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Abstract

Metabolomics experiments are inevitably subject to a component of unwanted variation, due to 

factors such as batch effects, long runs of samples, and confounding biological variation. 

Although the removal of this unwanted variation is a vital step in the analysis of metabolomics 

data, it is considered a gray area in which there is a recognised need to develop a better 

understanding of the procedures and statistical methods required to achieve statistically relevant 

optimal biological outcomes. In this paper, we discuss the causes of unwanted variation in 

metabolomics experiments, review commonly used metabolomics approaches for handling this 

unwanted variation, and present a statistical approach for the removal of unwanted variation to 

obtain normalized metabolomics data. The advantages and performance of the approach relative to 

several widely-used metabolomics normalization approaches are illustrated through two 

metabolomics studies, and recommendations are provided for choosing and assessing the most 

suitable normalization method for a given metabolomics experiment. Software for the approach is 

made freely available online.

Introduction

In analytical biochemistry, metabolomics is becoming an increasingly popular discipline, 

with its applications expanding to diverse research fields in the life sciences.1 The study of 

metabolites and their responses to factors of interest such as physiological, environmental 
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and genetic conditions, allow for biological researchers to answer a range of sought-after 

scientific questions.2 Typical aims in the statistical analysis of metabolomics data include 

the identification and quantification of metabolites, the discovery of differentially abundant 

metabolites between factors of interest (also known as “groups”), classification, clustering, 

and correlation analysis.3

In metabolomics experiments, the biological variation of interest is inevitably confounded 

with unwanted variation, often due to both the unwanted experimental and unwanted 

biological variability. Understanding the causes of unwanted variation in a given 

metabolomics experiment and the removal of this unwanted variation can pose a challenging 

task. This is further complicated by the fact that the unwanted variation can be 

unmeasurable, making it difficult to quantify the unwanted variation component. For 

example, a researcher may be interested in identifying metabolites present in urine which 

differentiate between certain disease types. In this situation, the varying concentration levels 

in metabolites indicating the amount of water they have had prior to obtaining urine 

samples, becomes unwanted variation in the biological samples (unwanted biological 

variation). Several practical examples of unwanted variation found in recent metabolomics 

literature are summarized in Figure 1.

In order to make inferences about the biological factors of interest, the overall unwanted 

variation component (as indicated in red in Figure 1, with unmeasurable examples of 

unwanted variation shown in italics) must either be accommodated appropriately in a 

statistical model which answers the research question or removed prior to further statistical 

analysis, ascertaining that the biological variation of interest are not affected nor removed. 

This is necessary to reduce the problems of falsely identifying differentially abundant 

metabolites, failing to identify truly differentially abundant metabolites, having spurious 

correlations between metabolites, artificial clustering and poor classification.

The metabolomics literature refers to the process of removing unwanted variation by various 

terms such as signal drift correction,4 batch effect removal,5 scaling,6 and removal of matrix 

effects,7 mostly referring to specific rather than overall unwanted variation encountered in an 

experiment, often handled separately in multiple steps.8 The overall removal of unwanted 

variation (referred to as normalization) has been considered a gray area in which there is a 

distinct need to develop a greater understanding of when, why, and how 9 in order to 

achieve optimal biological outcomes. It has also been shown that the statistical results such 

as those obtained by identifying differentially abundant metabolites can vary depending on 

the method chosen for removing unwanted variation.10 In this paper, we attempt to discuss 

these matters in detail.

The paper is organised as follows: In the next two sections, we review commonly used 

metabolomics approaches which have attempted to remove unwanted variation as explained 

above, and describe ways of choosing and assessing the effectiveness of a normalization 

method in a given metabolomics experiment. We then present a statistical approach for the 

overall removal of unwanted variation to obtain normalized metabolomics data. The 

advantages and performance of the proposed normalization approach relative to several 
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widely-used metabolomics approaches are then illustrated with two metabolomics studies. A 

summary of the findings is presented in the final section.

A brief review of commonly used approaches

Use of scaling factors

Several well-known methods for removing unwanted variation in metabolomics data involve 

the use of various scaling factors. A scaling factor refers to a sample-specific constant which 

assigns an appropriate weight to each sample attempting to make them comparable. 

