our train-
ing set drugs are able to activate TLR-7. To this end, we
intend to use those molecules identified as sharing a com-
mon four-point pharmacophore, implicated in IMDILI in con-
trolled in vitro experiments involving a number of putative
receptors, including TLR-7 and HLA-B*5701.
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