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Abstract

Background—We evaluated the relationship between florbetapir-F18 positron emission 

tomography (FBP PET) and cerebrospinal fluid (CSF) biomarkers.

Methods—Alzheimer’s Disease Neuroimaging Initiative (ADNI)-GO/2 healthy control (HC), 

mild cognitive impairment (MCI), and Alzheimer’s disease (AD) dementia subjects with clinical 

measures and CSF collected ±90 days of FBP PET data were analyzed using correlation and 

logistic regression.

Results—In HC and MCI subjects, FBP PET anterior and posterior cingulate and composite 

standard uptake value ratios correlated with CSF amyloid beta (Aβ1-42) and tau/Aβ1-42 ratios. 

Using logistic regression, Aβ1-42, total tau (t-tau), phosphorylated tau181P (p-tau), and FBP PET 

composite each differentiated HC versus AD. Aβ1-42 and t-tau distinguished MCI versus AD, 

without additional contribution by FBP PET. Total tau and p-tau added discriminative power to 

FBP PET when classifying HC versus AD.

Conclusion—Based on cross-sectional diagnostic groups, both amyloid and tau measures 

distinguish healthy from demented subjects. Longitudinal analyses are needed.
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1. Background

Hallmark neuropathological lesions of Alzheimer’s disease (AD) at autopsy are amyloid 

beta (Aβ) protein deposition in plaques and hyperphosphorylated tau deposition in 

neurofibrillary tangles [1]. However, data from the National Institute on Aging (NIA) 

Alzheimer’s Disease Centers collected from 2005 to 2010 found ranges for sensitivity of 

70.9% to 87.3% and specificity of 44.3% to 70.8% when clinical diagnoses of possible and 

probable AD dementia are compared with postmortem histopathology diagnosis [2]. 

Florbetapir-F18 positron emission tomography (FBP PET) for estimating beta-amyloid 

neuritic plaque density was Food and Drug Administration (FDA)-approved in April 2012 

and has high sensitivity (96%; 95% CI [confidence interval] 80%–100%) and specificity 

(100%; 95% CI 78%–100%) versus autopsy within 1 year [3]. Another positron emission 

tomography (PET) radiotracer used to quantify amyloid deposits in the brain in research 

settings is Pittsburgh compound B (PiB) [4, 5]. Cerebrospinal fluid (CSF) levels of Aβ1-42, 

total tau (t-tau), and phosphorylated tau181P (p-tau) [6] are additional research tools with 

ongoing efforts to standardize across laboratories and patients [7, 8].

A model of the temporal order in which clinically measurable AD biomarkers become 

abnormal throughout the progression of AD has been proposed by Jack and colleagues [9]. 

According to this model, abnormal CSF Aβ1-42 and amyloid PET findings are detected 

earliest, followed by CSF tau and other biomarker types. Deposition of Aβ into plaques 

appears very early in the disease process during the asymptomatic stages prior to AD 

dementia. In contrast, elevated tau levels are downstream biomarkers that become strikingly 

more abnormal closer to the development of clinical symptoms [9]. Evidence continues to 

accumulate in support of this model [10–12]. Fagan and colleagues reported a similar CSF 

biomarker phenotype in patients with very mild AD symptoms (Clinical Dementia Rating 

[CDR]=0.5) versus patients with more advanced AD (CDR>1) [13].

There is no consensus for antemortem staging of AD clinical phases using biomarker 

thresholds and where the progression of neuropathological changes is hypothesized to be on 

a continuum beginning with a long asymptomatic period and culminating in dementia [14, 

15]. Further, symptom severity is influenced by multiple factors, such as age [16], 

premorbid functioning [17], education [18], cognitive reserve [14], apolipoprotein E epsilon 

4 (APOE4) allele carrier status [19], and certain concurrent medical conditions [20]. Thus, 

there may be a discrepancy between the presence and degree of AD neuropathology with the 

expression of AD symptoms on an individual basis. These challenges underscore the need 

for additional tools, such as AD clinical biomarkers, to aid the accurate diagnosis and 

staging of AD across the continuum of clinical progression [21].

