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Purpose: To develop an automatic segmentation algorithm integrating imaging information from
computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging
(MRI) to delineate target volume in head and neck cancer radiotherapy.
Methods: Eleven patients with unresectable disease at the tonsil or base of tongue who underwent
MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were
recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first regis-
tered to the planning CT using deformable and rigid registration, respectively, to resample the PET
and magnetic resonance (MR) images to the planning CT space. A binary mask was manually defined
to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary
mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was
based on a multichannel Gaussian mixture model and solved using an expectation–maximization
algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel
autosegmentation with an autosegmentation method using only PET images. The physician-defined
gross tumor volume (GTV) was used as the “ground truth” for quantitative evaluation.
Results: The median multichannel segmented GTV of the primary tumor was 15.7 cm3 (range,
6.6–44.3 cm3), while the PET segmented GTV was 10.2 cm3 (range, 2.8–45.1 cm3). The median
physician-defined GTV was 22.1 cm3 (range, 4.2–38.4 cm3). The median difference between the
multichannel segmented and physician-defined GTVs was −10.7%, not showing a statistically
significant difference (p-value = 0.43). However, the median difference between the PET segmented
and physician-defined GTVs was −19.2%, showing a statistically significant difference (p-value
= 0.0037). The median Dice similarity coefficient between the multichannel segmented and
physician-defined GTVs was 0.75 (range, 0.55–0.84), and the median sensitivity and positive predic-
tive value between them were 0.76 and 0.81, respectively.
Conclusions: The authors developed an automated multimodality segmentation algorithm for tu-
mor volume delineation and validated this algorithm for head and neck cancer radiotherapy. The
multichannel segmented GTV agreed well with the physician-defined GTV. The authors expect
that their algorithm will improve the accuracy and consistency in target definition for radiotherapy.
C 2015 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4928485]
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1. INTRODUCTION

Defining the true target volume in an accurate and
consistent way remains a major challenge in radiotherapy,1–3

particularly in head and neck, for which variability in
interobserver contouring of the target volume definition
can be substantial.4–8 Incorrect identification of the target
volume during treatment planning can lead to marginal
misses9,10 that ultimately compromise local disease control,

the main goal of radiotherapy. Moreover, variability among
physicians in contouring the target volume makes evaluating
the effectiveness of new treatments challenging and inter-
institutional comparisons challenging.

In the absence of pathological information, the best
estimate of the extent of disease is derived from imaging
data. Fortunately, nowadays, we often have multiple imaging
modalities available to incorporate into radiotherapy treatment
planning. Computed tomography (CT), which provides
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F. 1. A diagram highlighting that different imaging modalities provide
different types of information about the tumor volume and surrounding
structures.

excellent anatomical information, has traditionally been the
imaging modality of choice for contouring the tumor volume
and organs at risk. Other imaging modalities have also shown
promise in this area, particularly in reducing interobserver
variability in contouring.5,6,11–13 For example, Riegel et al.6

showed that, compared with CT alone, positron emission
tomography (PET)/CT helped physicians define gross disease
more consistently while planning head and neck and lung
radiotherapy. Geets et al.11 showed that magnetic resonance
imaging (MRI) could identify the boundaries between
different tissues in the head and neck. However, using each
of these modalities individually may provide an incomplete
picture of the disease extent and an inaccurate definition of the
target volume. Theoretically, combining the superb resolution
and soft tissue contrast of magnetic resonance (MR) image,
the anatomical information of CT image, and the strong
physiological signal of PET image would provide a robust
estimation of the disease extent and reduce the interobserver
variability in defining the target volume (Fig. 1).

To help physicians more accurately define tumor volume,
many researchers have worked to develop automatic segmen-
tation techniques based on different imaging modalities.14–18

For a given imaging modality, various image features, such
as gradients or textures, have been used for classification
to achieve automatic segmentation. However, most of these
approaches have not exploited the potential capabilities of
multiple modalities concurrently and thus possibly miss
important information from the segmentation (e.g., lack of
anatomical information on PET). Limited work19–22 has been
done in automating the segmentation on multiple modalities
simultaneously.

