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Abstract

Recent sequencing efforts have focused on exploring the influence of rare variants on the complex 

diseases. Gene-level based tests by aggregating information across rare variants within a gene 

have become attractive to enrich the rare variant association signal. Among them, the sequence 

kernel association test has proved to be a very powerful method for jointly testing multiple rare 

variants within a gene. In this article, we explore an alternative sequence kernel association test. 

We propose to use the univariate likelihood ratio statistics from the marginal model for individual 

variants as input into the kernel association test. We show how to compute its significance p-value 

efficiently based on the asymptotic chi-square mixture distribution. We demonstrate through 

extensive numerical studies that the proposed method has competitive performance. Its usefulness 

is further illustrated with application to associations between rare exonic variants and type 2 

diabetes in the Atherosclerosis Risk in Communities (ARIC) Study. We identified an exome-wide 

significant rare variant set in the gene ZZZ3 worthy of further investigations.
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Introduction

In GWAS, observed effect sizes for common variants have typically been quite small. In 

combination they explain a small proportion of the phenotypic variance. Manolio et al. 

(2009) have suggested that rare variants could have substantial effect sizes without 

demonstrating clear Mendelian segregation, and could contribute substantially to missing 

heritability. Individual rare variant based tests typically lack power due to low minor allele 

frequencies, and gene-level based association tests implemented by aggregating information 

across rare variants within a gene have become attractive to enrich the association signal. An 

intuitive and simple approach to aggregating signals across rare variants collapses the rare 

variants into a burden score to be linked to the phenotype (Morgenthaler and Thilly, 2007; 

Correspondence to: Baolin Wu, Telephone: (612) 624-0647, Fax: (612) 626-0660, baolin@umn.edu, Address: A460 Mayo Building, 
MMC 303, Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455-0392, USA.
*Co-correspondence authors

HHS Public Access
Author manuscript
Genet Epidemiol. Author manuscript; available in PMC 2016 September 01.

Published in final edited form as:
Genet Epidemiol. 2015 September ; 39(6): 399–405. doi:10.1002/gepi.21913.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Madsen and Browning, 2009; Morris and Zeggini, 2010; Price et al., 2010; Lin and Tang, 

2011). The combined multivariate and collapsing (CMC) method is an extension of the 

burden test by collapsing rare variants in a region within subgroups defined according to 

their minor allele frequencies (MAFs) (Li and Leal, 2008). The variable threshold (VT) 

method is a data adaptive burden test by choosing an optimal MAF threshold (Price et al., 

2010; Lin and Tang, 2011). The burden test works well for variants with similar effects and 

could lose substantial power with both protective and deleterious variants, or in the presence 

of many non-causal variants. The sequence kernel association test (SKAT) is based on the 

variance component score test and works well under various combinations of protective and 

deleterious variants (Wu et al., 2010; Neale et al., 2011; Wu et al., 2011). A more flexible 

approach is SKAT-O, which adaptively combines the burden and the SKAT statistics (Lee 

et al., 2012). The SKAT based approach performs well and is widely used in rare variant 

based association test.

Rare variants have been postulated to have large effect sizes (Manolio et al., 2009). It is 

likely that typical GWAS only have sufficient power to detect variants with large effects. 

This is indeed the case for most rare disease-causing variants identified to date (Bonnefond 

et al., 2012; Zhan et al., 2013; Steinthorsdottir et al., 2014;Wang et al., 2014; Estrada et al., 

2014). The SKAT is based on the score test, thus is computationally very efficient. The 

score test performs well when parameter is close to the null value, but could have 

suboptimal performance with large deviation from the null (e.g., when testing those rare 

variants with large effect sizes).

Recently Chen et al. (2014) developed a Cox SKAT for survival outcomes and adopted the 

likelihood ratio test for its better performance compared to the score test in the Cox 

proportional hazard model. In this article, we explore an alternative sequence kernel 

association test for binary trait in the same spirit as Chen et al. (2014). We use the univariate 

likelihood ratio statistics from the marginal model for individual variants as input into the 

sequence kernel association test and its adaptive test. Their significance p-values can be 

computed efficiently based on the asymptotic chi-square mixture distribution. We 

demonstrate through extensive numerical studies that the proposed method has competitive 

performance. We illustrate the usefulness of the proposed method through an application to 

associations between rare variants and type 2 diabetes in the ARIC Study.