The CSF Aβ1-42 and tau analytes and amyloid PET neuroimaging as adjunctive biomarkers 

for diagnosis of AD are not commonly used in clinical practice but have the potential to 
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significantly impact accuracy of a clinical diagnosis. There is a small amount of emerging 

literature about their relationship to each other across the spectrum of disease progression. 

Studies of the amyloid brain deposits assessed with PiB PET and CSF levels of Aβ1-42 found 

an inverse relationship between them, no relationship between PiB and CSF t-tau or p-tau, 

and discordance with clinical diagnosis where some healthy controls had evidence of 

amyloid positive status by both PiB and CSF Aβ1-42 [4, 5]. Binary classification using PiB 

PET and CSF-Aβ1-42 overlapped in 96.4% [4].

We explored cross-sectional relationships between FBP PET and CSF biomarkers among 

groups of healthy control (HC), mild cognitive impairment (MCI), and AD dementia 

subjects enrolled in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) using 

approaches not previously reported. We measured correlations between regional and 

composite FBP PET values and CSF Aβ1-42, t-tau, and p-tau, and their ratios in diagnostic 

groups. We used logistic regression to compare composite FBP PET values with CSF 

Aβ1-42, t-tau, and p-tau in distinguishing between diagnostic groups including evaluating for 

additive contributions by the other biomarker type.

2. Methods

2.1. Subjects and study design

Data used in the preparation of this article were obtained from the ADNI database 

(adni.loni.usc.edu). The ADNI was launched in 2003 by the NIA, the National Institute of 

Biomedical Imaging and Bioengineering (NIBIB), the FDA, private pharmaceutical 

companies and non-profit organizations, as a $60 million, 5-year public-private partnership. 

The primary goal of ADNI has been to test whether serial magnetic resonance imaging 

(MRI), PET, other biological markers, and clinical and neuropsychological assessment can 

be combined to measure the progression of MCI and early AD. Determination of sensitive 

and specific markers of very early AD progression is intended to aid researchers and 

clinicians to develop new treatments and monitor their effectiveness, as well as lessen the 

time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center 

and University of California – San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and private corporations, and 

subjects have been recruited from over 50 sites across the United States and Canada. The 

initial goal of ADNI was to recruit 800 subjects, but ADNI has been followed by ADNI-GO 

and ADNI-2. To date these 3 protocols have recruited over 1500 adults, ages 55 to 90, to 

participate in the research, consisting of cognitively normal older individuals, people with 

early or late MCI, and people with early AD. The follow-up duration of each group is 

specified in the protocols for ADNI-1, ADNI-2, and ADNI-GO. Subjects originally 

recruited for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-

date information, see www.adni-info.org.

Data were downloaded in August 2012 from ADNI-GO/2 which included FBP PET scans. 

Participants were recruited from outpatient memory clinics. Clinical diagnoses were 

assigned to participants by the site investigators and reassessed at each visit. Normal age-
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matched control subjects showed no signs of depression, MCI, or dementia (www.adni-

info.org). Participants with MCI were required to present education-adjusted ranges on the 

Logical Memory II subscale from the Wechsler Memory Scale-Revised: ≥ 16 years of 

education – 9 to 11 for early MCI, ≤ 8 for late MCI; 8 to 15 years of education – 5 to 9 for 

early MCI, ≤4 for late MCI; 0 to 7 years of education – 3 to 6 for early MCI, ≤ 2 for late 

MCI. Additionally, participants with MCI had Mini-Mental State Examination (MMSE) 

scores between 24 and 30 (inclusive), a CDR of 0.5 with a Memory Box score ≥ 0.5, and 

preserved activities of daily living. Participants with AD dementia met the National Institute 

of Neurological and Communicative Disorders and Stroke - Alzheimer’s Disease and 

Related Disorders Association (NINCDS-ADRDA) criteria for probable AD. At subsequent 

visits, diagnoses were categorized as HC, MCI, or AD. For this cross-sectional analysis, we 

selected all HC, MCI, and AD dementia subjects who had clinical measures, diagnoses, and 

CSF analyte levels within ±90 days of their FBP PET scans.