In this study, we developed an automatic segmentation
algorithm that integrates MRI, CT, and PET information
to define the target volume for head and neck cancer
radiotherapy. While in previous work,21,22 either PET/CT or
CT/MR has been used for multimodality segmentation, it is
the first time to combine all three modalities to segment head
and neck targets. On the other hand, previous multimodality
segmentation using active contours22 or graph-cut approach21

by simply combining the objective functions from each

modality into one might limit the expansion of including
more modalities. Therefore, we were motivated to develop
a multimodality segmentation algorithm, which formulates
multichannel data into a Gaussian mixture model15 for
segmentation. Our algorithm is essentially a classification
approach based on the expectation–maximization (EM)
algorithm.23 The algorithm also takes advantage of our
experience with these modalities and knowledge about how
they complement each other. We validated our algorithm on
a cohort of head and neck cancer patients who received
definitive radiotherapy at our institution. These patients’
physician-contoured gross tumor volumes (GTVs) served as
the ground truth for validating our approach.

2. METHODS AND MATERIALS
2.A. Patient data

Twenty-two patients who had primary squamous cell
carcinomas in the base of tongue (BOT) or tonsil were
included in this study. These patients underwent both MRI
and PET/CT for diagnosis and staging within 2 months prior
to the start of chemoradiotherapy or radiotherapy alone. The
primary tumor stages of these patients ranged from T1 to
T4. This study has been approved by the Institutional Review
Board of MD Anderson Cancer Center.

Treatment planning CT images had an in-slice resolution
of 1× 1 mm and slice spacing of 2.5 mm. For PET/CT,
the CT images had a resolution of 1×1×3.3 mm, whereas
the PET images had a resolution of 5.5×5.5×3.3 mm. We
used T1-weighted MRI with contrast for this study because
this protocol provides better tumor visibility than other MRI
protocols. The MR images had a high in-slice resolution of
0.6×0.6 mm and a slice spacing of 6.5 mm.

2.B. Multimodality segmentation framework

The overall framework of our proposed multimodality
segmentation approach, which is the implementation of our
vision described previously,24 is illustrated in Fig. 2. Briefly, a
deformable image registration between the diagnostic CT and
planning CT brings the PET image to the simulation CT space;
a rigid registration between the diagnostic MRI and planning
CT brings the MR image to the simulation CT space; and
finally, a multichannel segmentation is applied to the simula-
tion CT, PET, and MR images to segment the tumor volume.
Although image registration was included, the focus of this pa-
per was to develop the multichannel segmentation algorithm.

2.B.1. Image registration

Coregistration between PET, CT, and MR images is the
prerequisite of the multichannel segmentation. To perform
image registration, we used the Velocity AI software program
(Velocity Medical Systems, Atlanta, GA), whose registration
accuracy has been validated previously.25 The deformable
registration in Velocity AI is accomplished by a modified
B-spline registration algorithm,26 which was used to register
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F. 2. Overall framework of our multimodality segmentation algorithm for
target volume delineation.

the CT image of the PET/CT scan to the planning CT image.
The resulting deformation vector field was then used to deform
the PET image to the planning CT space. We performed a
rigid registration between the MR and planning CT images in
Velocity AI because the deformable registration between the
diagnostic MR and simulation CT images performed inferior
to the rigid registration and was not robust or accurate, which
was possibly due to the large slice spacing of MR images
resulting to large unreasonable distortion. In performing the
MR-CT registration, we investigated three MRI sequences
consistently available for all patients for registration: T1-
weighted without contrast, T1-weighted with contrast, and
T2-weighted. The T1-weighted MRI without contrast was
found to give the best registration. The rigid registration
in Velocity used the Mattes mutual information metric27 to
correct a transformation of 6 degrees of freedom that included
rotation and translation. This transformation was then used to
resample the T1-weighted MRI with contrast to the planning
CT space. Both the resampled PET and MR images had the
same resolution and geometry as the planning CT image.