Materials and Methods

Consider a GWAS with genotype scores G, coded as (0,1,2) for the copies of minor allele, 

disease status indicator Y, and additional covariates X, which could include ancestry 

covariate (e.g., ancestry indicator or principal components).

Consider n subjects sequenced in a region with m genotyped rare variants. For the i-th 

subject, let yi denote the case-control status, Gi = (gi1, …, gim) the genotypes for the m 

variants, Xi = (xi1, …, xip) the covariates to be adjusted. We study the disease association of 

rare variants based on the following logistic regression model

(1)
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where α and β = (β1, …, βm)′ are the vector of regression coefficients for the covariates and 

rare variants. Here expit(x) = 1/(1 + exp(−x)) is the inverse-logit function. The disease 

association of the m rare variants can be tested by evaluating the null hypothesis H0 : β = 0.

Sequence kernel association test

The sequence kernel association test (SKAT; Wu et al., 2011) is derived as a variance-

component score statistic by assuming that each βj follows an arbitrary zero-mean 

distribution with variance , where weight wj is fixed and typically computed based on 

MAF, e.g., the Wu weights wj = Beta(fj; 1, 25) (Wu et al., 2011). Here fj is the MAF of Gj 

and Beta is the beta distribution density function. Under this assumption, the null hypothesis 

H0 : β = 0 is equivalent to H0 : ψ = 0.

Let y = (y1, …, yn)′ denote the response vector, X the n × p covariates matrix, 

 the n × m genotype matrix, W = diag(w1, …, wm) the diagonal matrix of 

weights. The SKAT statistic can be computed as

where π̂
0 = (π̂1, …, π̂n)′ with  derived under the null model (β = 0). Let 

V0 = diag{π̂
0(1 − π̂0)} denote the n × n diagonal matrix of marginal variances, and X0 = (1, 

X) the n × (p + 1) null model design matrix. Define , 

which is the asymptotic covariance matrix Cov(y − π̂
0). Under null, Q follows a mixture of 

1-DF chi-square distributions (Liu et al., 2007; Tzeng and Zhang, 2007), with the mixture 

coefficients being the eigen values of P1/2GWWG′P1/2, which is of dimension n × n. The p-

value can be obtained by matching moments (Liu et al., 2009) or by inverting the 

characteristic function (Davies, 1980).

The SKAT statistic can be equivalently derived based on the score vector U for β (Pan, 

2009). We can check that U = G′(y − π̂
0). Under null, the score vector U are asymptotically 

zero-mean multivariate normal with covariance that can be consistently estimated by (Cox 

and Hinkley, 1979)

(2)

which accounts for the linkage disequilibrium among variants. The SKAT statistic can be 

equivalently written as Q = U′WWU. Hence the mixture coefficients can be equivalently 

computed based on the eigen values of Σ1/2WWΣ1/2, which is an m × m matrix. Note that m 

is typically much smaller than n, and the eigen values can be very efficiently solved.

Likelihood ratio test based kernel association test

For the score vector U = G′(y − π̂
0), consider its j-th element , where Gj = 

(g1j, …, gnj)′ is the j-th column of G. Here Uj can be checked equal to the score statistic for 

testing the significance of the j-th SNP based on the following marginal logistic model
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(3)

Alternatively we can employ the likelihood ratio test (LRT) to assess the marginal 

significance of the j-th SNP. Under null, the score test is asymptotically equivalent to the 

LRT. However the LRT could be more powerful than the score test if the j-th rare variant 

has potentially large effect size, when it is either a risk variant or in linkage disequilibrium 

with other risk variants.

We propose to develop a marginal LRT based sequence kernel association test (denoted as 

SKATL) as follows. Denote χj as the LRT chi-square statistic for testing β1j under model (3). 

