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Abstract

Genome-wide association studies (GWAS) have been a standard practice in identifying single 

nucleotide polymorphisms (SNPs) for disease susceptibility. We propose a new approach, termed 

integrative GWAS (iGWAS) that exploits the information of gene expressions to investigate the 

mechanisms of the association of SNPs with a disease phenotype, and to incorporate the family-

based design for genetic association studies. Specifically, the relations among SNPs, gene 

expression, and disease are modeled within the mediation analysis framework, which allows us to 

disentangle the genetic effect on a disease phenotype into two parts: an effect mediated through a 

gene expression (mediation effect, ME) and an effect through other biological mechanisms or 

environment-mediated mechanisms (alternative effect, AE). We develop omnibus tests for the ME 

and AE that are robust to underlying true disease models. Numerical studies show that the iGWAS 

approach is able to facilitate discovering genetic association mechanisms, and outperforms the 

SNP-only method for testing genetic associations. We conduct a family-based iGWAS of 

childhood asthma that integrates genetic and genomic data. The iGWAS approach identifies six 

novel susceptibility genes (MANEA, MRPL53, LYCAT, ST8SIA4, NDFIP1, and PTCH1) using the 

omnibus test with false discovery rate less than 1%, whereas no gene using SNP-only analyses 

survives with the same cut-off. The iGWAS analyses further characterize that genetic effects of 

these genes are mostly mediated through their gene expressions. In summary, the iGWAS 

approach provides a new analytic framework to investigate the mechanism of genetic etiology, 

and identifies novel susceptibility genes of childhood asthma that were biologically meaningful.
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Introduction

Given the rapid increase of the available data on genetic variants, genome-wide association 

studies (GWAS) have been a common practice for investigating the associations of single 

nucleotide polymorphisms (SNPs) with complex diseases [Amos et al., 2008; Ferreira et al., 

2008; Hung et al., 2008; Moffatt et al., 2007; Thorgeirsson et al., 2008; Wallace et al., 

2008]. The success of these studies in numerous discoveries of new disease susceptibility 

loci further popularized the usage of GWAS, which, on the other hand, also incurred 

challenges and limitations. A well-acknowledged limitation is its agnostic style [Hunter and 

Chanock, 2010]: none of the biological knowledge was encoded in standard GWAS 

analyses. Multimarker analyses have been advocated to integrate the biological information 

into statistical learning and to decrease the number of tests. Successful examples are 

multiple SNP analyses or SNP-set analyses [Kwee et al., 2008; Liu et al., 2008; Wu et al., 

2010] that have been shown to have better performance than the standard single SNP 

analyses in reanalyzing breast cancer and Alzheimer’s disease GWAS datasets [Cruchaga et 

al., 2014;Wu et al., 2010].

To move beyond GWAS for disease risk, gene expression can also be construed as a 

molecular phenotypic trait. Such a type of genetic association studies focusing on 

identifying SNPs that are associated with gene expression or namely expression quantitative 

trait loci (eQTL) are so-called eQTL studies. As both GWAS and eQTL studies become 

popular in genetic research, considerable interest emerges in integrating the two. Studies that 

substantiate the notion have been conducted in many diseases, including asthma 

[Cusanovich et al., 2012; Moffatt et al., 2007], osteoporosis [Hsu et al., 2010], type 2 

diabetes [Zhong et al., 2010], skin cancer [Zhang et al., 2012], glioblastoma, and Crohn’s 

disease [Xiong et al., 2012]. These studies consider SNP-disease and SNP-expression 

associations separately. For example, the most commonly used two-stage approach is to 

identify the top GWAS SNPs that are also eQTL SNPs. This type of analyses was supported 

by the evidence that trait-associated SNPs are more likely to be functional and thus eQTL 

[Nicolae et al., 2010]. The role of gene expression in the biological process from SNPs to 

disease phenotype remains unclear. Even though eQTL studies may be helpful in reranking 

or filtering the top SNPs to enrich true positives, whether the association of those eQTL 

SNPs with gene expression can be translated into a mechanistic contribution to the disease 

risk is rarely addressed.