We quantified the registration accuracy using a registration
score (RS) ranging from 1 to 5. Contours of bony anatomy
and organs at risk in the vicinity of the tumor were overlaid
on the registered image for evaluation. We observed that the
deformable registration of PET/CT was less than 2 mm for
all cases; therefore, we considered scoring the registration of
planning CT and MR images only. We measured the distance
of the structures (e.g., the mandible, parotids, and cord) as
seen on the registered MRI to the contours from planning CT.
The registration score was assigned to 1 for a distance less than
2 mm, 2 for a distance of 2–4 mm, 3 for a distance of 4–6 mm,
4 for a distance of 6–8 mm, and 5 for a distance greater than
8 mm. In addition, we estimated the maximal diameter of
the GTV manually delineated by the radiation oncologist and
compared it with that reported by the diagnostic radiologist.
The ratio of these two diameters, termed diameter ratio (DR),
was used to quantify the accuracy of the GTV manually
delineated by the radiation oncologist as compared with that
independently measured by the radiologist. A dataset quality
index (QI) was then defined as

QI=


DR2×RS. (1)

The dataset QI combines the evaluation of the registration
and contouring uncertainties into a single metric. The square

of DR is to bring the DR evaluation into a similar scale
as the RS evaluation. We used dataset QI to exclude cases
with inaccuracy mostly resulting from inaccurate registration
and cases of inaccurate manual contours with inconsistency
between radiation oncologists and radiologists.

2.B.2. Multichannel segmentation

The multichannel segmentation algorithm described herein
is an extension of our previous work on single-channel
automatic segmentation for PET (Ref. 15) and is based on
the Gaussian mixture modeling of the tumor region from
multichannel data. Formally, let xi =

�
xPET
i ,xCT

i ,xMR
i

�T denote
the vector of the observations at voxel location i, with entries
of the intensity values of PET, CT, and MR images at location
i, respectively, and let i = 1, 2,. . ., N with N as the total number
of voxels in the regions under consideration, assuming that a
number of K classes exist and each class follows a Gaussian
distribution. The probability of voxel location i belonging to
class k ∈ {1, 2,. . ., K} can be characterized by the probability
density function (PDF) as

fk (xi |Θk)= 1

(2π)d/2|Σk |1/2
e−[1/2(xi−µk)TΣ−1

k
(xi−µk)], (2)

where d is the dimension of the observation vector (d = 3 in
this example) and Θk = {µk,Σk} denotes the parameters for
class k, with µk as the mean and Σk as the covariance matrix
for the Gaussian distribution. Thus, the PDF for xi can be
written as a Gaussian mixture model as

f (xi |Φ)=
K
k=1

λk fk (xi |Θk), (3)

where λk is the mixing proportion satisfying 0 ≤ λk ≤ 1
and
K

k=1λk = 1, and Φ= {λ1,λ2,. . .,λK ;Θ1,Θ2,. . .,ΘK} is the
collection of all parameters.

Essentially, the solution to the segmentation problem is to
estimate the parameters in the Gaussian mixture model. This
is a typical parameter estimation problem that can be solved
using the EM algorithm.23,28 Briefly, the EM algorithm iterates
between an expectation step (E-step) and a maximization step
(M-step). In E-step, the algorithm computes the conditional
probability of the segmentation for each voxel based on the
estimated parameters in the last iteration and observation.
Formally, let a random variable Λi be a binary indicator
vector for voxel i of dimension K , with only one component
being 1 and the others being 0, and let ek denote a K-
dimensional binary vector with the kth component being 1.
Thus, P(Λi = ek) denotes the probability of voxel i belonging
to class k. The E-step computes the conditional probability
for k = 1, 2,. . ., K and i = 1, 2,. . ., N as

f (n)
(
Λi = ek |xi,Φ

(n))
=

λ
(n)
k

���Σ
(n)
k

���
−1/2

e
−

1/2
(
xi−µ

(n)
k

)T
Σ−1(n)
k

(
xi−µ

(n)
k

)

