
THE JOURNAL OF CHEMICAL PHYSICS 143, 074108 (2015)

Constant-complexity stochastic simulation algorithm with optimal binning
Kevin R. Sanft1,a) and Hans G. Othmer2,3,b)
1Department of Computer Science, University of North Carolina Asheville,
Asheville, North Carolina 28804, USA
2School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455, USA
3Digital Technology Center, University of Minnesota, Minneapolis, Minnesota 55455, USA

(Received 19 March 2015; accepted 4 August 2015; published online 19 August 2015)

At the molecular level, biochemical processes are governed by random interactions between reactant
molecules, and the dynamics of such systems are inherently stochastic. When the copy numbers of
reactants are large, a deterministic description is adequate, but when they are small, such systems
are often modeled as continuous-time Markov jump processes that can be described by the chemical
master equation. Gillespie’s Stochastic Simulation Algorithm (SSA) generates exact trajectories of
these systems, but the amount of computational work required for each step of the original SSA
is proportional to the number of reaction channels, leading to computational complexity that scales
linearly with the problem size. The original SSA is therefore inefficient for large problems, which has
prompted the development of several alternative formulations with improved scaling properties. We
describe an exact SSA that uses a table data structure with event time binning to achieve constant
computational complexity with respect to the number of reaction channels for weakly coupled
reaction networks. We present a novel adaptive binning strategy and discuss optimal algorithm param-
eters. We compare the computational efficiency of the algorithm to existing methods and demonstrate
excellent scaling for large problems. This method is well suited for generating exact trajectories of
large weakly coupled models, including those that can be described by the reaction-diffusion master
equation that arises from spatially discretized reaction-diffusion processes. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4928635]

I. INTRODUCTION

Traditional differential equation models of chemically
reacting systems provide an adequate description when the
reacting molecules are present in sufficiently high concentra-
tions, but at cellular scales, biochemical reactions occur due
to the random interactions of reactant molecules that are often
present in small numbers. These processes display behavior
that cannot be captured by deterministic approaches. Under
certain simplifying assumptions, including spatial homoge-
neity, these systems can be modeled as continuous-time
Markov jump processes. The evolution of the probability of the
system being in any state at time t is described by the Chemical
Master Equation (CME).1,2 The invariant distribution and the
evolution can be found for certain classes of reaction net-
works,3–5 but for many realistic problems, the state space and
the CME are too large to solve directly. Gillespie’s Stochastic
Simulation Algorithm (SSA) generates exact trajectories from
the distribution described by the CME,6,7 but one must
generate an ensemble of trajectories to estimate the probability
distribution.

Consider a well-mixed (spatially homogeneous) biochem-
ical system of S different chemical species with associated
populations N(t) = (n1(t),n2(t), . . . ,nS(t)). The population is
a random variable that changes via M elementary reaction

a)Electronic mail: kevin@kevinsanft.com
b)Electronic mail: othmer@math.umn.edu

channels {R1,R2, . . . ,RM}. Each reaction channel Rj has an
associated stoichiometry vector νj that describes how the pop-
ulation N changes when reaction Rj “fires.” The CME (and
the SSA) are derived by assuming that each reaction channel
Rj is a non-homogeneous Poisson process whose intensity
is determined by a propensity function, a j, which is defined
as6–8

a j(N)dt ≡ probability that reaction Rj

will occur once in [t, t + dt). (1)

The definition in (1) describes a property of an exponential
distribution. The time τ and index j of the next reaction event,
given the current state N and time t, can therefore be charac-
terized by the joint probability density function

p(τ, j |N, t) = e−
M
i=1 ai(N)τa j(N). (2)

Equation (2) combined with the fact that the process is
Markovian — a consequence of the well-mixed assumption —
leads naturally to the SSA.

We will refer to as any simulation algorithm that gener-
ates trajectories by producing exact samples of τ and j from
the density in (2) as an “exact SSA.” Note that when other
sources describe “the SSA” or “the Gillespie algorithm,” they
are often implicitly referring to the direct method variant of
the SSA (see Section II A).6,7 However, many other SSA
variants have been proposed that achieve different performance
and algorithm scaling properties by utilizing alternate data

0021-9606/2015/143(7)/074108/10/$30.00 143, 074108-1 © 2015 AIP Publishing LLC

http://dx.doi.org/10.1063/1.4928635
http://dx.doi.org/10.1063/1.4928635
http://dx.doi.org/10.1063/1.4928635
http://dx.doi.org/10.1063/1.4928635
http://dx.doi.org/10.1063/1.4928635
http://dx.doi.org/10.1063/1.4928635
http://dx.doi.org/10.1063/1.4928635
http://dx.doi.org/10.1063/1.4928635
http://dx.doi.org/10.1063/1.4928635
mailto:kevin@kevinsanft.com
mailto:kevin@kevinsanft.com
mailto:kevin@kevinsanft.com
mailto:kevin@kevinsanft.com
mailto:kevin@kevinsanft.com
mailto:kevin@kevinsanft.com
mailto:kevin@kevinsanft.com
mailto:kevin@kevinsanft.com
mailto:kevin@kevinsanft.com
mailto:kevin@kevinsanft.com
mailto:kevin@kevinsanft.com
mailto:kevin@kevinsanft.com
mailto:kevin@kevinsanft.com
mailto:kevin@kevinsanft.com
mailto:kevin@kevinsanft.com
mailto:kevin@kevinsanft.com
mailto:kevin@kevinsanft.com
mailto:kevin@kevinsanft.com
mailto:kevin@kevinsanft.com
mailto:kevin@kevinsanft.com
mailto:othmer@math.umn.edu
mailto:othmer@math.umn.edu
mailto:othmer@math.umn.edu
mailto:othmer@math.umn.edu
mailto:othmer@math.umn.edu
mailto:othmer@math.umn.edu
mailto:othmer@math.umn.edu
mailto:othmer@math.umn.edu
mailto:othmer@math.umn.edu
mailto:othmer@math.umn.edu
mailto:othmer@math.umn.edu
mailto:othmer@math.umn.edu
mailto:othmer@math.umn.edu
mailto:othmer@math.umn.edu
mailto:othmer@math.umn.edu
mailto:othmer@math.umn.edu
mailto:othmer@math.umn.edu
mailto:othmer@math.umn.edu
mailto:othmer@math.umn.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4928635&domain=pdf&date_stamp=2015-08-19

074108-2 K. R. Sanft and H. G. Othmer J. Chem. Phys. 143, 074108 (2015)

structures to sample density function (2).9–18 Many of these
methods apply random variate generation techniques described
in Devroye19 to the SSA. Among the most popular of these
alternate formulations of the SSA for large problems is the
Next Reaction Method (NRM) of Gibson and Bruck.9 We
discuss this and other formulations in detail in Secs. II–IV.
Many authors have also described approximate methods that
sacrifice exactness in exchange for computational efficiency
gains, including the class of tau-leaping algorithms and various
hybrid approaches.20–30,51 In this paper, we restrict our atten-
tion to exact methods.