Normalizing by the median11 or by the sum of squares12 are two of the most commonly 

used methods, where each sample is scaled such that the median or the sum of squares of all 

abundances in a sample equals one respectively. Other similar methods include 

normalization to the total ion current13 and normalization by unit norm.14 The scaling 

methods are not applicable in general to most metabolomics experiments, as they rely on the 

self-averaging property.15 It is assumed that an increase in the abundances of a group of 

metabolites in response to a perturbation is balanced by a decrease in abundances of 

metabolites in another group - an assumption which does not hold in many practical 

applications.15,16 For instance, in a recent study involving obese and lean mice, the authors 

showed that adjusting individual liver lipid profiles of these mice using total signal 

incorrectly implies that there is a decrease in the levels of phospholipids in obese mice 

relative to the lean to balance the increased amount of triacylglycerols.15

Use of quality control samples

Certain forms of unwanted variation, such as the drift in signal over time and batch effect 

removal may also be handled using quality control samples.4,17–20 These samples are 

composed of identical amounts of metabolites which are supposedly representative of those 

of the biological samples. Two types of quality control samples are being used in 

metabolomics studies: pooled biological quality control samples where each sample is a 

mixture of small aliquots of each biological sample present in the study, or externally 

purchased quality control samples where each sample is a mixture of small aliquots of 

multiple commercial samples. The applicability of the normalization methods based on 

quality control samples can be limited by practical considerations. Externally purchased 

quality control samples often do not have the same composition as the biological samples, 

posing challenges in the peak alignment process which can lead to a considerable amount of 

spuriously missing metabolite abundances. Although the pooled biological quality control 

samples are the closest to the composition of the biological samples, in many situations it is 

not possible to consume aliquots of preserved biological samples in order to prepare pooled 

quality control samples, and in large-scale studies where sample collection is not completed 

before sample preparation begins, preparing pooled quality control samples may not be 

possible.4

Use of internal standards

An alternative is to use internal standards which are known metabolites added to each 

biological sample before extraction. The simplest of such methods is the single internal 

standard (SIS) method, where a normalized data matrix is obtained by subtracting the log 
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metabolite abundance of a single internal standard from the log abundances of the 

metabolites in each sample.21 The variation captured by an internal standard however, 

depends on its own chemical properties,22 and includes other sources of variation such as 

those which arise from chromatographical separation and ion suppression.15,16 A slightly 

modified approach is to choose different internal standards according to the proximity of 

retention times to certain metabolite classes,22 although retention time does not necessarily 

describe all chemical properties leading to unwanted variation.15 The use of a single internal 

standard can lead to highly variable normalized values which depend on the compound that 

is used as the internal standard.23 Consequently, recent literature has demonstrated that the 

use of a single internal standard is inadequate for removing unwanted variation, and has 

suggested the use of multiple internal standards in doing so15,16,23- a practice we support. 

Similar to the SIS method, a normalized data matrix can be obtained by subtracting the 

average of the multiple internal standards (AIS) on a log scale from the log abundances of 

the metabolites in each samples. More complex methods which use multiple internal 

standards include the NOMIS (Normalization using optimal selection of multiple internal 

standards) method,15 where an optimal combination of multiple internal standards is 

selected using multiple linear regression, and the CCMN (Cross-contribution compensating 

multiple standard normalization) method,16 where it is argued that the unwanted variation 

implied by the internal standard is influenced by contamination from the rest of the 

metabolites and this concept referred to as cross contribution is allowed for. The NOMIS 

method can be used in both supervised and unsupervised methods. When only one internal 

standard is available and the variation in the metabolite abundances highly correlate with the 

unwanted variation implied by the internal standard, it reduces to the SIS method. The 

CCMN method assumes that the factors of interest are known when adjusting the data, 

hence cannot be used in unsupervised methods.

Use of quality control metabolites

It was shown recently that in addition to internal standards, certain metabolites present in the 

biological samples which have been exposed to the unwanted variation but are unassociated 

with the factors of interest, may also be used as quality control metabolites.23 A key 

advantage of doing so, is that it allows for unwanted biological variation to be 

accommodated, while retaining the essential biological variation of interest. In experiments 

exploring metabolomics changes in urine for example, unwanted variation in the form of 

varying concentration levels can be handled by using the concentration level information 

available in the quality control metabolites which are present in the urine samples. The 

RUV-2 (Remove unwanted variation-2) method24 which uses quality control metabolites 

has been shown to perform very well for identifying differentially abundant metabolites, and 

was successfully applied to accommodate both unobserved and observed variation, to 

situations where the quality control samples are not available, and to systematically integrate 

data from different sources on the same quantities (e.g., interlaboratory studies).23 However, 

the RUV-2 method which is based on a linear model designed for identifying differentially 

abundant metabolites, requires factors of interest to be known. These factors of interest are 

included in the linear model along with the factors of unwanted variation.23,24 Hence, 

RUV-2 cannot be used prior to unsupervised analyses such as correlation, principal 

component or hierarchical cluster analysis. In this paper, using a variation of the RUV-2 
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method, denoted by RUV-random 25, we present an approach which is applicable in both 

supervised and unsupervised scenarios. We introduce methods for choosing parameters in 

RUV-random, and discuss how the estimation could be improved for exploratory clustering 

purposes. The differences between the approach presented here and those of Jacob et al25 

are described more fully in the proposed approach section. A summary indicating the 

applicability of the existing and proposed normalizing methods for removing unwanted 

variation in metabolomics data is given in Table 1.