K
l=1

λ
(n)
l

���Σ
(n)
l

���
−1/2

e
−

1/2
(
xi−µ

(n)
l

)T
Σ−1(n)
l

(
xi−µ

(n)
l

) , (4)
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where the superscript (n) is the number of iterations. The
E-step actually performs an average over the complete data
{Λi,xi : i = 1,2,. . .,N}, conditioned upon the incomplete data
{xi : i = 1,2,. . .,N}, to produce a log-likelihood function. In
the M-step, the EM algorithm estimates the parameters Φ
by maximizing the log-likelihood function and produces the
following parameter update functions:

λ
(n+1)
k
=

1
N

N
i=1

f (n)
(
Λi = ek |xi,Φ

(n)) , (5)

µ
(n+1)
k
=

N
i=1

xi f (n)
�
Λi = ek |xi,Φ

(n)�

N
i=1

f (n)
�
Λi = ek |xi,Φ(n)�

, (6)

Σ
(n+1)
k
=

N
i=1

(
xi−µ(n+1)

k

) (
xi−µ(n+1)

k

)T
f (n)

�
Λi = ek |xi,Φ

(n)�

N
i=1

f (n)
�
Λi = ek |xi,Φ(n)�

.

(7)

The EM algorithm continues to iterate between an E-step
and a M-step until convergence or a maximum number of iter-
ations is reached. The classification of voxel i is characterized
by the converged conditional probability f (Λi = ek |xi,Φ).
Equation (4) also implies that

K
k=1 f (Λi = ek |xi,Φ)= 1.

2.B.3. Markov random fields (MRFs)

In the multichannel segmentation approach described
above, the probability of segmentation at any given voxel
is assumed to be independent of the segmentation of the
neighboring or adjacent voxels. However, in a practical
scenario, this assumption is generally not true and there
is underlying spatial homogeneity. To account for this
spatial homogeneity, we introduced a MRF model into
our segmentation framework.23,29 In the MRF model, the
conditional dependence of a given voxel is restricted to
the voxels in a local neighborhood. Let Λ = {Λi : i = 1,
2,. . .,N}. The MRF model can be characterized by a Gibbs
distribution30,31 with a probability mass function forΛ defined
as

f (Λ)= 1
Z

e−αE(Λ), (8)

where Z is a normalization factor satisfying Z =

Λe−αE(Λ),

and α is a preset constant. E (Λ) is an energy function that
decreases when neighboring voxels are assigned to the same
class. We use the same model as that used in previous
studies,30,31 i.e.,

E (Λ)= γ
N
i=1


j ∈Ni

�
1−2ΛT

i Λ j

�
, (9)

where γ is a constant that takes values from interval (0, 1),
and Ni denotes the set of the neighbors of voxel i. We use a
26-neighbor system for our algorithm.

The MRF model enables us to incorporate a model
of the spatial homogeneity of the segmentation into our
estimation framework. However, direct MRF estimation is
difficult. One common alternative approach that has low
computational complexity is mean field approximation.32,33

Instead of using the conditional probability in Eq. (4) to
update the parameters in Eqs. (5)–(7), we used an estimated
mean value of the conditional probability at iteration n,
denoted by f̄ (n)(Λi = ek |xi,Φ

(n)), to update the parameters.
The mean values in a vector format, f̄ (n)(Λi |xi,Φ

(n))
=
�

f̄ (n)(Λi = ek |xi,Φ
(n)) : k = 1,2,. . .,K

�T , were calculated by
an embedded iteration process, which was initialized with
the voxelwise independent estimate using Eq. (4) and then
iterated the following relation until convergence:

f̄ (n)
(
Λi |xi,Φ

(n))
←

Λi

Λi

Z
e

ln(f (n)(Λi |xi,Φ(n)))−αγ j∈Ni(1−2ΛT

i
f̄ (n)(Λi |xi,Φ(n)))