An important class of problems that leads to large models
arises from spatially discretized reaction diffusion processes.
The assumption underlying the CME and SSA that the reactant
molecules are spatially homogeneous is often not justified in
biological settings. One way to relax this assumption is to
discretize the system volume into Ns subvolumes and assume
that the molecules are well-mixed within each subvolume.
How to choose the subvolume size to ensure this is discussed
elsewhere.31 Molecules are allowed to move from one sub-
volume to an adjacent one via diffusive transfer events. This
setting can also be described as a Markov jump process and
leads to the reaction-diffusion master equation (RDME).32,33 In
simulating the RDME, reaction events within each subvolume
are simulated with the standard SSA and diffusive transfers
are modeled as pseudo-first order “reactions.” The resulting
simulation method is algorithmically equivalent to the SSA
(see Gillespie et al.33 for an overview). However, the state
space and the number of transition channels grow rapidly as the
number of subvolumes increases, since the population of every
species must be recorded in every subvolume. The number
of transition channels includes all diffusive transfer channels,
and in addition, each reaction channel in the homogeneous
system is duplicated once for each subvolume. In a spatial
model, M is the total number of reaction and diffusion chan-
nels. Several exact and approximate algorithms and software
packages designed specifically for simulating the RDME have
been proposed.34–39

In this paper, we present an exact SSA variant that is
highly efficient for large problems. The method can be viewed
as a variation of the NRM that uses a table data structure in
which event times are stored in “bins.” By choosing the bin size
relative to the average simulation step size, one can determine
an upper bound on the average amount of computational work
per simulation step, independent of the number of reaction
channels. This constant-complexity NRM is best suited for
models in which the fastest time scale stays relatively constant
throughout the simulation. Optimal performance of the algo-
rithm is sensitive to the binning strategy, which we discuss in
detail in Section IV A.

The remainder of the paper is organized as follows. In Sec.
II, we discuss the standard direct and NRM methods in more
detail. In Section III, we demonstrate how alternate methods
with various scaling properties can be derived by modify-
ing the standard methods. Section IV presents the constant-
complexity NRM algorithm and the optimal binning strategy.
The performance and scaling of several methods is presented
in Section V. Section VI concludes with a brief summary and
discussion.

II. STANDARD METHODS FOR SPATIALLY
HOMOGENEOUS MODELS

The majority of exact SSA methods are based on varia-
tions of the two standard implementations: the direct method
and the NRM. Here, we review these standard methods in more
detail.

A. Direct method

The direct method variant of the SSA is the most popu-
lar implementation of the Gillespie algorithm.6,7 In the direct
method, the step size τ is calculated by generating an expo-
nentially distributed random number with rate parameter (or
intensity) equal to the sum of the propensities. That is, τ is
chosen from the probability density function

f (τ) = *
,

M
i=1

ai(N)+
-

e−
M
i=1 ai(N)τ, τ ≥ 0. (3)

The index of the next reaction, j, is an integer-valued random
variable chosen from the probability mass function

f (j) = a jM
i=1 ai(N) , j ∈ {1,2, . . . ,M}. (4)

The original direct method is implemented by storing the
propensities in a one-dimensional data structure (e.g., an array
in the C programming language). Generating the reaction
index j as described in (4) can be implemented by choosing
a continuous, uniform random number r between 0 and the
propensity sum and choosing j such that

j = smallest integer satisfying
j

i=1

ai(N) > r. (5)

This “search” to find the index of the next reaction proceeds
by iterating over the elements in the array until condition (5) is
satisfied. After the time of the next event and the reaction index
are determined, the simulation time t and system state N are up-
dated as t = t + τ and N = N + νj. Changing the population N
will generally lead to changes in some propensities, which are
recalculated and the propensity sum is adjusted accordingly.
The algorithm repeats until a termination condition is satis-
fied. Typically, an ensemble of many simulation trajectories is
computed.

An analysis of the scaling properties for a single step of the
direct method, or any SSA variant, can be done by considering
the computational work required for the two primary tasks
of the algorithm: (1) searching for the next reaction index
and (2) updating the reaction generator data structure (see
Ref. 40). If the propensities are stored in random order in
a one-dimensional array, the search will take approximately
M/2 steps on average. Utilizing static or dynamic sorting can
reduce the search to a smaller fraction of M .41,42 The average
cost of the update step will be the number of dependencies
for each reaction, weighted by the firing frequencies of the
reactions. The update cost is at worst O(M), making the direct
method an O(M) algorithm overall. The SSA direct method is
easy to implement with simple data structures that have low
overhead, making it a popular choice that performs well for
small problem sizes.

074108-3 K. R. Sanft and H. G. Othmer J. Chem. Phys. 143, 074108 (2015)

B. Next reaction method

In his 1976 paper,6 Gillespie also proposed the first reac-
tion method (FRM), which involves generating a tentative next
reaction time for every reaction channel and then finding the
smallest value to determine the next event that occurs. The
NRM is a variation of the FRM that uses a binary min-heap
to store the next reaction times.9 The search for the next reac-
tion in the NRM is a constant-complexity, or O(1), operation
because the next reaction is always located at the top of the
heap. However, updating the binary min-heap data structure
when a propensity changes is computationally expensive. For
each affected propensity, the propensity function has to be
evaluated, the reaction time has to be recomputed based on this
new propensity, and the binary min-heap must be updated to
maintain the heap property.

Maintaining the heap structure generally requires O
(log2(M)) operations for each affected event time, implying
that the total computational cost of the update step is DO
(log2(M)) = O(log2(M)), where D is the average number of
propensity updates required per step.9 In practice, the actual
update cost will depend on many factors, including the extent
to which the fastest reaction channels are coupled and whether
or not the random numbers are “recycled.”9,17 For what we later
call strongly coupled reaction networks, where D is O(M),
the update step is O(Mlog2(M)). The interested reader should
consult Gibson and Bruck9 for a detailed analysis.