2.2. Clinical measures

The following clinical measures were included to describe the sample: Estimated Verbal 

Intelligence Quotient (EVIQ), Functional Activities Questionnaire (FAQ), Geriatric 

Depression Scale (GDS), Neuropsychiatric Inventory-Questionnaire (NPI-Q), 11- and 13-

item versions of the cognitive subscale of the Alzheimer’s Disease Assessment Scale 

(ADAS-Cog11; ADAS-Cog13), and MMSE.

2.3. Biomarker variables

2.3.1. Florbetapir-F18 positron emission tomography—FBP PET data for all 

subjects were analyzed using a semi-automatic method, which includes spatial normalization 

to a standard template in the Talairach space [3]. Standard uptake value ratios (SUVRs) 

using whole cerebellum as the reference region were calculated for 6 FBP PET regions of 

interest (ROI): posterior cingulate, precuneus, parietal, temporal, anterior cingulate, frontal; 

and the composite, which is their mean SUVR. The 6 target ROIs were defined in a previous 

study,[22] in which PET uptake was increased in AD subjects compared with control 

subjects. Raw FBP PET data were initially pre-processed at the Laboratory of Neuroimaging 

at the University of California, Berkeley (http://resource.loni.ucla.edu/research/data-

interpretation/).

2.3.2. Cerebrospinal fluid measures—Samples were analyzed using the Luminex® 

xMAP® platform (Austin, TX) and Innogenetics/Fujirebio AlzBio3 immunoassay kits 

(Gent, Belgium) by the ADNI Core Laboratory at the University of Pennsylvania Medical 

Center. The following variables were determined: Aβ1-42, t-tau, p-tau, t-tau/Aβ1-42 ratio, and 

p-tau/Aβ1-42 ratio.

2.4. Genotyping

A blood sample for genomic deoxyribonucleic acid extraction was obtained at enrollment 

for all study participants. The APOE4 genotyping on these samples was performed by 

Illumina® (San Diego, CA).
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2.5. Statistical analyses

Pearson correlation coefficients were calculated among 5 CSF and 7 FBP PET variables by 

diagnostic group. Demographic and other clinical characteristics were compared among 3 

diagnostic groups with Chi-square/Fisher’s exact test for categorical characteristics and 

analysis of variance for continuous variables. A significance cutoff of P≤.0014 based on 

Bonferroni correction was applied (i.e., taking into account 35 correlations for each 

diagnostic group).

Logistic regression modeling assessed relationships between clinical diagnosis with CSF 

variables (not ratios) and the FBP PET composite SUVR. The likelihood ratio test was used 

to examine whether adding CSF biomarkers to the model, which regresses clinical diagnosis 

on FBP PET composite SUVR, significantly improved model fit, and vice versa. Analyses 

were adjusted for the following subject demographics: APOE4 carrier status (binary); age at 

FBP PET scan; gender; and EVIQ. Data are expressed with bolded P-value notation for 

analyses meeting the statistical significance threshold after Holm-Bonferroni correction [23] 

for multiple comparisons (i.e., taking into account 30 analyses). All regression analyses 

were done separately for 3 pairs of diagnoses: HC versus MCI, MCI versus AD, and HC 

versus AD. For all analyses, statistical significance was defined as P≤.05, except where 

corrections were applied.

3. Results

3.1. Subject characteristics

A total of 577 subjects underwent FBP PET scans and had clinical diagnoses available 

within ±90 days of the scan. Of these, 344 subjects had all data points available for FBP 

PET, CSF, clinical diagnosis, age, and EVIQ, as well as sex and APOE4 status, and were the 

basis of this analysis. These 344 subjects consisted of 97 HC, 226 MCI, and 21 AD 

dementia subjects; mean ages were 74.5 (±5.6) years in HC, 71.4 (±7.5) years in MCI, and 

74.0 (±10.0) years in AD dementia subjects (Table 1). Neuropsychiatric assessment scale 

scores differed significantly (P ≤.05) among groups, with AD dementia subjects most 

severely affected (Table 1).

3.2. Correlation analyses of biomarker variables by diagnostic group

Pearson’s correlation coefficients were assessed between FBP PET SUVR and CSF 

biomarkers. The highest statistically significant (P≤.05, Bonferroni corrected) correlations 

were between FBP PET anterior cingulate, posterior cingulate, and composite SUVRs with 

CSF Aβ1-42, t-tau/Aβ1-42 ratio, and p-tau/Aβ1-42 ratio for HC and MCI groups (Table 2).