(10)

where Ni is the collection of neighboring voxels. The mean
values satisfy

K
k=1 f̄ (n)(Λi = ek |xi,Φ

(n)) = 1. This MRF
approximation is computationally efficient and enforces the
current voxel under consideration to be consistent with its
neighboring voxels in terms of the classification, thus account-
ing for the spatial homogeneity in the iterative segmentation
estimation. In Eq. (10), the parameter, αγ, controls the level
of spatial homogeneity. It is set to 0.1 based on experience.

2.B.4. Implementation remarks

Our proposed multichannel segmentation algorithm for
PET, CT, and MR images was briefly summarized in Fig. 3.
Below are the implementation details of this algorithm.

2.B.4.a. Preprocessing. To make our segmentation algo-
rithm robust and efficient, we restricted the algorithm to run
in a small rectangular region that encompassed the primary
target and adjacent areas with moderate to high FDG avidity.

2.B.4.b. Initialization. We relied on our prior knowledge
of the mixture model-based segmentation from PET images15

and an analysis of joint image intensity histograms from
several patients for optimal algorithm initialization. First, we
performed a two-channel segmentation of the PET and CT
images. The class means were initialized by examining the
areas of high data concentration on joint PET-CT histograms,
as shown in Fig. 4(a). We initialized 15 classes for the
algorithm because we found that the segmentation result was
not sensitive to the assigned class number when a sufficient
number of classes were used. In addition, we assumed that
the PET image had a threshold standardized uptake value
(SUV) intensity that separated the tumor from background. On
several image intensity histograms of SUVs, we consistently
identified a point at which the second derivative of the PET
image intensity histogram converged at zero at higher SUVs,
as shown in the embedded plot in Fig. 4(b). We assumed that
this was the point of transition (T2) on the histogram, where
the numerous background voxel intensities end and the higher
SUV tumor intensities begin. The algorithm automatically
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F. 3. Summary of our PET/CT/MR multimodality segmentation algorithm.

identified the T2 point, as shown in Fig. 4(b). This two-
channel segmentation was run for five iterations to obtain
an initial estimate of the class means. Next, the mean and
standard deviation (SD) of the MR image intensities for the
15 classes from the first step were calculated. Each of the
15 classes was then further split into one or two additional
classes by adding and/or subtracting one SD from the mean
MR intensity in each class. We chose to further separate
classes on the MR image because it has the richest soft tissue
details of the three modalities. This process typically resulted
in a total of 32 classes as input to the 3-channel run of the
algorithm.

2.B.4.c. Stopping criteria. The algorithm was stopped if
(1) the difference of conditional probability from the last
iteration was less than a threshold value; (2) the sum of
difference of the mixing proportion, mean, and variance from
the last iteration was less than a threshold value; or (3) a
maximum number of iterations was reached. In most cases,

we used the first criterion, and the threshold value was set
to 0.3% of its value at first iteration. This criterion shortened
the time necessary to run the algorithm, as the change in
classification beyond the stopping point was not significant.
The maximum number of iterations was set to 180, which
was enough for the algorithm to converge in most cases.

2.B.4.d. Postprocessing. The tumor classes were deter-
mined automatically and combined together to generate the
GTV in three steps. First, classes with mean PET values
greater than the computed histogram threshold [the T2 point
in Fig. 4(b)] were included if those classes had MRI and
CT means within two SDs of their original mean and SD
estimates. These original estimates were made by selecting the
image intensities in the MR and CT images that corresponded
to 50% of the maximum SUV threshold on PET. The selected
tumor classes were combined to one class and the means and
SDs of the MR and CT images for this class were calculated
for the next two steps. Second, classes with a PET SUV greater
than 4 were included if the corresponding CT and MRI means
were within two SDs of the updated mean estimates. Third,
classes with a PET SUV mean of as low as 3.5 were included
if the corresponding CT and MRI means were within one SD
of the updated mean estimates. After determining the tumor
volume, we performed thresholding to remove regions with
mean SUVs of less than 3.3 and morphological operations to
remove small areas and smooth the boundary.