The work estimates for the update step of these algorithms
(O(M) for the direct SSA and O(Mlog2M) for the NRM) are
worst-case estimates that apply when a large fraction of the
propensities must be updated after every reaction event. This
is an extreme case, and when it obtains we call the underlying
network strongly coupled. Well-established examples of such
networks are known in the biological realm and include the
yeast protein interaction network43 and the metabolic network
in E.coli.44 The former has a “hub” that connects to several
hundred nodes, but typical copy numbers of proteins are at
least O(102) and usually O(104).45,46 In the latter case there are
473 metabolites and 574 links (as of 200544), and while adeno-
sine triphosphate (ATP) and adenosine diphosphate (ADP) are
reactants or products of many reactions, or are involved in the
control of numerous enzymes, their concentration is typically
in the millimolar range. Thus in either case, the copy numbers
are large enough that a deterministic description of the dy-
namics is often appropriate, though exceptions may certainly
occur.

Typical applications of stochastic models in biology are
to enzyme-catalyzed reactions and signal transduction or gene
control networks that have relatively few reacting components
(≤100) in which the reactions are at most bimolecular and
which produce at most three product species. In these cases
the reactions are weakly coupled in the sense that there is a
fixed constant upper bound D to the number of propensities
that must be updated after each reaction step. We call these
weakly coupled networks and note that they apply to dis-
cretized reaction-diffusion equations with a reaction network
that satisfies the above constraints, since each diffusive step
only affects two subvolumes. As we show later, this class of
networks leads to constant complexity SSAs.

In this work, we assume the reaction network is weakly
coupled and that D is bounded above independent of M , lead-
ing to O(log2(M)) scaling overall for the original NRM formu-
lated with a binary min-heap. The original NRM is therefore
superior to the direct method for large, weakly coupled net-
works. For strongly coupled networks, methods utilizing par-
tial propensities, equivalence classes, or rule-based modeling
may be more efficient.14,47,48

III. ALTERNATIVE FORMULATIONS

There are two main techniques for improving the scaling
properties of an exact SSA implementation. The first is to use
different data structures, as in the binary tree utilized for the
NRM min-heap implementation. The other technique is to split
the search problem into smaller subproblems by partitioning
the reaction channels into subsets. The two techniques are
complementary and in some cases conceptually equivalent. By
utilizing different combinations of data structures and parti-
tioning schemes, it is possible to define an infinite number
of alternate SSA formulations with varying performance and
scaling properties.

To fix ideas, consider a simple variation of the direct
method. Instead of storing all M propensities in a single array,
one could partition the reaction channels into two subsets of
size M/2 and store them using two arrays. If we label the
propensity sums of the two subsets aS1 and aS2, respectively,
then the probability that the next reaction will come from
subset i is aSi/(aS1 + aS2). Conditioned on the next reaction
coming from subset i, the probability that the next reaction is Rj

will be a j/aSi, for all j in subset i. These statistical facts follow
from the properties of exponential random variables and lead
naturally to a simulation algorithm. We select the subset i from
which the next reaction will occur by choosing a continuous
uniform random number r1 between 0 and the propensity sum
and using a linear search as in the direct method to choose i,

i = smallest integer satisfying
i

k=1

aSk(N) > r1. (6)

We have written (6) in a generic way to accommodate more
than two subsets. After selecting the subset i, we can use the
linear search from (5) again to select the reaction j from within
subset i, but choosing the uniform random number between 0
and aSi and iterating over the elements in the array correspond-
ing to subset i.

The resulting algorithm can be viewed as a “2D” version
of the direct method. The (unsorted) algorithm requires, on
average, a search of depth 1.5 to choose the subset and an
average search depth of M/4 to select the particular reaction
within the chosen subset. The algorithmic complexity of this
variation is still O(M), so the NRM will still outperform this
method for sufficiently large problems. Below we show how
more sophisticated partitioning and data structures can be used
to achieve improved scaling properties.

A. Alternate direct formulations

One can expand on the idea above to create other direct
method variants. If each of the two subsets is then split into

074108-4 K. R. Sanft and H. G. Othmer J. Chem. Phys. 143, 074108 (2015)

two more subsets, a similar procedure can be applied to derive
a method with M/8 scaling. If this processes is repeated
recursively, the resulting partitioning of the reaction channels
can be viewed as a binary tree.9,12,18 This logarithmic direct
method has O(log2(M)) cost for the search and update steps. If
the reaction channels were partitioned into

√
M subsets each

containing
√

M channels, the search for the subset and the
search within the subset are both O(√M) operations, leading
to O(√M) algorithmic complexity. This is the theoretically
optimal “2D search” formulation. Similarly, one can define
a three-dimensional data structure, leading to a “3D search”
which scales as O(3√M), and so on.12,18

Slepoy et al.10 proposed a constant-complexity (O(1))
direct method variant that uses a clever partitioning strategy
combined with rejection sampling. The reaction channels are
partitioned based on the magnitude of their propensities with
partition boundaries corresponding to powers of two. That
is, if we number the partitions using (positive and negative)
integers, partition i contains all of the reaction channels with
propensities in the range [2i,2i+1). (We note that this parti-
tioning strategy, referred to as “binning” in Slepoy et al.,10 is
unrelated to the binning strategy we employ in the constant-
complexity NRM presented in this work.) The partition g from
which the next reaction will occur is chosen exactly via a
linear search, which is assumed to have a small average search
depth, independent of M . A rejection sampling technique is
employed to select the particular channel within the subset
g. An integer random number r1 is chosen between [1,Mg],
where Mg is the number of reaction channels in subset g. This
tentatively selects the reaction channel j corresponding to the
r1-th channel in the subset. Then a continuous random number
r2 is chosen between [0,2g+1). If r2 < a j(x), reaction channel
j is accepted as the next event, otherwise it is rejected and
new random numbers r1 and r2 are chosen. The process is
repeated until a reaction is accepted. Since the subsets have
been engineered such that all propensities in subset g are
within the range [2g ,2g+1), it takes fewer than two samples on
average to select the next reaction, independent of the number
of reaction channels. Updating the data structures for each
affected propensity is also an amortized constant-complexity
operation leading to O(1) algorithmic complexity independent
of M for weakly coupled networks.

B. Next subvolume method (NSM)

The preceding methods are general formulations that can
be applied to any model that can be described by the CME
or RDME. In this subsection, we describe the NSM (not to
be confused with the NRM), which is formulated specifically
for simulating processes described by the RDME. The NSM
is a variation of a 3D search method.34 The NSM partitions on
subvolumes and uses the NRM (implemented using a binary
min-heap) to select the subvolume in which the next event
occurs. Within each subvolume, the diffusion channels and
reaction channels are stored and selected using two arrays,
similar to the two-partition direct method scheme from the
beginning of this section. Among the favorable properties of
the NSM is that organizing the events by subvolume tends to
keep the updates local in memory. Partitioning by subvolume

ensures that an event affects at most two subvolumes (which
occurs when the event is a diffusive transfer); therefore, at
most two values in the binary min-heap need to be updated on
each step of the algorithm. The NSM scales as O(log2(Ns)) for
weakly coupled reaction networks, where Ns is the number of
subvolumes.