This article ismotivated by a family-based GWAS of childhood asthma, in which the 

association between SNPs at the ORMDL3 gene and the risk of childhood asthma was 

discovered in an MRCA (Medical Research Council Asthma) dataset, a family-based case-

control study, and validated in many other datasets [Moffatt et al., 2007]. In the MRCA 

study, mRNA expression data were also collected, and it was reported that SNPs at the 
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ORMDL3 gene were highly associated with its expression value in an eQTL study [Dixon et 

al., 2007;Moffatt et al., 2007]. The association of the GWAS SNPs and expression of the 

ORMDL3 gene has also been validated in a molecular study [Berlivet et al., 2012]. Based on 

these work, we propose an integrative approach to conduct GWAS, termed iGWAS 

(integrative GWAS) where we jointly analyze SNPs and gene expression on disease risk as a 

biological process, illustrated by a mediation model (Fig. 1). Moreover, we are interested in 

studying whether the effect of genes on asthma risk is mediated through gene expression, or 

though alternative biological mechanisms.

The iGWAS approach is developed within the framework of causal mediation modeling 

[MacKinnon, 2008; Robins and Greenland, 1992] using counterfactuals [Rubin, 1978]. The 

model can be illustrated as a directed acyclic graph (DAG) [Robins, 2003], which provides 

intuitive interpretation of how SNPs and gene expression coordinate to influence on the 

development of diseases (Fig. 1). Rather than focusing on agnostic associations, the iGWAS 

approach considers the coordinated biological process from genetics to gene transcription 

and then to disease outcome. In particular, we decompose the etiological mechanism for the 

total genetic effect (TE) into the genetic effect on disease risk mediated through gene 

expression (mediation effect, ME) and the genetic effect through other biological pathways 

or environmental risk factors (alternative effect, AE). We developed previously a testing 

procedure for the TE of SNPs and gene expression in population-based case-control studies 

[Huang et al., 2014]. However, this method focuses only on the TE.

In this paper, we are primarily interested in examining ME and AE. The characterization of 

the ME and AE is critical in understanding the etiological mechanisms of genetic effects, 

and will in turn assist in generating new hypotheses that are more biologically plausible. 

Inclusion of gene expression data can also better explain the heterogeneity of the human 

genome that genetic data alone are not able to capture and thus increase statistical power of 

identifying disease susceptibility genes. Furthermore, the existing method for TE was 

developed under population-based studies that study subjects are independent, and failed to 

accommodate the family design of the MRCA data. To bridge these gaps, we develop in this 

paper a general analytic framework, iGWAS, that integrates genetic and genomic data to 

examine ME, AE, as well as TE and incorporates the family design.

This paper makes both methodological and scientific contributions. Methodologically, we 

propose a new analytic framework, iGWAS, that facilitates to study the ME (eQTL genetic 

effect on a phenotype mediated through gene expression) and the AE (genetic effect through 

other biological pathways or environment-mediated mechanisms), and incorporates the 

family design. Moreover, we develop robust tests for ME and AE of SNPs using both SNP 

and gene expression data. Scientifically, our proposed iGWAS approach identifies novel 

susceptibility genes of childhood asthma and characterizes their mechanisms through gene 

expression.
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Methods

Integrative Genome-Wide Association Studies (iGWAS)

Causal Mediation Model and Null Hypotheses—We utilize the causal mediation 

model to investigate the etiologic mechanism of genetic effect. We jointly model the effect 

of a set of SNPs associated with expression of a gene (i.e., eQTL SNPs) and the 

corresponding gene expression on occurrence of a disease using a logistic regression model, 

adjusting for covariates. For subject i, the probability of having a dichotomous outcome 

(e.g., Y = 1/0 for case/control) is associated with q covariates (Xi, with the first covariate to 

be 1, i.e., the intercept), p SNP genotypes (Si, e.g., cis-eQTL SNPs of a gene), one mRNA 

expression of a gene (Gi), and p cross-product interactions between the SNPs and gene 

expression as:

(1)

where βX = (βX1, …, βXq)T, βS = (βS1, …, βSp)T, βG and βC = (βC1, …, βCp)T are regression 

coefficients for the covariates, SNP genotypes, gene expression, and interactions of the SNP 

genotypes and gene expression, respectively. We next consider another regression model for 

the gene expression (Gi), which depends on the q covariates (Xi) and p SNP genotypes (Si):

(2)

where αX = (αX1, …, αXq)T and αS = (αS1, …, αSp)T are the regression coefficients for the 

covariates and SNP genotypes, respectively; and εGi follow a normal distribution with mean 

0 and variance . We here focus on eQTLs by restricting analyses to SNPs that are 

associated with the gene expression, i.e., αS ≠ 0.