2.C. Quantitative evaluation

We quantitatively evaluated the accuracy of the resulting
multichannel autosegmented GTV (GTVmc) and compared
it with the autosegmented GTV using only PET images
(GTVpet).15 The physician-defined primary GTV (GTVman)
was used as the ground truth. We computed the volume
difference between the GTVmc and GTVman (VDmc) and
that between the GTVpet and GTVman (VDpet),

VDx =
GTVx−GTVman

GTVman
×100, (11)

where x represents mc or pet. The difference between the
manual and automatic segmentation was tested for statistical
significance using a two-tailed, paired, t-test, evaluated at
the 0.05 significance level. In addition, we used set theory

F. 4. (a) An example of a joint PET-CT image intensity histogram showing areas of data concentration. (b) An example of a PET image intensity histogram
with the second derivative of the high SUVs showing the threshold selection (inset).
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operators to obtain the Dice similarity index (DSI) and
sensitivity between two volumes R and T ,

DSI=
2× (R∩T)
|R|+ |T | , (12)

Sensitivity=
TP

TP+FN
, (13)

where TP is the true positive volume and FN is the false
negative volume. We also measured two types of surface
distances for the quantitative evaluation. First, a symmetric
3D mean surface distance (MSD) between two surfaces R and
T was calculated as

MSD(R,T)= dRT +dTR

2

with dRT =
1
|R|

r ∈R

min
t ∈T

d(r,t) and dTR =
1
|T |

t ∈T

min
r ∈R

d(t,r).
(14)

Second, the Hausdorff distance (HD) that measures the
maximum Euclidean distance between two surfaces R and
T was calculated as

HD(R,T)=max{dRT ,dTR}
=max


max
r ∈R

min
t ∈T

d(r,t),max
t ∈T

min
r ∈R

d(t,r)

. (15)

The DSI, MSD, and HD were calculated between GTVmc and
GTVman and between GTVpet and GTVman, respectively,
for comparison. Again, the difference between the manual and
automatic segmentations in terms of DSI, MSD, and HD was
tested for statistical significance using the aforementioned
t-test. Further, we utilized the QI to compute and assess the
correlation between the different parameters and the dataset
quality.

3. RESULTS

Of the 22 patients selected for this study, three were
excluded because they had no identifiable primary tumor or
the primary tumor boundary was ill-defined. Of the remaining
19 patients, 11 who had a dataset QI of less than 2 were
included in the study. The patient information and the dataset
QI are shown in Table I.

The proposed segmentation algorithm was applied to the
imaging data of the 11 selected patients. A comparison of
the autosegmentation and the manual segmentation for three
patients showed that autosegmented contours are close to the
manually segmented contours, although inconsistency exists
(Fig. 5).

The comparison of the three GTV estimates is shown in
Table II. The median volume of GTVman was 22.1 cm3 (range,
4.2–38.4 cm3), the median volume of GTVmc was 15.7 cm3

(range, 6.6–44.3 cm3), and the median volume of GTVpet
was 10.2 cm3 (range, 2.8–45.1 cm3). The median VDmc was
−10.7% and the median VDpet was −19%, showing that
the autosegmented GTVs from both segmentation approaches
tended to be smaller than the manually segmented GTVs.

T I. Patient information and dataset quality index (QI). The data of the
patients included in the present study are highlighted in bold. Abbreviations:
SUVmax, maximum standardized uptake value; RS, registration score; DR,
diameter ratio; SCC, squamous cell carcinoma; BOT, base of tongue; GP,
gingivobuccal.