Recently, Hu et al. presented a method in which the
NSM search is effectively reversed.18 First, the type of event
is selected, then the subvolume is chosen using a binary,
2D, or 3D search, leading to algorithmic complexity that
is O(log2(Ns)), O(√Ns), or O(3√Ns), respectively. Improved
scaling can be achieved by using the NRM partitioning strategy
in a direct method variant and utilizing the O(1) composition-
rejection method to select the subvolume.38 We note that for
strongly coupled reaction networks, the within-subvolume
search can be replaced with a partial-propensity method as
in the partial-propensity stochastic reaction-diffusion method
(PSRD) method.15,38 Although methods with better scaling
exist, the original NSM remains popular in practice and per-
forms well on weakly coupled spatial models over a wide range
of problem sizes.

IV. CONSTANT-COMPLEXITY NEXT
REACTION METHOD

The NRM was derived by taking the basic idea of the FRM
and utilizing a different data structure to locate the smallest
event time. The abstract data type for this situation is known
as a priority queue and in principle any correct priority queue
implementation can be used. Here, we present an implementa-
tion of the next reaction method that uses a table data structure
comprised of “bins” to store the event times for the priority
queue. If the propensity sum, and therefore the expected simu-
lation step size, can be bounded above and below, then the
average number of operations to select the next reaction and
update the priority queue will be bounded above, independent
of M, resulting in a constant-complexity NRM.

To implement a constant-complexity NRM, we partition
the total simulation time interval, from the initial time t = 0
to final time t = Tf , into a table of K bins of width W . For
now, we will let W K = Tf . Bin Bi will contain all event times
in the range [iW, (i + 1)W). We generate putative event times
for all reaction channels as in the original NRM, but insert
them into the appropriate bin in the table instead of in a binary
min-heap. Events that fall outside of the table range are not
stored in the table. Values within a bin are stored in a 1D array,
although alternative data structures could be used. To select
the next reaction, we must find the smallest element. There-
fore, we must find the first nonempty bin (i.e., the smallest i
such that Bi is not empty). To locate the first non-empty bin,
we begin by considering the bin i from which the previous
event was found. If that bin is empty, we repeatedly increment
i and check the ith bin until a nonempty bin is found. We
then iterate over the elements within that bin to locate the
smallest value (see Figure 1). The update step of the algorithm
requires computing the new propensity value and event time
for each affected propensity. In the worst case, the new event
time will cause the event to move from one bin to another,
which is an O(1) operation. Therefore, the update step will

074108-5 K. R. Sanft and H. G. Othmer J. Chem. Phys. 143, 074108 (2015)

be an O(D) operation, where again D is the average number
of propensity updates required per simulation step. When the
reaction network is weakly coupled, D will be bounded above
independent of M . Therefore, if the propensity sum is bounded
above and below independent of M , the overall complexity
of the algorithm is O(1) for weakly coupled networks. In
Sec. IV A, we consider the optimal bin width to minimize the
cost to select the next reaction.

A. Optimal bin width

Storing the elements within a bin using a 1D array is
similar to the chaining approach to collision resolution in a
hash table (see Appendix B). However, unlike a hash table,
targeting a particular “load factor” (the ratio of elements to
bins) can lead to good or bad performance depending on the
distribution of the propensities, because the key to efficiency
is choosing the appropriate bin width relative to the mean
simulation step size. If the bin width is too small, there will
be many empty bins, and if the bin width is too large, there
will be many elements within each bin.

In considering the search cost and optimal bin width, it
is helpful to consider two extreme cases. For the first case,
suppose one reaction channel is “fast” and the rest are slow.
For the second case, suppose all reaction channels have equal
rates (propensities). For simplicity of analysis we can rescale
time so that the propensity sum equals one and we assume
Tf ≫ 1. Then in the first case, if the propensity of the fast
channel is much larger than the sum of the slow propensities
(i.e., the fast propensity is approximately equal to one), we can
choose the bin width to be large on the scale of the fast reaction
but small on the scale of the slow reactions. For example,
choosing W ≈ 6.64 (corresponding to the 99th percentile for a
unit rate exponential distribution) ensures that the fast reaction
will initially be in the first bin with approximately 99% proba-
bility. By assumption, there is a small probability that any of the
slow reactions will also appear in the first bin. Upon executing
the simulation, the fast reaction will repeatedly appear in the
first bin and be selected during the next step, until it eventually
appears in the second bin (with probability <1% of landing
beyond the second bin). If it takes on average approximately
6.6 steps before the fast reaction appears in the second bin,
then the average search depth to locate the first nonempty bin
is about 1 + 1

6.6 ≈ 1.15 and the average search depth within
a bin is approximately one. The “total search depth” will be
approximately 2.15. The slow reactions contribute a relatively
small additional cost in this scenario. If, however, the slow
reactions are not negligible, then the fast reaction plays a less
important role in the search cost and the situation can be viewed
as similar to the second case, which we consider next.

Here, we suppose that all reaction channels have equal
propensities and the propensity sum equals one. In this case,
the number of elements that will initially be placed in the first
bin will be approximately Poisson distributed with mean W .
As the simulation progresses, elements will be removed from
the first bin until it is emptied and the simulation will move on
to the second bin where the process repeats. If the number of
events per bin is Poisson distributed with mean W , the average
search depth to locate the first nonempty bin is 1/W + 1 and the

FIG. 1. Priority queue using binning. The next reaction in a simulation is the
event with the smallest event time. Locating the smallest event time requires
first locating the smallest non-empty bin, then finding the smallest element
within that bin. Elements in the bins contain the event time and the event
(reaction) index. Bin boundaries are integers here for simplicity. Elements
within a bin are unsorted. Elements with zero propensity or with an event
time beyond the last bin are not stored in the queue. In the top figure, the first
bin, B0, contains the smallest element as indicated by the arrow. After that
event occurs, the search for the next nonempty bin begins at the current bin
and, if empty, the bin pointer is incremented until the next nonempty bin is
located, as indicated by the arrow under bin B2 in the bottom figure. Here, the
next event is “R7.” In a real simulation, the update step may cause elements
to move from one bin to another.

average search depth within a bin is W/2 + 1. The total search
depth is minimized when W =

√
2, leading to a total search

depth of 2 +
√

2 ≈ 3.41. That is, it takes an average of about
3.41 operations to select the next reaction, independent of the
size of the model. If the propensity sum does not equal one,
this minimum total search depth will be achieved with a bin
width of W =