Assuming confounding effects are properly controlled after accounting for the covariates, 

the TE of comparing two genotypes of the SNPs s1 vs. s0 is defined as: TE = logit{P (Y = 1|

S = s1, X)} − logit{P (Y = 1|S = s0, X)}. Under the rare disease assumption for a binary 

disease phenotype, the TE of the SNPs on the log odds ratio (OR) of disease risk comparing 

two genotype values s1 vs. s0 can be expressed using the regression coefficients in models 

(1) and (2) as [Huang et al., 2014]:

We can also express the ME (indirect effect) of the SNP set (s1 vs. s0)mediated by the gene 

expression G, and AE (direct effect) of the SNP set through other biological pathways, on 

the log OR of disease risk as [Huang et al., 2014]:

(3)
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(4)

Note that the TE can be decomposed into ME and AE. Although direct and indirect effects 

have been defined and used in the causal mediation literature [Robins and Greenland, 2012], 

we rename them here as AE and ME to better reflect their biological interpretation. The 

indirect effect or ME of an SNP set S in our setting is the effect of eQTL SNPs on disease 

risk mediated through gene expression (the black path in Fig. 1), whereas the direct effect or 

AE is the effect on disease risk independent of expression of the gene, but perhaps through 

other genes or other mechanisms (the gray path in Fig. 1). We have shown that identification 

of the TE requires a weaker assumption than those required for the ME and AE [Huang et 

al., 2014].

As we focus on the eQTL SNPs, the SNPs with nonzero association with the gene 

expression, or equivalently, αS ≠ 0, it can be easily shown that

(5)

(6)

provided that there does not exist a perfect cancellation for effects with βS ≠ 0, βG ≠ 0, and 

βC ≠ 0. It follows that the equivalence for TE under the null would be:

(7)

Note different genetic models (dominant, recessive, or additive) follow the same null 

hypotheses (5)–(7): no effects for subjects carrying two different genotypes. Regardless of 

the genetic models, the above equivalence applies. However the coefficients may have 

different interpretations under different models. For example, under the additive models, βs 

is the log OR comparing between subjects carrying two minor alleles and those with one 

allele, as well as between one and zero minor allele; and βs under the dominant models is the 

log OR between the presence and absence of a minor allele. For implementation, different 

genetic models can be easily incorporated by altering the genetic coding in S, e.g., 0, 1, 2 for 

zero, one, and two minor alleles, respectively, under additive model.

Testing Procedure for the AE Under Family Design—As the number of SNPs (p) in 

a gene can be large and some may be highly correlated due to linkage disequilibrium, the 

conventional test such as the likelihood ratio test that uses large degrees of freedom has 

limited power. We resort to an empirical Bayes approach [Lin, 1997] by assuming the 

regression coefficients of individual SNP effects, βSj (j = 1, …, p), follow an arbitrary 

distribution with mean 0 and variance τS, and the SNP-by-expression interaction coefficients 

βCj follow another arbitrary zero-mean distribution with variance τC. The resulting model 

(1) becomes a logistic mixed model [Breslow and Clayton, 1993]. The null hypothesis of no 

Huang et al. Page 5

Genet Epidemiol. Author manuscript; available in PMC 2015 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



AE (5) hence is equivalent to a joint test of the two variance components, τS and τC, in the 

induced logistic mixed model:

For family data, one can obtain the scores for τS and τC under the induced logistic mixed 

model: UτS = (Y − μ̂
0, AE)T R*−1SSTR*−1(Y − μ̂

0, AE) and UτC = (Y − μ̂
0, AE)T R*−1CCT 

R*−1(Y − μ̂
0, AE), where Y = (Y1, …, Yn)T, S = (S1, …, Sn)T, C = (C1, …, Cn)T = (G1S1, …, 

GnSn)T; the outcome risk under the null 

(element-wise calculation), and β̂
X0 and β̂

G0 are the estimators of βX and βG, respectively, 

under the null model: , an ni 

by ni covariance matrix represents the within-family correlation with ni being the number of 

subjects within family i and m being the number of families, and . 