Although significant correlations between CSF tau measures and FBP PET variables were 

seen, the values of the correlation coefficients were relatively lower unless CSF tau was in a 

ratio with Aβ1-42. Correlations between both t-tau and p-tau and several FBP PET variables 

did reach statistical significance in the MCI group. In the AD dementia group, no significant 

correlations were observed (Table 2).
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3.3. Regression analyses of biomarker variables

After Holm-Bonferroni correction, logistic regression modeling of biomarkers found no 

variables that statistically significantly differentiated HC from MCI (Table 3). Amyloid 

biomarkers alone (FBP PET and CSF Aβ1-42) significantly distinguished between diagnostic 

groups when comparing HC and AD dementia groups (FBP PET, P=.0002; CSF Aβ1-42, P=.

0007). CSF t-tau significantly differentiated AD dementia from both HC (P<.0001) and 

MCI groups (P=.0003), and CSF p-tau distinguished between HC and AD dementia groups 

(P=.0001).

Table 3 also shows the effect of adding CSF or FBP PET variables to the other biomarker 

type to assess any additional contribution to differentiating diagnostic groups (where the 

reported P-values represent the impact of just the additional information). No significant 

gain in differentiation was observed when testing FBP PET variables in the presence of CSF 

variables for any group comparison. However, adding CSF t-tau or CSF p-tau to FBP PET 

significantly improved differentiation between HC and AD dementia groups.

4. Discussion

This cross-sectional analysis explored relationships between 2 types of AD biomarkers, 

amyloid PET imaging (FBP PET) and CSF analytes (Aβ1-42, t-tau, and p-tau), for their 

ability to differentiate clinical diagnostic group status among HC, MCI, and AD dementia 

subjects in ADNI. Both amyloid-related biomarkers were highly correlated with each other. 

Overall, the amyloid-related biomarkers were not appreciably different with respect to 

categorical clinical classification in that adding one to the other in logistic regressions did 

not improve classification.

Specifically, in logistic regression analyses, neither CSF Aβ1-42 nor FBP PET distinguished 

HC and MCI, probably because amyloid pathology in those who could later progress to 

clinical AD had already manifested. However, CSF Aβ1-42 and FBP PET each distinguished 

HC from AD groups, as did CSF t-tau and p-tau. Additionally, CSF t-tau also significantly 

differentiated AD dementia from MCI, and CSF p-tau distinguished between HC and AD 

dementia groups.

These findings with CSF tau are consistent with CSF tau abnormalities manifesting later and 

progressively in the disease, as compared to amyloid plaque, which exhibits substantial 

deposition by the time patients present with MCI [9].

CSF Aβ1-42 but not FBP PET significantly distinguished MCI from AD dementia groups; 

however, FBP PET was close to the threshold applied by the Holm-Bonferroni correction 

for the multiple comparisons method, and it is possible that a better-powered study might 

have found a different result. Once a person has positive binary status the rate of amyloid 

SUVR increase is slower during MCI and dementia stages than in the decades before MCI 

[15].

We found a number of statistically significant correlations between the biomarker types, 

especially those that involved beta-amyloid. Although significant correlations between CSF 
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tau measures and FBP PET variables were seen, the values of the correlation coefficients 

were relatively lower unless CSF tau was in a ratio with CSF Aβ1-42.

Within the HC and MCI groups, we found some strong and significant correlations for FBP 

PET with CSF Aβ1-42, with the anterior and posterior cingulate ROIs and composite SUVRs 

being the most notable. This is consistent with the known neuroanatomical progression 

pattern of AD where cingulate gyri are affected early with beta-amyloid plaque. In the AD 

dementia group, the highest correlations were between CSF Aβ1-42 and FBP PET, but no 

correlations reached statistical significance. However, it needs to be considered that the 

sample size for the AD dementia group was much smaller than the other groups.