√
2(M

i=1 ai(x))−1.
The theoretical optimal relative bin width W =

√
2 does

not minimize the search cost in an actual implementation.
Figure 2 shows that the search cost is minimized at a bin
width much larger than

√
2. One reason for this is that ac-

cessing consecutive items within a bin is generally faster than
traversing between bins because items within a bin are stored
in contiguous blocks of memory. In our experience, a bin
width of approximately 16 times the mean simulation time to
the next event performs well across a wide range of problem
sizes. Widths between 8 and 32 times the step size perform
well, making the choice of 16 robust to modest changes in the
propensity sum. However, it is possible that the optimal values
may vary slightly depending on the system architecture. More

074108-6 K. R. Sanft and H. G. Othmer J. Chem. Phys. 143, 074108 (2015)

FIG. 2. Search cost for various bin widths. In this example, M = 107 and
every propensity = 10−7 (the propensity sum equals one). The theoretical
optimal bin width for minimizing the total search depth corresponding to
W =

√
2 is shown as a dashed vertical line. In practice, the true optimal bin

width is larger than W =
√

2. A bin width of 16 times the mean simulation
step size performs well over a wide range of problem sizes. Search cost is
measured in seconds for 107 simulation steps.

importantly, if the propensity sum varies over many orders of
magnitude during a simulation, a static bin width may be far
from optimal during portions of the simulation.

B. Optimal number of bins and dynamic rebuilding

It is not necessary to choose the number of bins K such
that W K ≥ Tf , where again Tf is the simulation end time. If
for a chosen K , W (K − 1) > Tf , then the table is larger than
necessary, which is inefficient as larger memory use leads to
slower simulations. However, it is less obvious that a choice
of K such that W K < Tf can lead to improved performance.
When W K < Tf , the table data structure must be rebuilt when
the simulation time exceeds W K . A tradeoff exists between
choosing K large, which is less efficient because it uses more
memory, and choosing K small, which requires more frequent
rebuilding of the table data structure. The propensity and reac-
tion time “update step” also benefit slightly from a smaller
table because fewer reaction channels will be stored in the table
leading to fewer operations required to move reactions from
one bin to another. Figure 3 shows the elapsed time to execute
simulations for varying bin widths and numbers of bins.

As the problem size increases, the optimal number of bins
gets larger due to the increased rebuild cost. We have found
that the optimal number of bins scales roughly proportional to
the square root of the number of reaction channels. In practice,
choosing K = 20

√
M leads to good performance across a wide

range of problem sizes, though the optimal value may vary
across different system architectures. In the case where many
of the reaction channels have zero propensity, it is more effi-
cient to use the average number of nonzero propensity channels
instead of M in computing the number of bins. To facilitate
rebuilding the table, we record the number of steps since the
last rebuild. This allows for the bin width to be chosen adap-
tively based on the simulation step sizes used most recently.
This adaptive bin sizing strategy partially mitigates the prob-
lem of suboptimal bin widths that may arise due to chang-
ing propensity sums. Overall, the constant-complexity NRM
algorithm with the bin width determined by the propensity

FIG. 3. Simulation time for various bin widths and number of bins. In this ex-
ample, M = 107 and every propensity= 10−7 (the propensity sum equals one).
The dashed line corresponds to the theoretical optimal bin width W =

√
2 that

minimizes the total search depth. The solid line corresponds toW = 16, which
is the target bin width used in practice. The algorithm performs well over a
fairly wide range of bin widths and number of bins. As the problem size
increases, the optimal number of bins increases roughly proportional to

√
M .

sum and dynamic rebuilding strategy exhibits excellent effi-
ciency across a wide range of problem sizes as demonstrated in
Sec. V.

V. NUMERICAL EXPERIMENTS

In this section, we demonstrate the performance and scal-
ing of the constant-complexity NRM (“NRM (constant)”)
relative to other popular methods. Among the other methods
considered are the constant-complexity direct method (referred
to as “direct (constant)” here but sometimes labeled “SSA-
CR” in other work) of Slepoy et al.,10 the original NRM
(“NRM (binary)”) of Gibson and Bruck,9 and the NSM of
Elf and Ehrenberg34 (“NSM (binary)”). We also consider a
direct method variant that uses the NSM’s partitioning strategy
and that uses the composition-rejection algorithm to select the
subvolume (i.e., the PSRD’s subvolume selection procedure38)
and the direct method to select the event within the subvol-
ume (“direct (CR+DM)”) see discussion in Section III B).
The algorithms were implemented in C++, using code from
StochKit249 and Cain50 were possible. Pseudocode that out-
lines the constant-complexity NRM is given in Appendix A.
All timing experiments were conducted on a Macbook Pro
laptop with a 2.4 GHz Core i5 processor and 8 GB of memory.

A. Reaction generator test

Most exact SSA variants can be viewed as either a direct
method or NRM implementation with varying data structures
used to select the next reaction. The performance of the reac-
tion generator data structure is the primary determinant of
the overall algorithm performance. In this section, we test
the efficiency of several reaction generator data structures,
independent of the rest of the solver code, by simulating the
“arrivals” of a network of M Poisson processes. We note that
the NSM and other methods that partition on subvolumes are
different from the methods considered here in that information
about the spatial structure is built in to the algorithm. There-
fore, we only consider direct method and NRM variants in this

074108-7 K. R. Sanft and H. G. Othmer J. Chem. Phys. 143, 074108 (2015)

FIG. 4. Scaling on small problems. Elapsed time in seconds to generate the
reaction index and update the data structure 107 times for various reaction
generators. Each reaction channel has a unit rate propensity and a random
network in which 10 updates are required was generated. For models where
M < 100 or so, the original direct method with linear search performs best.
As the problem size increases, the direct method with a 3D search is optimal.
Not shown is the direct method with 2D search, which slightly outperforms
3D search when M < 5000. The constant-complexity NRM performance
exhibits some fluctuations because the implementation was not optimized for
small problems.

section. Additional methods, such as the NSM, are included in
Sec. V B.

As shown in Figure 4, methods utilizing simple data struc-
tures with low overhead perform best on small to moderate
sized problems. For extremely small problems, the original
direct method performs best, but as the problem size increases,
methods with better algorithmic complexity become advan-
tageous. The example in Figure 4 used a random network
model of unit-rate Poisson processes with a relatively high
degree of connectivity (10 updates required for each step;
note that the data structure updates were performed as if the
propensities were changing, even though they were always set
to unit rates). The original NRM, implemented with a binary
min-heap, would perform better relative to the others if fewer
updates were required at each step. The constant-complexity
NRM exhibits small timing fluctuations due to the method be-
ing tuned for much larger problems. In Figure 5, we see that the
constant-complexity direct method and constant-complexity

FIG. 5. Scaling on large problems. Under the same conditions as Figure 4
with larger problem sizes, the constant-complexity methods outperform the
others. Although the O(1) algorithms scale roughly constant across a wide
range of moderate problem sizes, as the problem size becomes large, the
increased memory demands lead to a slightly increasing scaling.