Assessing the effectiveness of a normalization approach

As the statistical results of a metabolomics experiment can vary depending on the chosen 

normalization method,10 assessing the effectiveness of a normalization method should form 

an integral part in the statistical analysis. In doing so, changes to both the variability and the 

bias23 need to be explored. Closer replicates or smaller coefficients of variation do not 

guarantee that all variation of interest has remained and only unwanted variation has been 

removed. Further, an increase in the number of differentially abundant metabolites found 

after normalizing, does not necessarily imply the success of a normalization approach. For 

example, if the unwanted variation is correlated with the biological variation of interest, the 

removal of unwanted variation component may lead to a decrease in the number of 

differentially abundant metabolites. Hence, instead, we recommend using the following 

strategies (see Step 3 in Figure 1) for assessing whether the biological variation of interest is 

retained in the normalized data matrix.

The use of positive and negative control metabolites

In every experiment, there are facts that are known a priori, and these must be used to 

determine whether a normalization method has improved the analysis. For example, the 

biological background to an experiment (e.g., from previous literature or through the design 

of the experiment) can provide insight into metabolites that are known beforehand to be 

associated or unassociated with the biological factors of interest. We refer to such 

metabolites as our positive control and negative control metabolites respectively, 

distinguishing these from our quality control metabolites defined earlier. Following an 

appropriate normalization method, differentially abundant metabolites can be identified 

using a linear model fitted to each metabolite.3 Subsequently, metabolites can be ranked 

using a suitable criterion such as the fold change or the t-statistic. If the biological variation 

of interest has not been removed with the removal of unwanted variation during the process 

of normalizing, we expect to find the positive control metabolites which are associated with 

the factors of interest to be near the top of the ranking, and do not expect for the negative 

control metabolites to appear near the top of this ranking.

The distribution of the p-values

Recent literature has discussed the usefulness of examining the distribution of p-values 

obtained from a differentially abundant analysis.26 If there are no differentially abundant 

metabolites present in the dataset, the distribution of p-values should be uniform between 

zero and one. Hence, with the presence of some differentially abundant metabolites, a 

histogram of p-values should be uniformly distributed but with a peak close to zero. We will 
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see in an application of this paper that when the data have not been normalized appropriately 

to remove any unwanted variation, the distribution of histogram can be far from ideal.

Visualization of the wanted and unwanted variation components

Together with the above mentioned assessments, visualization of the normalized data and 

the removed unwanted variation component can aid in determining whether a normalization 

method has improved the analysis. A simple and a very useful tool for doing this, is the use 

of relative log abundance (RLA) plots.23 To obtain these, we firstly compute the median of 

each metabolite in the data matrix within (for within-group RLA plot) or across (for across-

group RLA plot) the factors of interest, and then subtract this median from each metabolite. 

Sample-wise boxplots of this centred data matrix, then form the RLA plots. Within-group 

RLA plots should have a median close to zero and low variation around the median, and can 

be used to assess the tightness of the replicates. On the contrary, when a substantial 

proportion of the data matrix contains differentially abundant metabolites, across-group 

RLA plots may not have a median close to zero, but indicate the grouping structure. Here, 

we would expect to see low variation within each group. In addition to RLA plots, familiar 

multivariate techniques such as principal component analysis (PCA) and hierarchical cluster 

analysis (HCA) may also be used to explore both the biological factors of interest and 

preferably also the factors of unwanted variation.

Consistency of biological results obtained from complementary analyses

One can also monitor the consistency of results obtained from separate analyses from 

different metabolomics platforms (e.g., nuclear magnetic resonance spectroscopy, gas 

chromatography/mass spectrometry, and liquid chromatography/mass spectrometry). A good 

normalization method should lead to consistent overlapping results from the such 

independent analyses.23

Proposed approach

In the methods we present in this paper, we utilize the concept of quality control metabolites 

embedded in a linear mixed effects modelling framework. The former has several 

demonstrated advantages23 which we have described briefly in the previous section, and the 

latter has been found to be a desirable alternative to fixed effects modelling in certain high 

dimensional settings.27,28

To describe the methods, we use the following notation:

• Y is a complete m × n matrix whose (i, j)th entry is yij, the log abundance of the jth 

metabolite in the ith sample, i = 1, …, m and j = 1, …, n, where m is the number of 

samples and n is the number of metabolites.