With scores for the parameters of interest, τS and τC, we propose a test statistic  as a 

weighted sum of the two scores, w1UτS + w2UτC:

where the weights (w1 and w2) are chosen to be the inverse of their respective standard 

deviation of UτS and UτC to make them comparable on the same scale. The unknown true 

covariance R* can be replaced by a working covariance R, which leads to a sum of L 2 

norms of two estimating equations for βs and βc:

Examples of possible working covariance structures include a sample covariance matrix, a 

diagonal matrix assuming working independence or a kinship matrix.

The test statistic  is derived according to the outcome model (1) where the disease risk 

is determined by SNPs, gene expression, and their cross-product interactions (i.e., the full 

model). We may specify a parsimonious model with only main effects by assuming that the 

disease risk depends on SNPs and gene expression without interactions (βC = 0). Following 

the same development as described above, we obtain a similar test statistic under the main 

effect model:

Testing Procedure for the ME Under Family Design—The null hypothesis of no ME 

(6) in the induced logistic mixed model is equivalent to:
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We construct the test statistics for the ME for the above null hypothesis under model (1) as a 

weighted sum of L2 norms of estimating equations for βG and βC:

and under the main effect model, one can obtain the test statistic:

where 

(element-wise), and β̂
X0 and β̂

S0 are the estimators of βX and βS, respectively, under the null 

model:

(8)

However, the maximum likelihood estimators of (βx, βs) may not be stable in the presence of 

a large number of SNPs and high correlations due to linkage disequilibrium. Thus, we 

estimate (βx, βs) by fitting the null model (8) using ridge regression via the penalized log-

likelihood: , where li is the estimating equation for 

the null model (8) constructed as log-likelihood of Yi assuming working independence for 

subjects Yij (j = 1, …, ni) within unit i, and λ is a tuning parameter. The tuning parameter λ 

can be selected using cross-validation or generalized cross-validation (GCV) [O’Sullivan, 

1994]. Using the asymptotic distribution of  and  and the GCV function presented 

in the supplementary material, one can construct a perturbation procedure (discussed in the 

following) to calculate P-values of  and .

Testing Procedure for the TE Under Family Design—The null hypothesis of no total 

SNP effect (7) is equivalent to a joint test of the two variance components, τS and τC, and 

the scalar regression coefficient for gene expression effect, βG in the induced logistic mixed 

model:

With scores for the three parameters of interest, τS, τC, and βG, we propose a test statistic 

 as a weighted sum of L 2 norms of three estimating equations for βS, βG, and βC:
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(9)

Again, test statistics can be derived under other parsimonious models, e.g., the main effect 

model by assuming that the disease risk depends on SNPs and gene expression without 

interactions (βC = 0), or the SNP-only model by assuming that the disease risk depends only 

on SNPs (βG = 0, βC = 0). Following the same development, we obtain similar test statistics 

for the two simpler models, denoted as  and :

where μ̂
0 = (μ̂

01, …, μ̂
0n)T, , and β̂

X0 is the maximum 

likelihood estimator of βX under the null model: .

Perturbation Procedure and Omnibus Test Under Family Design—In this 

section, we develop perturbation procedure for AE, ME, and TE. For illustration, we focus 

on the TE, and stress that procedures for AE and ME can be constructed following the same 

development. Under the null model that there is no effect of a gene on disease, i.e., under the 

null hypothesis (7), tests under the full model , main effect model , and SNP-

only model  are all valid tests. If there indeed exists an effect of the gene, the test 

assuming the correct model is expected to perform optimally with the highest power, while a 

test under the mis-specified model is likely to lose power. However, we do not know which 

model is the true underlying model, so it is desirable to develop an omnibus test that 

maximizes testing power by searching all three candidate models. Specifically, we calculate 

the P-values under each of the three models, and construct an omnibus test statistic using the 

minimum of the three P-values. We then calculate the P-value of the omnibus test statistic 

using a perturbation procedure [Cai et al., 2000; Huang et al., 2014; Parzen et al., 1992].