Let  and S = (S1, …, Sm)′, where β̂
1j is the maximum likelihood estimator 

(MLE). Define the SKATL statistic

Under the null of no rare variant effects (all βj = 0), we have β1j = 0, and Sj is asymptotically 

equivalent to the standardized Uj. Let R = diag(Σ)−1/2Σdiag(Σ)−1/2, which is the 

corresponding correlation matrix of Σ in (2). The null distribution of L is a mixture of 1-DF 

chi-square distributions with mixture coefficients being the eigen values of R1/2WWR1/2.

Note that the SKATL only depends on the LRT chi-square statistic, and in principle we do 

not need the MLE β̂
1j, which could have convergence issues and aberrant testing behavior 

(Hauck and Donner, 1977). When computing the SKATL in our numerical studies, we set χj 

equal to the squared standardized score statistics for extremely rare variants (specifically 

with minor allele count less than ten).

Data adaptive kernel association test

An alternative approach to aggregating signals across rare variants is the burden test (Li and 

Leal, 2008; Madsen and Browning, 2009). The burden test is typically computed as the 

weighted sum of score statistics. the burden test works well for variants with similar effects 

and could lose substantial power in the presence of large number of non-causal variants, or 

with both protective and deleterious variants. A more flexible approach is to data adaptively 

combine the burden test and the kernel association test following the SKAT-O approach of 

Lee et al. (2012), which tested the rare variant effects using the minimum p-value of 

weighted SKAT statistic, (y − π̂
0)′Kρ(y − π̂

0), where Kρ = GW[(1 − ρ)I + ρJ]WG′, ρ ∈ [0, 1]. 

Here I is an m × m identity matrix and J m × m matrix with all elements equal to one.

Similarly we consider the following weighted SKATL statistic

Given ρ, the significance p-value of Lρ, P-val(Lρ), can be similarly computed based on the 1-

DF chi-square mixture distribution with coefficients being the eigen values of R1/2W[(1 − 
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ρ)I + ρJ]WR1/2. Data adaptive SKATL statistic (denoted as SKAT-OL) is defined as the 

minimum p-value, T = min0≤ρ≤1 P-val(Lρ), where the minimum is often taken over a finite 

grid of ρ: 0 = ρ1 < … < ρb = 1, and the significance of T can be efficiently computed using 

an one-dimensional numerical integration (Lee et al., 2012). We discuss computational 

details in the following section.

P-value computation for kernel association tests

We offer some insights into the efficient p-value computation for SKAT, SKATL and data 

adaptive kernel association tests. First note that the non-zero eigen values of AA′ are the 

same as A′A for any matrix A, which can be verified from the singular value decomposition 

of matrix A: , where UA and VA are orthogonal and DA diagonal matrix. 

Therefore  and , and hence their eigen values equal to the 

squared singular values of A. So for computing the p-values of proposed SKATL, the eigen 

values of R1/2WWR1/2 can be equivalently computed from WRW. For SKAT, the eigen 

values of P1/2GWWG′P1/2 are the same as WG′PGW = WΣW.

For matrix B = (1 − ρ)I + ρJ, ρ ∈ [0, 1], we can check that , where 

. Therefore for computing p-values of weighted 

SKATL, the eigen values of R1/2W[(1 − ρ)I + ρJ]WR1/2 can be equivalently computed from 

BhWRWBh.

Null distribution of SKAT-OL

The significance of SKAT-OL can be computed as (see Appendix for technical details)

where

 and  are the 1-DF chi-square density/distribution functions, and M(·) is the 

distribution function of 1-DF chi-square mixture with coefficients (λ1, …, λm), which are the 

eigen values of (I − H1) R̃(I − H1), where R̃ = WRW. Here 

, where RhRh = R̃, and R1 = Rh(1, …, 1)′.
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Results

Simulation studies

We conducted extensive simulation studies to evaluate the performance of the proposed and 

existing methods. Following Lee et al. (2012), we generated 10,000 European-like 

haplotypes of length 1000 kb under a calibrated coalescent model (Schaffner et al., 2005). 

We randomly pair the haplotypes to simulate a total population of 106 individuals. We 

randomly select a gene region of length 10 kb and study those rare variants with MAF≤0.01. 