• Yc is a m × nc matrix containing the log abundances of the quality control 

metabolites, where nc is the number of quality control metabolites.

• X is a m × p matrix containing for each sample, the p factors of interest.

• W is a m × k matrix containing for each sample, the k factors of unwanted 

variation.
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• ε is a m × n matrix representing the unobserved error component.

We next introduce the linear mixed model given by,

(1)

where, β and α are p × n and k × n matrices containing information on the effect of the 

factors of interest and unwanted variation respectively, on the log metabolite abundances. 

Further, it is assumed that  and  for j = 1, …, n.

If X and W are known, best linear unbiased estimates (BLUE) and predictors (BLUP) for β 

and α respectively, can be obtained using mixed model equation,29

(2)

where .

However, as we discussed in the previous sections, the unwanted variation component W is 

often unobserved in practice. In addition, our goal is to provide a normalization method that 

is applicable in both supervised methods (where X is known) and unsupervised methods 

(where X is unknown). To normalize in cases like this, in what follows, we describe an 

approach based on RUV-random and its iterative versions introduced by Jacob et al25 which 

have had considerable success in removing unwanted variation with applications to gene 

expression data. The approach presented here differs from Jacob et al in two ways: First, we 

use maximum likelihood estimation to aid the choice of parameters in the RUV-random 

method. Second, we improve the estimation using iteration for the purpose of clustering 

only, using information obtained from RUV-random normalized data, and update the 

parameters as appropriate. The approach is described as follows:

From Equation (1), for the control metabolites we have

(3)

where  and  for j = 1, …, nc. Notice that Yc has a 

multivariate normal distribution given by N(0, Σ), where . Thus, if W 

is known, the maximum likelihood estimators of the unknowns ( ) given the observed 

control metabolite abundances can be obtained by minimizing the quantity

(4)
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where  and yci is the ith row of Yc, subject to constraints  and 

, using a non-linear optimization algorithm.30

Since W is unknown, we first estimate it using factor analysis on Yc.23 This is the first step 

used in the RUV-2 method.24 We let Ŵ = UDk, where Yc = UDV′ is the singular value 

decomposition of Yc, U and V are orthonormal matrices, and Dk is a diagonal matrix with 

the k largest singular values as its k first entries and 0 on the rest of the diagonal (the choice 

of k is discussed under the next subheading). Substituting this Ŵ into Equation (4), we now 

obtain a rough estimate of α from Equation (2) as α̂ = (Ŵ′Ŵ + λ̂I)−1Ŵ′Y, where 

assuming that X and W are not highly correlated. The normalized data matrix Ỹ is then 

given by

(5)

Judgement in the choice of λ̂ and k̂

The estimation of λ as explained in the above procedure requires a value for k. A useful 

approach for obtaining a suitable range of values for k is to look at a plot of the variance 

explained by the principal components of the control metabolite abundances (e.g., for the 

two applications in this paper, Figure I in the Supplementary Information shows the 

proportion of variance against the number of factors). In the work presented in this paper, as 

well as in our previous work,23,24 we have found that this visual inspection, together with 

the criteria explained in the previous section (Step 3 in Figure 1), leads to good values for k.

It is important to understand that for a given dataset, there is no “optimal” λ and k. For 

example, even on the same dataset, “optimal” λ and k can change in the light of what 

variation need to be removed from the dataset (see Step 1 in Figure 1), how well the control 

metabolites capture this unwanted variation (discussed under the next subheading), and the 

type of analysis a researcher wishes to perform on the dataset (e.g., in the “Applications” 

section, we will see that different Ŵ, λ and k are obtained when the purpose is clustering). 

Thus, it is necessary that both λ and k are chosen using context-specific knowledge, also 

allowing for model misspecifications and imperfect controls.

Choosing quality control metabolites

The role of quality control metabolites must be well-understood by the users of these RUV 

methods. It is required that the quality control metabolites be associated with the unwanted 

variation that needs to be removed or accommodated and be unassociated with the factor of 

interest. In this sense, multiple internal standards play an important role in removing the 

unwanted experimental variation shown in Figure 1.