With the asymptotic distribution derived for  in the supplement material (III. 

Asymptotics of Q statistics), we construct a perturbation procedure to perform hypothesis 

tests. Let , where 

, Xi, Si, Gi, Ci are q by ni, p by ni, 1 

by ni, p by ni matrices, respectively; Yi = (Yi1, …, Yini)
T, 

 are the corresponding estimates under the null, β̂
X0 

is the estimator of βX under the null model for the correlated family data, and Zi are 

independent standard normal random variables. By generating independent Z = (Z1, …, Zm) 

repeatedly, the perturbed realization of  in (9) under the null can be obtained, { , 
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b = 1, …, B} where  expression of A can be found in supplement material 

(III), and B is the number of perturbations. The P-value of QSGC can then be approximated 

using the tail probability of the perturbed realizations  by comparing  and 

the observed . Similar perturbation procedures can be constructed for ME with the 

asymptotic distribution of QME (see supplement material) or AE. The advantage of our 

proposed method is that we account for the within-family correlation by introducing a 

working correlation matrix R. Furthermore, our method does not require a correct 

specification of R. Through the perturbation procedure, our method protects the type I error 

under any structure of R, and gains power if the structure is close to the truth. The family 

design can also introduce ascertainment bias: families are not randomly selected from 

population, but instead ascertained according to disease status. Previous studies have shown 

that the bias in type I error rate is negligible using variance component tests based on 

estimating equations [Schifano et al., 2012]. We also account for ascertainment in our 

simulation studies.

Using the perturbation procedure, we can also calculate the P-value of the omnibus test 

statistic. Specifically, denote by pS, pSG, and pSGC, the P values of the test statistics 

, and , respectively; we define the minimum P-value of pS, pSG, and pSGC as 

the test statistic for the omnibus test. With the perturbed realization of the distribution for 

the three statistics , and , the underlying distribution of this minimum P-

value can then be approximated [Huang et al., 2014]. By comparing the observed minimum 

P-value with the approximated distribution, the omnibus P-value can be calculated as the 

tail probability of the distribution. One can also use the perturbation procedure to calculate 

the P-value of the omnibus test for ME (or AE) constructed using the minimum of the P-

values of  and  (or  and ). R codes that implement the proposed testing 

procedures for the TE, ME, and AE are available upon request.

Simulation and Asthma Data Analysis

We detailed the simulation and data analysis in the supplement material (I. Numerical 

Simulation, and II. Asthma iGWAS Data Analysis). Briefly, we randomly simulated SNPs 

and gene expression from chromosome 10 for 100 cases and 100 controls, mimicking the 

family design of the MRCA data and accounting for ascertainment. We simulated 500,000 

datasets to estimate size of the test and 2,000 datasets to estimate statistical power. We 

conducted an integrative GWAS using the MRCA asthma dataset [Moffatt et al., 1986]. The 

MRCA asthma dataset is a GWAS for childhood asthma with a family design where both 

genome-wide SNP and gene expression data are available. The MRCA data were collected 

from families of the British descent and consists of 378 subjects: 266 cases and 112 controls. 

Control subjects are either siblings or parents of the cases. Genome-wide SNP genotypes 

were obtained using the Illumina 300K SNP array and gene expressions were measured 

using the Affymetrix HU133A 2.0 expression array. Our analyses focused on the SNPs that 

are associated with the nearby gene within 1 Mb on the same chromosome (cis-eQTL) with 

false discovery rate (FDR) [Benjamini and Hochberg, 1995] less than 1%, which has been 

published using similar datasets [Liang et al., 2008]. We then grouped these eQTL SNPs 
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with their corresponding gene expression as an SNPs-expression set. The iGWAS analyses 

were applied to a total of 11,198 such sets. P-values were calculated with 5,000 resampling 

perturbation and approximated with the method based on the mixture of normal distributions 

[Cai et al., 2012].

Results

Detail simulation results were provided in the supplement material (IV. Numerical Results 

for AE, ME, and TE; supplementary Table S1, and Figs. S1 and S2). In summary, numerical 

simulation showed that under the null, the iGWAS for ME, AE, and TE protect the small 

type I error (e.g., 5 × 10−5); and under the alternative, the omnibus tests are robust to 

different underlying models and approach the optimal power from tests with correct model 

specification.