We consider two covariates Z = (Z1, Z2)′: Z1 ∈ {0, 1} follows Bernoulli(0.5), and Z2 ~ N(0, 

1). We model the logit disease risk as . We set β0 = −3.4, βZ = 

(0.5, 0.5)′ (corresponding to 5% population disease rate). We randomly select 2500 cases 

and 2500 controls from the simulated population of 106 samples. We compared five rare 

variant set analysis methods: SKAT, SKAT-O, SKATL, SKAT-OL and burden test. In the 

burden and SKAT tests, we assign weight Beta(fj; a0, b0) to the jth variant Gj. And for the 

proposed method we assign weight Beta(fj; a1, b1). Here fj is the MAF of Gj. For a given 

variant, the likelihood ratio test statistic is inherently standardized and roughly corresponds 

to the standardized score statistics, which is the score statistics used in SKAT scaled by its 

standard error, which is roughly proportional to . Therefore for the proposed 

method, we set a1 = a0+0.5 and b1 = b0+0.5. Following Wu et al. (2011), we set a0 = 1, b0 = 

25 for the following simulation studies. We have investigated three sets of weights for (a0, 

b0): (0.5,24.5), (1,25), and (1.5,25.5). The overall conclusions remain the same (see 

supplementary material for complete results). As shown in Ma et al. (2013), the 

performance of single rare variant LRT depends on the case-control ratio. We have 

investigated different case-control ratios for (ne, nc). Here we reported the results for ne = nc 

= 2500, and ne = 1700, nc = 3300. The supplementary material provided simulation results 

for more unbalanced case-control ratios (1:6 and 1:10).

We use 2.5 × 106 experiments to evaluate the type I error at the nominal significance level α 

= 10−5, 10−4, and 10−3 by setting all βj = 0. The results are summarized in Table 1 and 2. All 

methods appropriately control the Type I errors. We also verify that the Type I errors are 

appropriately controlled at the 10−6 significance level by conducting 108 experiments 

(please see the supplementary material for detailed results including the QQ plots).

We use 104 experiments to evaluate the power under various combinations of βj at α = 10−6, 

10−5, 10−4, and 10−3. The rare variant effects βj are set as follows. Each time we randomly 

select θ proportion of rare variants and set their |βj| = d log10(fj). The other null rare variants 

have zero coefficients. We have assumed that rarer variants have larger effect sizes. We 

conducted simulations for (1) θ = 0.05, d = −0.6, (2) θ = 0.1, d = −0.5, (3) θ = 0.2, d = −0.4, 

(4) θ = 0.5, d = −0.25. They correspond to odds ratio of 3.32, 2.72, 2.23 and 1.65 for 

MAF=0.01 respectively. We have investigated two scenarios for the direction of causal 

variant effects. First, we assume a mix of equal proportions of protective and deleterious 

variants, which will in general favor the kernel association test. Second, we assume a mix of 

unequal proportions of protective and deleterious variants. Specially we randomly set signs 

of βj as negative or positive with probability 0.9 and 0.1 respectively.
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Table 3 summarized the results assuming equal proportions of protective and deleterious 

variants and equal case-control ratio (ne = nc = 2500). Overall the proposed SKATL has the 

best performance. As expected the burden test suffers a dramatic power loss since the 

burden sum score cancels out those causal variants, and as a result the adaptive SKAT-O 

and SKAT-OL have reduced performance compared to the SKAT and SKATL. The proposed 

SKATL has the largest power gain over SKAT with relatively large rare variant effect sizes.

Table 4 summarized the results assuming unequal proportions of protective and deleterious 

variants and equal case-control ratio (ne = nc = 2500). The adaptive SKAT-O and SKAT-OL 

now perform better than the SKAT and SKATL under relatively more causal variants with θ 

= 0.5. With small proportion of causal variants, the burden test suffered much power loss, 

and as a result the SKAT and SKATL performed better than the adaptive SKAT-O and 

SKAT-OL.