NRM method outperform the others on large problems, with
the constant NRM performing best. However, we see that the
O(1) scaling is not exactly constant across large problem sizes,
due to the effects of using progressively larger amounts of
memory. Running the same experiments on a different sys-
tem architecture could lead to differences in crossing points
between methods, but the overall trends should be similar.

B. 3D spatial model

Here, we compare the constant-complexity NRM to
several other methods on a model using a 3D geometry com-
prised of equal sized cubic subvolumes with periodic boundary
conditions. The reactions and parameters are34

EA

k1−→ EA + A,

EB

k1−→ EB + B,

EA + B
ka−−⇀↽−−
kd

EAB,

EAB + B
ka−−⇀↽−−
kd

EAB2,

EB + A
ka−−⇀↽−−
kd

EBA,

EBA + A
ka−−⇀↽−−
kd

EBA2,

A
k4−→ ∅,

B
k4−→ ∅.

k1 = 150 s−1, ka = 46.2 (µM)−1 s−1,

kd = 3.82 s−1, k4 = 6 s−1,

D = 10−8 cm2 s−1,

[EA](0) = [EB](0) = 12.3 nM.

The diffusion constant D is equal for all species. The
rate constant for all diffusive transfer events is therefore D/l2,
where l is the subvolume side length.34 We note that the first
two reaction channels are a common motif used to model
processes such as protein production for an activated gene or,
in this case, enzyme-catalyzed product formation in the pres-
ence of excess substrate, where the rate constant k1 implicitly
accounts for the effectively constant substrate population.

It is possible to scale up the number of transition (reaction
and diffusion) channels by changing the system volume or
changing the subvolume side length. First, we consider a large
volume, with domain side length 12 µm and subvolume side
lengths ranging from 0.6 µm to 0.2 µm, corresponding to
a range of 8000–216 000 subvolumes, respectively (see Fig.
N1C in the supplementary material of Elf and Ehrenberg34).
As shown in Figure 6, the constant-complexity NRM performs
well for very large problems arising from fine mesh discretiza-
tions.

We next consider the same 3D model with system volume
V = 63 µm3. As shown in Figure 7, the constant-complexity
NRM still achieves a benefit over the other methods for large
problems, albeit a smaller improvement. In this example, there
are approximately 28 000 molecules in the system after the
initial transient. At the finest resolution in Figure 7, there

074108-8 K. R. Sanft and H. G. Othmer J. Chem. Phys. 143, 074108 (2015)

FIG. 6. 3D spatial model with system volume V = 123 µm3. Plotted is
the elapsed time in seconds to execute 108 simulation steps. Below M
= 480 000 channels, the NSM is more efficient than the constant-complexity
methods. The direct method variant that partitions on subvolumes and
uses the composition-rejection algorithm to select the subvolumes (“direct
(CR+DM)”) outperforms the other methods below about M = 1 620 000
channels. At the largest problem size considered here, the constant-
complexity NRM is about 20% faster than the other methods.

are 216 000 subvolumes, of which most contain no mole-
cules. Therefore, the majority of the reaction channels are
effectively switched off, or inactive, with propensity zero. In
this example at the finest resolution, typically fewer than 2
× 105 of the nearly 1.3 × 107 channels have nonzero propen-
sities. The constant-complexity (composition-rejection) direct
method and the NSM exclude zero propensity reactions from
their reaction selection data structures, effectively reducing the
problem size to the number of nonzero channels. The constant-
complexity NRM does not benefit much from having many
zero propensity channels.

Changing the spatial discretization influences the rates of
zeroth order and bimolecular reactions within each subvol-
ume. The former scales proportional to the volume while the
latter scales inversely with the volume. Furthermore, using a
finer discretization increases the frequency of diffusion events,
which means that more simulation steps are required to reach

FIG. 7. 3D spatial model with system volume V = 63 µm3. At this smaller
system volume, when the mesh is highly refined, most subvolumes are
empty. Hence, many of the reaction channels have zero propensity. The
constant-complexity direct method and the NSM exclude all events with
propensity zero from their data structures. The constant-complexity NRM
uses the number of active (nonzero propensity) reactions to determine the
number of bins K to use, but this algorithm does not benefit much from
having many zero-propensity reaction channels.

a fixed simulation end time. Changing the relative frequencies
of different reaction channels influences simulation perfor-
mance, though the effect is typically small for all methods.
In the NSM, for example, increasing the relative frequency of
diffusion events may improve performance slightly if there are
fewer diffusion channels than reaction channels for each sub-
volume because the average “search depth” will be weighted
more heavily toward the smaller diffusion event search. In
any method of solution of the RDME, choosing the optimal
compartment size is important. See, for example, Kang et al.31

and the references therein for details on how to choose the
subvolume size in practice.

VI. DISCUSSION AND CONCLUSIONS

We have shown that it is possible to formulate a constant-
complexity version of the NRM that is efficient for exact simu-
lation of large weakly coupled discrete stochastic models by
using event time binning. We optimized the performance by
choosing the bin width based on the average propensity sum
(and, therefore, step size) of the simulation. The examples in
Section V demonstrate the advantages and some of the disad-
vantages of the constant-complexity NRM. The algorithm is
not well suited for small models due to the overhead of the
data structures. However, for models with a large number of
active channels and time scales that do not vary too rapidly, the
constant-complexity NRM is often more efficient than other
popular methods.

For models with many inactive (zero propensity) channels,
the performance of some SSA variants depends on the number
of active channels rather than the total number of channels.
The original NSM scales proportional to the logarithm of
the number of subvolumes containing active channels. The
constant-complexity direct and NRM methods scale O(1) in
algorithmic complexity, but their performance does depend
on the amount of memory used. Both constant-complexity
methods have memory requirements for their reaction gener-
ator data structures that scale roughly proportional to the num-
ber of active channels. However, the table rebuild step in the
constant-complexity NRM method scales as O(M). This typi-
cally constitutes a small fraction of the total computational cost
(e.g., <3% for the largest problem in Figure 4). However, in
the case of extremely large M and an extremely small number
of active channels, the relative cost of rebuilding the table in
the constant-complexity NRM becomes more significant. In an
extreme case, other methods such as the constant-complexity
direct method, NSM, and original NRM may be more efficient.