Family-Based iGWAS of Childhood Asthma

We grouped eQTL SNPs and their corresponding gene expression probes into 11,198 sets 

and then performed the proposed gene-centric iGWAS analyses on these sets one at a time. 

We first focused on examining 11,198 TEs of SNPs and gene expression. For the SNP-only 

analyses, the set contained only eQTLs without gene expression. We used 1% of FDR as the 

cut-off for genome-wide statistical significance. For the SNP-only analyses, there were no 

gene or transcript with FDR < 1% (supplementary Fig. S3A). There were 14 transcripts, 2 

transcripts, and 8 transcripts with FDR < 1% in genome wide analyses using the main effect 

model (QSG), full model with interaction (QSGC), and omnibus test (Qomb), respectively 

(supplementary Figs. S3B and S3C, and Fig. 2A). The genome-wide results were consistent 

with our findings from numerical simulations: the omnibus test (Qomb) and main effect 

model (QSG) that incorporated the information of gene expression were more powerful tests 

compared to the conventional SNP-only approach (QS).

In addition to increasing power of identifying susceptibility genes, a more important 

advantage of the iGWAS approach is that it facilitates to unravel the mechanism of genetic 

effects. Specifically, we investigated the mechanistic contribution of SNPs and gene 

expression to asthma risk by studying the ME of eQTL SNPs on asthma risk through gene 

expression and the AE of eQTL SNPs on asthma risk through other mechanisms. To study 

the ME and AE, we investigated the main effect model and full model. The P-values of 

omnibus tests for MEs and AEs in scanning the genome are presented in Figures 2B and C, 

and those of main effect models and full models are presented in supplementary Figures S4 

and S5. There are 36 genes with significant MEs at FDR < 1%, but no gene with AE 

survives the same cut-off. The results indicated that the effect of most asthma susceptibility 

genes may be mediated through their own gene expressions. The 36 genes with significant 

MEs (FDR < 1%) and the top 10 genes with the most significant AEs are presented in 

supplementary Tables S2 and S3.

iGWAS Results for Candidate Genes—The nominal P-values of the eight transcripts 

with FDR < 1% in omnibus tests for TEs are presented in Table 1. The eight transcripts 

corresponded to six unique genes and an RNA transcript not within a gene (229319_at). The 

MANEA gene showed up twice in the list because the eQTL SNPs-expression set was 
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grouped for each expression probe, and genes with multiple probes may be grouped into 

different sets. For the TEs of the eight transcripts, the model with main effects of SNPs and 

gene expression (QSG) performed the best, except for MRPL53 and MANEA (219003_s_at) 

where the full model (QSGC) performed even better. The omnibus P-values were very close 

to the smallest P-values among the three candidate models (QS, QSG, and QSGC). The SNP-

only effect of PTCH1 was not significant (P = 0.32), but its SNP-expression joint effect was 

very significant (P = 8.5 × 10−6). Even with the conservative Bonferroni adjustment for the 

11,198 sets (P < 4.5 × 10−6), MANEA (219003_s_at) (P = 4.8 × 10−7) and MRPL53 (P = 1.9 

× 10−6) were still statistically significant.

As shown in Table 1, all except MRPL53 had very significant ME, no matter under the main 

effect model or full model, and the omnibus P-values were very close to smallest P-values. 

The AE was significant in MANEA (P = 2.9 × 10−4 and 0.0017), MRPL53 (P = 5.7 × 10−4), 

and ST8SIA4 (P = 0.012), which indicated that eQTL SNPs of these genes may act through 

other mechanisms in addition to mRNA expression of the genes, to affect the asthma risk.

Nominal P-values for genes containing SNPs reported in previous asthma GWAS [Ferreira 

et al., 2011; Moffatt et al., 2007; Ober et al., 2008; Torgerson et al., 2011] are presented in 

Table 2. The iGWAS approach confirmed the significant TEs from ORMDL3 (P = 0.0081), 

CHI3L1 (P = 0.0055), and IL6R (P = 0.040). The effects of CHI3L1 and IL6R were mostly 

through gene expression (P = 0.0013 and 0.018, respectively), while the effect of ORMDL3 

gene seemed to be mainly through alternative biological mechanisms (P = 0.023). Of note, 

the strategy used in previous GWAS to identify these genes was single SNP analysis, while 

our reanalysis utilized the proposed gene-centric approach.