Table 5 and 6 summarized the corresponding power results under unequal case-control ratio: 

ne = 1700, nc = 3300. When there are equal proportion of protective and deleterious variants, 

the proposed LRT based SKAT offered more improvement compared to the score test based 

SKAT with equal case-control ratio (Table 3 versus 5). While under unequal proportion of 

protective and deleterious variants, the proposed LRT based SKAT offered more 

improvement compared to the score test based SKAT with unequal case-control ratio (Table 

4 versus 6). The results are in agreement with the observations of Ma et al. (2013), who 

showed that the performance of single rare variant LRT depends on the case-control ratio.

Diabetes study

The Atherosclerosis Risk in Communities (ARIC) study (The ARIC Investigators, 1989) is a 

multi-center prospective investigation of atherosclerotic disease in a predominantly bi-racial 

population. Men and women aged 45–64 years at baseline were recruited from four U.S. 

communities: Forsyth County, North Carolina; Jackson, Mississippi; suburban areas of 

Minneapolis, Minnesota; and Washington County, Maryland. A total of 15,792 individuals 

participated in the baseline examination in 1987–1989. The vast majority of ARIC 

participants are of European (73%) or African ancestry (26%).

We applied the proposed SKATL and other competing methods in ARIC to test for 

association between type 2 diabetes (T2D) and rare variants in each gene. Genotypes were 

obtained from the Illumina HumanExome BeadChip (Grove et al., 2013), which has 

information on 247,870 variants. Prevalent T2D diabetes was defined as in previous GWAS 

analyses using phenotypic information collected at the baseline examination (Morris et al., 

2012). Exome chip data were analyzed for 1048 white T2D cases and 6598 white non-cases.

We conducted two different analyses of T2D and adjusted for age, gender and center. First, 

we analyzed the rare variants (with MAF≤ 0.01 and at least five copies in the total sample) 

in the gene PAM, which has been recently identified to contain a rare missense variant that 

contributes to the risk of T2D (Steinthorsdottir et al., 2014). Second, we ran a genome-wide 

scan and tested the association of rare variants located in each gene.
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For the eight rare variants located in the gene PAM and available on the exome chip, the 

proposed SKATL has a p-value of 0.039, and SKAT’s p-value is 0.115. The burden test has 

a p-value of 0.894. For the data adaptive tests, the proposed SKAT-OL has a p-value of 

0.072, and SKAT-O’s p-value is 0.196.

In total we analyzed 11426 rare variant sets in the genome-wide scan for T2D. SKATL 

identified a significant set with three rare variants in the gene ZZZ3 (p-value=1.4 × 10−6) 

that passed genome-wide significance after a Bonferonni correction for the total number of 

sets (4.4 × 10−6). And the other tests did not identify any significant rare variant set. SKAT 

reported a p-value of 2.7 × 10−5 for the gene ZZZ3, and did not identify any genome-wide 

significant rare variant set. ZZZ3 is a protein-coding gene which is a component of the 

ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4. A 

common variant in ZZZ3 was recently found to be associated with obesity and body mass 

index in a genome-wide meta-analysis of of 263,407 European individuals (Berndt et al., 

2013). Obesity is a major risk factor for T2D. This suggests that ZZZ3 is likely involved in 

T2D. Further research is needed on the possible role of identified rare variants in the gene 

ZZZ3.

Discussion

To enrich association signals for rare variants, it is attractive and often customary to 

combine multiple rare variants in a gene. The widely used SKAT is powerful and 

computationally efficient by combining rare variants based on the variance component score 

test. The proposed SKATL is based on the observation that the score statistics used in SKAT 

are asymptotically equivalent to the LRT statistics in the marginal regression modeling of 

individual rare variants, and that the score test performs well when parameter is close to the 

null value, but could have suboptimal performance with large deviation from the null (e.g., 

when testing those rare variants with large effect sizes). We developed efficient algorithms 

to compute p-values based on the asymptotic distribution of the proposed SKATL and 

SKAT-OL. In our extensive numerical studies, the proposed SKATL and SKAT-OL have 

well controlled type I errors and shown very competitive performance.

Our approach is in the same spirit as Xing et al. (2012), Ma et al. (2013) and Chen et al. 