It may be possible to modify the constant-complexity
NRM to make it less sensitive to changes in the average simu-
lation step size and number of active channels. The current
dynamic table rebuilding strategy handles this well in many
cases. However, in the case of extreme changes, one could
implement a “trigger” that initiates a table rebuild if changes in
the time scale or number of active channels exceed a threshold.
One could also envision utilizing step size data from previous
realizations to guide the binning strategy, possibly even
utilizing unequal bin sizes, to further improve performance.
The underlying data structure presented here is amenable

074108-9 K. R. Sanft and H. G. Othmer J. Chem. Phys. 143, 074108 (2015)

to use in other simulation methods that utilize a priority
queue.

Performance comparisons are inherently implementation,
model, and system architecture dependent. While we have at-
tempted to present a fair comparison and the general algorithm
analysis is universal, the exact simulation elapsed times may
vary in different applications. The constant-complexity NRM
presented here is an efficient method in many situations but
inappropriate in others. As modelers develop larger and more
complex models and as spatial models become more common,
this algorithm provides a valuable exact option among the
large family of exact and approximate stochastic simulation
algorithms.

ACKNOWLEDGMENTS

Research reported in this publication was supported by
the National Institute of General Medical Sciences of the
National Institutes of Health under Award No. R01GM029123
and by the National Science Foundation under Award No.
DMS-1311974. The content is solely the responsibility of the
authors and does not necessarily represent the official views
of the National Institutes of Health or the National Science
Foundation.

APPENDIX A: ALGORITHM PSEUDOCODE

The following pseudocode is representative of an imple-
mentation of the constant-complexity method with optimal
binning.

Model: propensities, ν, dependencyGraph
DataStructure: table, lowerBound, binWidth, bins

procedure NRM(x0, tFinal)
t ← 0
x← x0
buildDataStructure()
while t < tFinal do

event← selectReaction()
t ← event.time
x← x+ν(event.index)
updateDataStructure(event.index)
% store output as desired

end while
end procedure

procedure R
% return min event time and index
% first, locate bin index of smallest event
while table(minBin).isEmpty() do

minBin← minBin+1
if minBin > bins then

buildDataStructure()
end if

end while
% smallest event time is in table(minBin)
% find and return smallest event time and index
return min(table(minBin))

end procedure

procedure DS
lower Bound← t

% default 20*sqrt(ACTIVE channels)
bins← 20∗sqrt(propensities.size)
% default 16*step size
% in practice, an approximation to
% sum(propensities) is used
binWidth← 16/sum(propensities)
for i = 1 : propensities.size do

rate← propensities(i)
r ← exponential(rate)
eventTime(i)← t +r

table.insert(i, eventTime(i))
end for
minBin← 0

end procedure

procedure DS(index)
for i in dependencyGraph(index) do

oldTime← eventTime(index)
oldBin← ComputeBinIndex(oldTime)
rate← propensities(i)
r ← exponential(rate)
eventTime(i)← t +r

bin← ComputeBinIndex(eventTime(i))
if bin, oldBin then

table(oldBin).remove(i)
table.insert(i, eventTime(i))

end if
end for

end procedure
procedure .(i, time)

bin← computeBinIndex(time)
% insert into array
table(bin).insert(i, time)

end procedure

procedure CBI(time)
offset← time− lowerBound
range← lowerBound∗binWidth∗bins
bin← integer(offset/range∗bins)
return bin

end procedure

APPENDIX B: HASH TABLE OVERVIEW

A hash table is a data structure in which values are mapped
to bins using a hash function. Since there are generally more
possible values than total bins, collisions, where multiple
values are mapped to the same bin, are possible. Chaining (or
“closed addressing”) is a collision resolution strategy where
multiple values that map to the same bin are stored in a
linked list. A well-designed hash table typically has amortized
constant time insertion and retrieval. Interested readers should
consult an introductory computer science data structures text-
book. An important difference between our data structure and
a hash table implementation is that hash tables are typically
designed to have a particular load factor. The load factor is
defined as the number of elements stored in the table divided by
the number of bins. For a hash table with a good hash function,
a low load factor ensures that each bin will contain a small
number of elements, on average. However, we are effectively
using the reaction event times as a hash function. Whereas a
good hash function distributes elements uniformly amongst the

074108-10 K. R. Sanft and H. G. Othmer J. Chem. Phys. 143, 074108 (2015)

bins, the reaction times are not uniformly distributed, they are
exponentially distributed. Therefore, the load factor is not a
good measure of performance of our table data structure.

1D. McQuarrie, J. Appl. Probab. 4, 413 (1967).
2D. Gillespie, Physica A 188, 404 (1992).
3T. Jahnke and W. Huisinga, J. Math. Biol. 54, 1 (2007).
4C. H. Lee and P. Kim, J. Math. Chem. 50, 1550 (2012).
5C. Gadgil, C. H. Lee, and H. G. Othmer, Bull. Math. Biol. 67, 901
(2005).

6D. T. Gillespie, J. Comput. Phys. 22, 403 (1976).
7D. Gillespie, J. Phys. Chem. 81, 2340 (1977).
8D. T. Gillespie, J. Chem. Phys. 131, 164109 (2009).
9M. Gibson and J. Bruck, J. Phys. Chem. A 104, 1876 (2000).

10A. Slepoy, A. P. Thompson, and S. J. Plimpton, J. Chem. Phys. 128, 205101
(2008).

11W. E, D. Liu, and E. Vanden-Eijnden, J. Chem. Phys. 123, 194107
(2005).

12S. Mauch and M. Stalzer, IEEE/ACM Trans. Comput. Biol. Bioinf. 8, 27
(2011).

13B. Bayati, H. Owhadi, and P. Koumoutsakos, J. Chem. Phys. 133, 244117
(2010).

14R. Ramaswamy, N. González-Segredo, and I. F. Sbalzarini, J. Chem. Phys.
130, 244104 (2009).

15R. Ramaswamy and I. F. Sbalzarini, J. Chem. Phys. 132, 044102 (2010).
16C. A. Yates and G. Klingbeil, J. Chem. Phys. 138, 094103 (2013).
17D. F. Anderson, J. Chem. Phys. 127, 214107 (2007).
18J. Hu, H.-W. Kang, and H. G. Othmer, Bull. Math. Biol. 76, 854 (2014).
19L. Devroye, Non-Uniform Random Variate Generation (Springer-Verlag,

New York, 1986).
20D. Gillespie, J. Chem. Phys. 115, 1716 (2001).
21Y. Cao, D. T. Gillespie, and L. R. Petzold, J. Chem. Phys. 122, 014116

(2005).
22M. Griffith, T. Courtney, J. Peccoud, and W. Sanders, Bioinformatics 22,

2782 (2006).
23E. L. Haseltine and J. B. Rawlings, J. Chem. Phys. 117, 6959 (2002).
24H. Salis and Y. Kaznessis, J. Chem. Phys. 122, 054103 (2005).
25H. Salis, V. Sotiropoulos, and Y. Kaznessis, BMC Bioinformatics 7, 93

(2006).
26Y. Pu, L. T. Watson, and Y. Cao, J. Chem. Phys. 134, 054105 (2011).
27M. Rathinam and H. El-Samad, J. Comput. Phys. 224, 897 (2007).
28L. Ferm, P. Lötstedt, and A. Hellander, J. Sci. Comput. 34, 127 (2008).
29M. Rathinam, L. R. Petzold, Y. Cao, and D. T. Gillespie, J. Chem. Phys. 119,

12784 (2003).