Single-Locus Analyses—We also conducted single-locus analyses for the top eight 

transcripts as well as the candidate genes identified from previous GWAS. In the single-

locus analyses, we analyzed each single SNP and the gene expression associated with the 

SNP, studying AEs, MEs, and TEs. Again, AEs and MEs were studied under the main effect 

model and full model, whereas TEs were investigated under the SNP-only model, main 

effect model, and full model. We present the P-values from different tests for AEs, MEs, 

and TEs of MANEA (219003_s_at) and MRPL53, the two most significant genes in Fig. 3. 

Results of the remaining six transcripts are shown in supplementary Figures S6–S11. The 

ME or AE was prominent in certain linkage disequilibrium blocks, in particular, for 

MRPL53, MANEA, and ST8SIA4. The median (first quartile-third quartile) of the proportion 

(%) of mediation for all eQTL SNPs was 11.9% (8.8–13.6%) for MANEA (219003_s_at), 

3.9% (1.0–4.4%) for MANEA (1554193_s_at), 8.7% (3.8–13.7%) for MRPL53, 50.6% 

(31.6–53.7%) for LYCAT, 17.7% (13.7–20.7%) for ST8SIA4, 54.1% (33.6–54.5%) for 

NDFIP1, 95.0% (78.8–100.0%) for 229319_at, and 48.4% (25.9–100.0%) for PTCH1. The 

high proportions of mediation observed in NDFIP1, PTCH1, LYCAT, and 229319_at were 

consistent with their highly significant MEs and nonsignificant AEs (Table 1, supplementary 

Figs. S6, S8, S10, and S11). Detailed results from single-locus analyses are presented in 

supplementary Tables S4–S11, and the patterns support the findings of gene-centric analyses 

presented in Table 1. The results of single-locus analyses for the genes identified from the 

previous GWAS (ORMDL3, CHI3L1, IL6R, IL18R1, and RAD50) are presented in 
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supplementary Tables S12–S20. The findings from single-locus analyses are consistent with 

the results using the iGWAS approach.

Discussion

We proposed in this paper an integrative approach, iGWAS, that is able to analyze 

multiplatform genomic data under the family-based design. The model can be presented as a 

causal diagram (Fig. 1), which was set up based on the central dogma of molecular biology 

that DNA can be transcribed to mRNA expression and mRNA can then be translated to be 

protein to affect the phenotypic trait such as disease risk. The mediation diagram provides an 

intuitive illustration of our hypothesis. The iGWAS approach is integrative in different 

aspects. The model not only integrates different types of genomic data, i.e., SNP and gene 

expression data, but also incorporates different types of genetic/genomic association studies 

to delineate clinical outcome rather than perform a GWAS, an expression microarray study, 

and an eQTL study separately. Moreover, the iGWAS approach integrates biological 

knowledge into the computational model, as illustrated in the causal mediation diagram.

The iGWAS approach has several advantages. First, with the enriched genomic information 

compared to single one alone, a better statistical power has been illustrated in both 

numerical studies and a family-based GWAS of childhood asthma using the family-based 

MRCA data. The iGWAS outperforms the SNP-only approach and identifies novel genes for 

asthma susceptibility that have not been reported. Second, the iGWAS approach makes an 

analytic investigation into the biological mechanism of genetic effects possible. The ME 

represents a cis-regulating effect that SNPs regulate expression of a nearby gene; and 

possible mechanisms behind the AE include a trans-regulating effect that SNPs affect 

expression of a distant causal gene, or a structural related effect that SNPs alter the 

biochemical structure of their gene product instead of their expression level. Third, although 

the iGWAS was developed under the family design, it can accommodate a wide range of 

study designs such as nonfamily-based case-control studies, cohort studies, or longitudinal 

studies with repeat measurement. Finally, the iGWAS approach may have translational 

utilities. For example, for genes with significant MEs, the expression levels may serve as 

diagnostic biomarkers to screen and prevent the disease. Moreover, potential therapeutic 

agents such as small RNAs that can repress expressions of the specific genes may be 

developed to counteract the MEs.