(2014), who have shown that the likelihood ratio test often has better performance than the 

score test for either single rare variant or rare variant set analysis. In practice, the score test 

has the computational advantage in that we only need to fit one null model. For the ARIC 

diabetes data, when analyzing 1415 rare variant sets on chromosome 1 on a single Linux 

workstation, SKAT takes 42 sec CPU time, SKAT-O takes 674 sec CPU time, SKATL takes 

151 sec CPU time, and SKAT-OL takes 630 sec CPU time on the same machine. In the 

supplementary material, we provide more time comparison of score test versus LRT based 

SKAT in numerical studies. The proposed approach can be readily extended to handle 

across study meta analyses of gene-level tests, and the analysis of multiple traits. In 

summary, we advocate using the proposed method as a complementary approach to 

enhancing the power of detecting association for rare variants in case-control genome-wide 

association studies.
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We have implemented the proposed methods in R programs posted at http://www.umn.edu/

~baolin/research/skatl_Rcode.html

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Null distribution of SKAT-OL

The significance of SKAT-OL can be computed following the approach of Lee et al. (2012). 

Denote R̃ = WRW. Define a symmetric matrix Rh such that RhRh = R̃. Let Z = (z1, …, zm)′ 

be independent standard normal random variables. Then the null distribution of Lρ is the 

same as Lρ = Z′Rh[(1 − ρ)I + ρJ]RhZ. Denote R1 = Rh1, where 1 = (1, …, 1)′ is a column 

vector of ones. Note that  is a projection matrix into a space spanned 

by R1. Therefore Z1 = H1Z and Z2 = (I − H1)Z are independent. Define 

, and . Here η2 follows a mixture of 1-DF chi-square 

distributions with coefficients being the eigen values of (I − H1) R̃(I − H1), denoted as (λ1, 

…, λm). Note Cov(η1, η2) = Cov(η1, η0) = 0, and E(η1) = 0, Var(η1) = tr[R̃H1 R̃(I − H1)]. 

We can check that

Let Lρ1, …, Lρb be the score statistics computed with 0 = ρ1 < ρ2 < … < ρb = 1. Denote qρ as 

the (1 − T)-th percentile of the distribution of Lρ, which can be computed based on moment 

matching (Liu et al., 2009). Let , where  is the distribution 

function of 1-DF chi-square distribution. Note that L1 = ‖R1‖2η0. Hence q1 = ‖R1‖2q̃1, The 

significance p-value based on the test statistic T is

where η0 follows the 1-DF chi-square distribution, and I() is an indicator function. Denote 

. Let

The p-value is computed as

where  is the density of 1-DF chi-square distribution, and M(·) is the distribution 

function of 1-DF chi-square mixture with coefficients (λ1, …, λm). Here we want to 

emphasize that special care is needed for ρ = 1. When ρb = 1 is included in the minimum p-
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value search, we have an indicator I(η0 < q̃1) in the expectation, and the integration is in 

interval [0, q̃1]. Otherwise the integration is over [0, q̃1 = ∞).
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Table 1

Type I error divided by the nominal significance level for rare variant set analysis: ne = 2500 cases and nc = 

2500 controls. The SKAT/SKAT-O and burden tests used (1,25) weight, and the proposed SKATL/SKAT-OL 

used (1.5,25.5) weight.

α 10−5 10−4 10−3

SKAT 0.82 0.85 0.92

SKAT-O 0.91 1.02 1.07

SKATL 0.92 1.10 1.08

SKAT-OL 0.96 1.00 1.11

Burden 0.94 0.98 1.00

Genet Epidemiol. Author manuscript; available in PMC 2016 September 01.
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Table 2

Type I error divided by the nominal significance level for rare variant set analysis: ne = 1700 cases and nc = 

3300 controls. The SKAT/SKAT-O and burden tests used (1,25) weight, and the proposed SKATL/SKAT-OL 

used (1.5,25.5) weight.

α 10−5 10−4 10−3

SKAT 0.86 0.91 0.93

SKAT-O 0.89 0.98 1.04

SKATL 0.96 1.12 1.11

SKAT-OL 0.88 1.07 1.10

Burden 0.91 0.97 1.01
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