In the absence of sufficient internal standards, possible quality control metabolites need to 

be found empirically. For supervised analyses where X is known, this can be done 

iteratively. For example, one can use the few available internal standards as the initial set of 

known quality control metabolites to normalize the data in the first instance, and then 
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identify a further set of empirical quality control metabolites using p-value and/or fold-

change rankings. For unsupervised analysis where X is unknown, in addition to the internal 

standards, one may find nearest-neighbour metabolites to the internal standards using an 

appropriate distance matrix, or simply find those which correlate highly with the internal 

standard23 or the average of the internal standards if multiple internal standards are available 

(an upper percentile of these correlations may be used as a cut-off). Care needs to be taken 

that the empirical quality control metabolites are not influenced by the factors of interest. A 

prior exploratory analysis of the quality control metabolites can be helpful in visualising the 

unwanted variation captured in these quality control metabolites.

Another delicate point to consider is that, at their best, the internal standards will only 

remove the unwanted experimental variation. If the goal is to remove unwanted biological 

variation (see Figure 1), one needs to include as quality control metabolites those which are 

present in the biological samples and are associated with the unwanted biological variation. 

For example, in a study involving Leishmania mexicana- a sandfly transmitted parasitic 

protozoan, we have previously shown23 that this can be achieved using prior biological 

information regarding the experiment. Thus, in removing unwanted biological variation in 

particular, it is vital to have a good biological knowledge of the research area, the question 

of interest, background of the experiment, and hence, the use of positive and negative 

control metabolites.

Improving the estimation for exploratory approaches

For exploratory clustering approaches, the RUV-random normalization method may be 

improved by incorporating iterative estimation25 of the components of the overall model 

given by Equation (1). To do so, we first obtain estimates for the components W and α using 

the RUV-random method. We then iterate the following two steps: (i) Using Y − Ŵα̂, 

estimate the component Xβ by using the k-means algorithm described by Hartigan et al,31 

(ii) With this estimate for Xβ, obtain a refined estimate for α given the estimates for W, λ 

and k using  (In the applications of this paper we carried out 200 iterations). In 

addition, during the iteration, we obtain updated estimates for W, λ and k intermittently as 

appropriate (In the applications of this paper we updated these estimates every 100 

iterations).

In order to avoid artificial clustering, we employ several strategies: First, we initialize the 

iteration procedure by using the k-means algorithm on the RUV-random normalized data. 

Hence, we can reasonably assume that this normalized data matrix predominantly contains 

the biological variation of interest, which is then captured with the use of the k-means 

algorithm. Second, we carry out exploratory clustering analysis on the RUV-random 

normalized data prior to iteration. This helps in detecting the number of clusters to be 

included in the k-means algorithm, as well as identifying any peculiar clustering that can 

occur after iteration. Further, we explore the removed unwanted variation component to gain 

insight into what has been discarded.
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Thus, this iteration procedure should not be considered as a separate method on its own and 

must be used in conjunction with the RUV-random normalization only to improve the 

exploratory clustering analyses when required.

Applications

We now use two metabolomics studies to demonstrate the performance of the proposed 

approach in obtaining a normalized metabolomics data matrix. We assess our approach 

relative to several commonly used metabolomics normalization approaches, in regards to its 

applicability in situations where widely-used metabolomics methods are not applicable and 

the ability to remove unwanted variation while preserving the biological variation of 

interest. In these applications, when normalizing the datasets using RUV-random, we treated 

the known biological factors of interest as unknown. The known biological factors of 

interest were only used for the purpose of comparing the performance across the different 

normalization methods. Unless otherwise stated, the applications presented in this section 

were carried out using R software.32

Application to a multi-site study

This application involves a comparative study, originally designed to compare the quality of 

the instrumental performance across four different laboratory sites. The dataset consists of 

two different metabolite mixtures: a mixture which contains 33 known metabolites (Mix I), 

and another mixture (Mix II) containing the same metabolites with some at higher 

concentrations. In Mix II, eleven metabolites were at three-fold and one metabolite was at 

five-fold concentration relative to Mix I (spiked-in metabolites), while the other twenty-one 

metabolites remained unchanged. The dataset contained only one internal standard and no 

quality control samples, which is typical of most practical metabolomics experiments we 

encounter. Eight replicates from each mixture were run in three different laboratory sites, on 

four different GC-MS instruments, at three different temperature (7,15, and 25°C) settings. 

A detailed description of the analytical methods is published elsewhere.23

Since only one internal standard is available, without any quality control samples being 

available, and the self-averaging property clearly does not hold for this dataset, out of the 

metabolomics normalization methods we have described, only the SIS and RUV methods 

are applicable to normalize this data (see Table 1). Hence, we compared the performance of 

the RUV-random method with the SIS normalized data. We chose the nc = 9 metabolites 

that have a correlation of greater than 0.9 with the internal standard (approximately the 70th 

percentile in this application) as quality control metabolites, and did not use the knowledge 

that twenty one metabolites were at constant levels throughout the study. The parameters k 

and λ for the RUV approach were chosen by following the approach presented in the 

“Proposed approach” section.