Because our method is developed under the framework of mediation modeling based on 

causal inference, we need to make untestable no-unmeasured confounding assumptions to 

draw conclusions beyond association. If we are interested in studying the TE, the only 

assumption is that there is no unmeasured confounding for the effect of eQTL SNPs on the 

outcome after adjusting for the covariates, which is the same as that made in the 

conventional SNP-only GWAS. However, if we are interested in the ME and AE, stronger 

assumptions are required [Huang et al., 2014].

The iGWAS approach confirmed the genes that have been reported to be associated with 

asthma risk such as ORMDL3 (P = 0.0081), CHI3L1 (P = 0.0055), and IL6R (P = 0.040) 

[Ferreira et al., 2011;Moffatt et al., 2007]. In addition to confirming their overall genetic 

Huang et al. Page 12

Genet Epidemiol. Author manuscript; available in PMC 2015 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effects, we also found that the genetic effects of CHI3L1 and IL6R were mediated by gene 

expression (Table 2) and that genetic loci of ORMDL3 may have alternative mechanisms 

independent of acting through its gene expression (P = 0.023). Our approach also identified 

six novel genes (MANEA, MRPL53, LYCAT, ST8SIA4, NDFIP1, and PTCH1). NDFIP1 has 

been reported to be a candidate susceptible gene in asthma GWAS but with weak effect, OR 

= 1.11 [Ferreira et al., 2011]. As we found that most of the genetic effect of NDFIP1 was 

through gene expression, the heterogeneity due to not accounting for gene expression may 

explain the modest effect in the previous study. NDFIP1 mediates peripheral immune 

tolerance by inducing cell cycle exit in CD4 T lymphocytes [Altin et al., 2014]. PTCH1, 

patched homolog 1, has been found to be associated with lung function in the general 

population and lung function abnormalities in white and African Americans with asthma [Li 

et al., 2011]. ST8SIA4, sialyltransferase, is predominantly expressed in immune cells 

[Kolker et al., 2012]. It plays an important role in substrate recognition that modulates cell 

adhesion and signaling [Zapater and Colley, 2012]. MANEA, α-endomannosidase, has been 

reported to be associated with psychiatric disorders including substance dependence and 

anxiety disorders [Farrer et al., 2009; Jensen et al., 2014; Yu et al., 2008]. Studies in 

nonpsychiatric disorders, however, are very limited. Consistent with our findings, a 3′UTR 

SNP, rs113503, has been shown to be related to mRNA expression of MANEA [Jensen et al., 

2014]. LYCAT, lysocardiolipin acyltransferase 1, is expressed in developing lung of mouse 

[Wang et al., 2010], but its association with asthma or other immune-related disorders has 

not been reported. MRPL53, mitochondrial ribosomal protein L53, is involved in a 

ribonucleotide complex [Wessels et al., 2013]. The molecular mechanism of these candidate 

genes in relation to the development of asthma warrants further examination.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Directed acyclic diagram (DAG) of the mediation model. The gray path indicates the 

alternative effect, and the black path indicates the mediation effect.
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Figure 2. 
Manhattan plots of genome-wide scan of the asthma data using SNPs and gene expression 

data with the gene-centric iGWAS approach. Analysis is restricted to eQTLs. (A) Omnibus 

P-values for total effects; (B) omnibus P-values for mediation effects; (C) omnibus P-value 

for alternative effects. Red dots indicate the transcripts found from the omnibus test with 

FDR < 1%.
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Figure 3. 
Plots of P-values of AE, ME, and TE in single-locus analyses for MANEA (219003_s_at) 

(A) and MRPL53 (B). Lower panel represents the linkage disequilibrium structure for SNPs 

within each gene, measured as r2 ranging from 0 (white) to 1 (black). QS, tests assuming an 

SNP-only model; QSG, tests assuming a model with main effects of SNPs and gene 

expression; QSGC, tests assuming a model with main effects and their interactions; Qomb, 

omnibus tests.
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