Interestingly, CSF t-tau provided differentiation in the comparisons of HC versus AD 

dementia and MCI versus AD dementia, but not HC versus MCI. This suggests that 

amyloid-related biomarkers are informative as adjunctive tests for establishing an AD 

diagnosis since the associated pathology starts long before clinical symptoms appear, while 

tau may be more helpful for staging because it accumulates in the later stages of the disease, 

as has been described previously. While CSF Aβ1-42 changes are observed 5 to 10 years 

before conversion of MCI to AD dementia, CSF t-tau and p-tau seem to be markers of later 

stage pathology [24]. Thomann and colleagues associated changes in CSF t-tau and p-tau 

with neurodegenerative changes in MCI subjects who converted to early AD dementia [25]. 

Alternatively, some studies have suggested that tau abnormalities at the cellular level may 

begin in the asymptomatic period before or simultaneously with amyloid [26], but our 

current clinical biomarker methodologies may not be targeted or sensitive enough to detect 

those [27].

Doré and colleagues recently described longitudinal (18- and 36-months) relationships 

among Aβ deposition, cortical thickness, and memory [28]. They reported a faster rate of 

gray matter atrophy in the temporal cortex and hippocampi and greater episodic memory 

impairment in clinically unimpaired individuals who were amyloid positive on PiB PET 

than those who were amyloid negative [28]. A longitudinal study published by the 

Australian Imaging Biomarkers and Lifestyle (AIBL) research group estimated that it takes 

19.2 years (95% CI 16.8–22.5) for subjects to progress from the threshold of PiB PET 

positivity to amyloid levels observed in AD dementia [15]. After the emergence of 

symptoms of AD, the rate of Aβ deposition slowed and then plateaued at the dementia stage 

[15]. Additionally, a study of 401 ADNI subjects found that reduction in the CSF Aβ1-42 

level becomes dynamic early, whereas changes in CSF t-tau levels and adjusted 

hippocampal volumes occur later and may be biomarkers of downstream pathophysiological 

processes [29]. However, a study by Driscoll and colleagues in non-demented individuals 

did not observe a correlation between the level of amyloid load and longitudinal brain 

volume changes [30].

The generalizability of our results to the broader population is uncertain and potentially 

limited by the study sample. We used data from ADNI-GO and ADNI-2 cohorts, which 

represents a selected convenience sample including subjects with amnestic MCI, but also 

higher education and cognitive reserve. Compared to the ADNI cohort, the population-based 

sample in the Mayo Clinic Study of Aging (MCSA) [31] was older and less educated, and 
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had lower MMSE scores and less frequent family history of AD. The rate of hippocampal 

volume decline was larger in ADNI subjects compared with MCSA, suggesting more 

advanced brain pathology in ADNI subjects [31]. Additionally, analyzing early and late 

MCI subjects as 1 group might have affected our findings. Further, because ADNI used a 

central laboratory to test CSF, the lack of standardization of CSF AD biomarker 

measurements across clinical sites and assays may limit the applicability of our results to 

clinical practice. Finally, the analyses presented here are based on cross-sectional and not 

longitudinal data. Prospective, longitudinal studies are needed to confirm or refute our 

findings. The strengths of our study are the relatively large HC and MCI sample sizes and 

the combination of CSF and FBP PET measures where most prior work was reported using 

PiB PET.

In conclusion, we found some unique characteristics, but also considerable overlap between 

CSF and FBP PET measures when assessing their ability to distinguish among pairs of HC, 

MCI, and AD dementia groups. We report both composite and ROI correlations for FBP 

PET with CSF. Our findings of differences in differentiation of AD stages by amyloid 

versus tau biomarkers might aid in the development of further diagnostic and staging tools 

for AD.
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Research in Context

Systematic Review

The authors reviewed the currently available literature on florbetapir positron emission 

tomography and cerebrospinal fluid biomarkers in Alzheimer’s Disease and combined 

their findings with their clinical experience in this patient population.

Interpretation

The authors found some unique characteristics but also considerable overlap between 

cerebrospinal fluid and florbetapir positron emission tomography measures when 

assessing their ability to distinguish among pairs of healthy control, mild cognitive 

impairment, and Alzheimer’s Disease groups using a variety of analytic methods. These 

findings of differences in differentiation of Alzheimer’s disease stages by amyloid versus 

tau biomarkers might aid in the development of further diagnostic and staging tools for 

Alzheimer’s Disease.

Future Directions

Prospective, longitudinal studies are needed to confirm the results of the presented 

retrospective cross-sectional analyses.
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