The samples are plotted in the space of the first three principal components of the unadjusted 

in Figure 2 (a), and it is seen that the predominant variation arises from clear concentration 

differences, as the samples cluster by mixture type in the space of the first two principal 

components. Hence, for exploratory clustering analysis, a researcher may wish to retain the 

unwanted variation in the unadjusted data for manual exploration. Here we demonstrate the 
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use of the RUV-random method for situations where unwanted variation needs to be 

removed for improved clustering of the biological variation of interest. In the data 

normalized using SIS and RUV-random without iteration, unwanted variation is still visible 

in the form of temperature and instruments (see Figure II in the Supplementary 

Information). Much improved performance is achieved by the improved RUV-random 

method for clustering as shown by Figure 2 (b).

The variation due to mixture type is explained by the second principal component in the 

unadjusted and SIS normalized data, while in the RUV-random normalized data, this 

variation is explained by the first principal component. These conclusions are strengthened 

by the visual inspection of the within-group RLA plots shown in Figure 3. Here, each data 

matrix was centred by finding the median of each metabolite within the factor of interest 

(e.g., within each Mix I and Mix II samples) and subtracting it from each metabolite. If the 

unwanted variation was negligible, the boxplots of the samples of these centred metabolites 

should have a median close to zero and low variation around this median. It is seen from 

Figure 3 that the RUV-random method improved for clustering has succeeded in achieving 

such stable samples by removing most of the unwanted variation- a considerable 

improvement relative to the unadjusted, SIS and RUV-random normalized data without 

iteration.

Since the unwanted variation component has been treated as unobserved in the RUV 

methods, exploring whether the effects captured in the estimated unwanted variation 

component are associated with known factors of unwanted variation can also be helpful in 

assessing the quality of these methods in removing unwanted variation. For instance, Figure 

III (a) shown in Supplementary Information illustrates the unwanted variation captured by 

the first column of the matrix Ŵ. The boxplots of the samples indicate that this consists of 

both the instrument and temperature effects, and from the analysis of variance these effects 

were found to be significantly different between the samples with p-values < 10−3. The first 

three principal components of Ŵα̂, that is the estimated unwanted variation component 

removed by the RUV-random method improved for clustering, are shown in Figure III (b), 

confirming that the removed unwanted variation consists of known factors, which were 

treated as unobserved throughout the analysis.

In order to evaluate the performance of normalization methods, in addition to assessing 

whether the unwanted variation have been removed, it is necessary to ascertain that the 

biological variation of interest is preserved in the normalized data.3,23–25,33 Firstly, we used 

hierarchical cluster analysis on the samples and metabolites separately to assess the 

tendency of the data to accurately identify the two groups which they should belong to. In 

doing so, Manhattan distance was used and the variables were partitioned using Ward’s 

minimum variance agglomerative clustering.34 Here, the samples are expected to cluster by 

mixture type, while by metabolites the spiked-in and non spiked-in metabolites are expected 

to cluster separately. Clustering error was quantified as the number of misclassified samples 

and metabolites. Secondly, we used a linear model fitted to each metabolite to obtain 

estimates of the log fold changes, in order to assess the ability of the methods to assist in 

identifying differentially abundant metabolites. The results are summarised in Table 2.
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Since the most prominent variation in this dataset is due to mixture type, the number of 

misclassified samples were zero for all normalization methods. The number of misclassified 

metabolites varied, and was the lowest for the data normalized by the RUV-random method. 

Similarly, the mean square error obtained by comparing the true fold changes with those 

obtained from normalized data was the lowest for the RUV-random method. Supplementary 

Information Figures IV, V and Table I show that for this analysis no substantial gain was 

found by varying k and λ from the estimated values.

Application to a multi-cohort study

The dataset is taken from a multi-cohort study designed to explore the associations between 

lipid levels and those of small polar metabolites with a disease related to metabolic 

syndrome. This subset of the data consists of serum samples from six independent cohorts of 

591 healthy individuals differing in age, body mass index (BMI), and gender. The samples 

were analyzed by liquid chromatography-mass spectrometry, using the analytical method 

described by Nygren et al.35 These were run in six batches, and the running order within 

each of the six batches was randomized. Five internal standards were used in the 

experiment, and externally purchased Seronorm samples 1 were run within the six batches. 