30C. V. Rao and A. P. Arkin, J. Chem. Phys. 118, 4999 (2003).
31H. W. Kang, L. Zheng, and H. G. Othmer, J. Math. Biol. 65, 1017 (2012).
32C. Gardiner, K. McNeil, D. Walls, and I. Matheson, J. Stat. Phys. 14, 307

(1976).
33D. T. Gillespie, A. Hellander, and L. R. Petzold, J. Chem. Phys. 138, 170901

(2013).
34J. Elf and M. Ehrenberg, Syst. Biol. 1, 230 (2004).
35I. Hepburn, W. Chen, S. Wils, and E. D. Schutter, BMC Syst. Biol. 6, 36

(2012).
36J. Hattne, D. Fange, and J. Elf, Bioinformatics 21, 2923 (2005).
37B. Drawert, S. Engblom, and A. Hellander, BMC Syst. Biol. 6, 76 (2012).
38R. Ramaswamy and I. F. Sbalzarini, J. Chem. Phys. 135, 244103 (2011).
39B. Drawert, M. J. Lawson, L. Petzold, and M. Khammash, J. Chem. Phys.

132, 074101 (2010).
40There is also a cost for the initial building of the data structure. This is

at least O(M) for all methods as the propensity function for all reaction
channels must be evaluated. However, the cost of building the data structure
is relatively small for all algorithms for any simulation with a sufficiently
large number of steps. There is also a computational cost to generate the
random numbers. Generating uniform or exponential random numbers are
O(1) operations. The cost of generating random numbers can comprise
a significant portion of the computational costs for simulating small
models, but these O(1) costs become insignificant for sufficiently large
models where search and data structure update costs dominate. Sparse data
structures are used for the stoichiometry matrix and reaction (propensity)
dependency graph ensuring operations using these data structures have
costs proportional to the number of nonzero entries.

41Y. Cao, H. Li, and L. Petzold, J. Chem. Phys. 121, 4059 (2004).
42J. M. McCollum, G. D. Peterson, C. D. Cox, M. L. Simpson, and N. F.

Samatova, Comput. Biol. Chem. 30, 39 (2006).
43R. Albert, J. Cell Sci. 118, 4947 (2005).
44R. Guimera and L. A. N. Amaral, Nature 433, 895 (2005).
45J. R. Wiśniewski, M. Y. Hein, J. Cox, and M. Mann, Mol. Cell. Proteomics

13, 3497 (2014).
46N. A. Kulak, G. Pichler, I. Paron, N. Nagaraj, and M. Mann, Nat. Methods

11, 319 (2014).
47A. Matzavinos and H. G. Othmer, J. Theor. Biol. 249, 723 (2007).
48C. F. Lopez, J. Muhlich, J. A. Bachman, and P. K. Sorger, Mol. Syst. Biol.

9, 646 (2013).
49K. R. Sanft, S. Wu, M. Roh, J. Fu, R. K. Lim, and L. R. Petzold, Bioinfor-

matics 27, 2457 (2011).
50S. Mauch, Cain: Stochastic Simulations for Chemical Kinetics, 2011,

http://cain.sourceforge.net/.
51Y. Cao, D. T. Gillespie, and L. R. Petzold, J. Chem. Phys. 126, 224101

(2007).

http://dx.doi.org/10.2307/3212214
http://dx.doi.org/10.1016/0378-4371(92)90283-V
http://dx.doi.org/10.1007/s00285-006-0034-x
http://dx.doi.org/10.1007/s10910-012-9988-7
http://dx.doi.org/10.1016/j.bulm.2004.09.009
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1063/1.3253798
http://dx.doi.org/10.1021/jp993732q
http://dx.doi.org/10.1063/1.2919546
http://dx.doi.org/10.1063/1.2109987
http://dx.doi.org/10.1109/TCBB.2009.47
http://dx.doi.org/10.1063/1.3518419
http://dx.doi.org/10.1063/1.3154624
http://dx.doi.org/10.1063/1.3297948
http://dx.doi.org/10.1063/1.4792207
http://dx.doi.org/10.1063/1.2799998
http://dx.doi.org/10.1007/s11538-013-9849-y
http://dx.doi.org/10.1063/1.1378322
http://dx.doi.org/10.1063/1.1824902
http://dx.doi.org/10.1093/bioinformatics/btl465
http://dx.doi.org/10.1063/1.1505860
http://dx.doi.org/10.1063/1.1835951
http://dx.doi.org/10.1186/1471-2105-7-93
http://dx.doi.org/10.1063/1.3548838
http://dx.doi.org/10.1016/j.jcp.2006.10.034
http://dx.doi.org/10.1007/s10915-007-9179-z
http://dx.doi.org/10.1063/1.1627296
http://dx.doi.org/10.1063/1.1545446
http://dx.doi.org/10.1007/s00285-011-0469-6
http://dx.doi.org/10.1007/BF01030197
http://dx.doi.org/10.1063/1.4801941
http://dx.doi.org/10.1049/sb:20045021
http://dx.doi.org/10.1186/1752-0509-6-36
http://dx.doi.org/10.1093/bioinformatics/bti431
http://dx.doi.org/10.1186/1752-0509-6-76
http://dx.doi.org/10.1063/1.3666988
http://dx.doi.org/10.1063/1.3310809
http://dx.doi.org/10.1063/1.1778376
http://dx.doi.org/10.1016/j.compbiolchem.2005.10.007
http://dx.doi.org/10.1242/jcs.02714
http://dx.doi.org/10.1038/nature03288
http://dx.doi.org/10.1074/mcp.M113.037309
http://dx.doi.org/10.1038/nmeth.2834
http://dx.doi.org/10.1016/j.jtbi.2007.08.018
http://dx.doi.org/10.1038/msb.2013.1
http://dx.doi.org/10.1093/bioinformatics/btr401
http://dx.doi.org/10.1093/bioinformatics/btr401
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://cain.sourceforge.net/
http://dx.doi.org/10.1063/1.2745299