Pre-processing was carried out using MZmine 2 software version 2.10.36

Figure 4 (a) shows the first three principal components of the raw data, indicating strong 

batch variation. In addition, the physiological states of the individuals varied with each 

cohort. Pairwise relationships between the variables age, BMI, gender, and batch can be 

visualized using a generalised pairs plot37 which allows for the simultaneous inspection of 

both categorical and quantitative information in the data. Figure 4 (b) shows that the 

individuals whose serum samples were run in batches 3, 6, and 7 have non-overlapping age 

ranges, and that the BMI is higher in the individuals whose serum samples were run in batch 

2. Further, BMI information is missing in the individuals belonging to batches 3 and 6, and 

gender information was not available for batch 5. Thus, the removal of the unwanted batch/

cohort variation in this study is complicated by the fact that it is confounded with the 

physiological states of the individuals.

The data was normalized using the methods described earlier to remove unwanted batch 

variation, while preserving age, gender, and BMI information of the individuals. The five 

internal standards were used when applying AIS and NOMIS methods. As quality control 

metabolites for the RUV-random method, we used metabolites which correlated highly with 

the average of the internal standards. A correlation of 0.6 (approximately the 70th 

percentile) was used for this purpose. In this application, this corresponded to selecting nc = 

32 quality control metabolites out of a total of n = 129 metabolites. The parameters k = 10 

and λ = 0.31 was chosen using the approach described in the ‘Proposed approach’ section. 

As the variation in age, gender, and BMI were retained in the normalized data matrix, clear 

clustering in the normalized data was not anticipated in an exploratory analysis. Hence we 

did not carry out iteration. The use of Seronorm samples in the methods based on quality 

control samples, however, posed several difficulties. There were no metabolites present in 

1SeroNorm Human, Sero AS, Norway, www.sero.no
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the Seronorm samples which were also present in all of the biological samples in all batches. 

Thus, the Seronorm and biological samples needed to be pre-processed separately within 

each batch, which gave rise to a substantial number of missing peaks leading to loss of 

information.

Figure 5 shows the first two principal components of the data normalized by the methods 

which performed the best in the analysis of this data. In the data normalized by the AIS, 

MEDIAN, and NOMIS methods, clustering due to batch effect is clearly seen in the first two 

principal components and substantial unwanted variation still remains in the RLA plots (see 

Figures VI in Supplementary Information). The RUV-random method shows no visible 

unwanted batch variation in either the PCA or the RLA plots, and the NOMIS method seems 

to perform the next best. Figure VII in Supplementary Information illustrates that the 

estimated unwanted variation component removed by the RUV-random method consists of 

batch variation which was treated as unobserved.

In order to assess whether biological variation has been removed in the process of removing 

the batch variation, we used information from the literature38 on metabolites which have 

been found to be differentially abundant between males and females. We found this way, 

five gender-specific metabolites38 which overlapped with the list of metabolites observed in 

our dataset. We used these five gender-specific metabolites and the five internal standards as 

our positive and negative control metabolites respectively. By fitting a linear model to each 

metabolite consisting of a design matrix with gender, age and BMI information, we then 

examined behaviour of these positive control metabolites in each normalized dataset.

Figure 6 (a) shows the volcano plots obtained from this analysis for the unadjusted data and 

the data normalized by the RUV-random method. The metabolites which are known38 to be 

increasing (LPC20:3, LPC20:4, LPC20:5) and decreasing (SM34:2, SM36:2) in males 

compared to females appeared with high absolute fold changes and low p-values in the 

RUV-random normalized data. These metabolites are shown in red and blue respectively, 

along with green points denoting the internal standards which had low fold changes and high 

p-values in all three variable comparisons (gender, age, and BMI) in the RUV-random 

normalized data. In contrast, the rankings for these known metabolites obtained using the 

other normalization methods were less satisfactory (see Figure VIII in the Supplementary 

Information).

For each comparison, the p-value histograms for unadjusted and RUV-random normalized 

data are shown in Figure 6 (b). In the presence of some differentially expressed metabolites, 

we would expect p-value histograms to be uniformly distributed with a peak close to zero 

containing the differentially expressed metabolites.3,26 In the unadjusted data, a large 

proportion of metabolites have p-values close to zero (including the 5 internal standards in 

two of the comparisons) implying metabolites falsely identified as differentially abundant, 

while p-value histograms which are closer to the ideal were obtained from the RUV-random 

normalized data.

Similar to the multi-site study, for this analysis, no substantial gain was found by varying k 

and λ from the estimated values (see for example, Figures IX and X).
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Conclusions

In this paper, we presented a statistical method based on a linear mixed effects model which 

utilises quality control metabolites to obtain normalized data in typical metabolomics 

experiments. The approach, which can be applied without relying on particular experimental 

requirements such as having quality control samples, attempts to accommodate unwanted 

biological variation without removing the essential biological variation of interest, and 

captures unwanted variation which is not observed. The unwanted variation component 

which has been removed by the model may be explored in order to gain insight into any 

undetected experimental or biological variation. We illustrated the improved performance of 

the approach relative to several existing widely-used metabolomics normalization methods. 

In addition, we provided a brief review of the existing metabolomics normalization methods 

and recommendations for choosing and assessing the effectiveness of a normalization 

method, with particular emphasis placed on the importance of using positive control 

metabolites to ascertain that biological variation of interest are not removed along with the 

removal of unwanted variation. The software for the approaches described in the paper are 

available online.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A graphical representation of the steps involved in the process of normalizing data from a 

typical metabolomics experiment. The first step involves identifying overall sources of 

variation. Here, the unwanted variation component is shown in red, and the unmeasurable 

unwanted variation examples are shown in italics. The second step involves normalizing 

(either removing the overall unwanted variation component or accommodating it in an 

appropriate statistical model). The third step involves assessing the normalizing method.

De Livera et al. Page 16

Anal Chem. Author manuscript; available in PMC 2016 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
The first three principal components of the (a) unadjusted data, and (b) the data normalized 

by RUV-random improved for clustering (k = 8, λ = 1.43). The shapes and colours indicate 

different instruments and temperatures respectively, and Mix I and Mix II samples are 

shown by the hollow and solid points respectively.
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Figure 3. 
Within-group RLA plots of the (a) unadjusted data, and the data normalized by the (b) SIS 

(c) RUV-random (k = 3, λ = 0.03) and (d) RUV-random improved for clustering (k = 8, λ = 

1.43). The colours represent different temperatures.
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Figure 4. 
Plots showing (a) the first three principal components and (b) generalised pairs plot37 of the 

variables age, batch, gender and BMI (The diagonal panels show the marginal distribution of 

each variable, and off-diagonal panels display pairwise relationships between the 

quantitative (age, BMI) and categorical (gender, batch). Scattter plots, boxplots, and mosaic 

plots are used to represent respectively, the relationship between two quantitative variables, 

between a categorical and a quantitative variable, and between two categorical variables. In 

the mosaic plots, areas are proportional to counts.)
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Figure 5. 
Figures showing the first two principal components of the unadjusted and normalized data. 

Colours indicate different batches.
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Figure 6. 
Figures showing (a) volcano plots, and (b) histograms of p-values for unadjusted and RUV-

random normalized data.
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Table 1

A summary indicating the applicability of normalizing methods for removing unwanted variation in 

metabolomics data as described in the section ‘A brief review of commonly used approaches’.

Method Applicability

Scaling methods (e.g., normalizing by the median 
(MEDIAN), total ion signal)

Not suitable when the self-averaging property does not hold
Applicable in both supervised and unsupervised methods

Using a single internal standard (SIS)
Using internal standards according to retention 
time

Cannot remove unwanted biological variability
Leads to highly variable normalized values
Applicable in both supervised and unsupervised methods

Using the average of multiple internal standards 
(AIS)
Normalization using optimal selection of multiple 
internal standards (NOMIS)

Cannot remove unwanted biological variability
Applicable in both supervised and unsupervised methods

Cross-contribution compensating multiple 
standard normalization (CCMN)

Cannot remove unwanted biological variability
Cannot be used in unsupervised methods

Using quality control samples Cannot remove unwanted biological variability
Can lead to spuriously missing metabolites
Applicable in both supervised and unsupervised methods

Remove unwanted variation-2 (RUV-2) Cannot be used in unsupervised methods
Attempts to remove overall unwanted variation shown in Figure 1, given suitable controls

Remove unwanted variation-random (RUV-
random)

Applicable in both supervised and unsupervised methods
Attempts to remove overall unwanted variation shown in Figure 1, given suitable controls

RUV-random improved for clustering Can only be used for unsupervised exploratory clustering purposes, in conjunction with 
the RUV-random method
Attempts to remove overall unwanted variation shown in Figure 1, given suitable controls
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Table 2

The number of misclassified samples and metabolites obtained from the hierarchical cluster analysis, and the 

mean square error obtained by comparing the true fold changes with the estimated fold changes for unadjusted 

and normalized data.

Number of misclassified Mean Square Error

Samples Metabolites

Unadjusted 44 13 13.2

SIS 0 12 12.7

RUV-random (k = 3, λ = 0.03) 0 4 11.6

RUV-random improved for clustering (k = 8, λ = 1.43) 0 3 -

RUV2 (k = 6) - - 11.4
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