Patient Sex Diagnosis T stage SUVmax RS DR QI

1 M SCC Rt BOT T1 13.1 2 1.06 1.50
2 M SCC BOT T2 10.4 2 2.18 3.08
3 F SCC bilateral tonsil T3/T1 19.8 2 1.18 1.67
4 M SCC Lt tonsil T2 17.6 1 1.07 1.07
5 F SCC BOT T2 7.0 2 2.17 3.06
6 M SCC BOT T3 18.8 2 1.22 1.72
7 M SCC Rt BOT T3 10.3 1 1.13 1.13
8 M SCC BOT T3 14.0 3 1.52 2.62
9 M SCC BOT T4 15.1 3 1.30 2.25

10 M SCC Lt BOT T4 19.5 2 1.02 1.45
11 M SCC Rt BOT T4 26.6 1 1.36 1.36
12 M SCC Rt BOT T4 22.0 3 1.45 2.52
13 M SCC pharyngeal wall T3 16.0 5 1.47 3.28
14 M SCC Rt tonsil/GP sulcus T2 13.5 2 1.26 1.78
15 M SCC BOT T3 10.8 2 1.06 1.50
16 M SCC GP sulcus T2 14.5 2 1.05 1.48
17 M SCC BOT T2 13.5 2 1.52 2.15
18 M SCC Lt tonsil T2 14.7 3 1.07 1.86
19 M SCC Rt BOT T2 15.9 3 1.35 2.33

However, the difference between GTVmc and GTVman
was not statistically significant (p-value = 0.44), while the
difference between GTVpet and GTVman was statistically
significant (p-value = 0.0037).

Table III shows the results of the quantitative evaluation of
the multichannel autosegmentation and PET-based autoseg-
mentation. The DSI, MSD, and HD were computed between
the autosegmented contours and the manual contours. For the
11 patients, the multichannel autosegmentation resulted in a
DSI of 0.74±0.09, a MSD of 2.8±1.0 mm, and a HD of
16.3±7.3 mm. These values showed a reasonable volume
overlap of the GTVmc and GTVman, although at some
location, the surface distance was still large (as shown by HD).
On the other hand, the PET-based autosegmentation resulted
in a DSI of 0.65±0.11, a MSD of 3.4±0.8 mm, and a HD
of 15.3±5.6 mm. The t-test results showed that the DSI had
statistically significant difference (p-value = 0.002), the MSD
had a distinct trend toward significant difference (p-value
= 0.070), and the HD had no statistically significant difference
(p-value= 0.466) between the multichannel autosegmentation
and the PET-based autosegmentation. In comparison, the
largest discrepancy between autosegmented contours and
the manual contours shown by the HD values was similar
for both segmentation approaches, but the multichannel
autosegmentation showed a better overall agreement than
the PET-based autosegmentation did, as shown by the DSI
and MSD values.

The DSI values were plotted against the GTVman, and a
linear function was fitted to the data, as shown in Fig. 6(a).
We found that the DSI increased with the GTVman: for each
10 cm3 increase in the GTVman, the DSI increased about 0.05.
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F. 5. The multichannel segmented contours (red) and the PET-based segmented contours (blue) were compared with the physician-defined manual contours
(green). The rectangular boxes manually drawn in the preprocessing step define a small region for the segmentation. Left to right: contours overlaid on CT, PET,
and MR images. Top to bottom: coronal, sagittal, and coronal views of the target volumes for patients 3, 16, and 1, respectively.

The QI (i.e., the registration and contouring quality measure)
also affected the accuracy of the segmentation. We plotted the
sensitivity against the QI, as shown in Fig. 6(b), and found
that higher QI values (representing worse registration and/or
contouring quality) resulted in lower sensitivity. Finally, to
investigate the relationship between the spatial and absolute
agreements between GTVman and GTVmc, we plotted the
DSI against the volume difference (Fig. 7). A second order
polynomial was fitted to the data and showed that the peak
DSI of approximately 0.79 occurred at a volume difference
of −2.3%. Thus, the best spatial agreement between the
GTVman and GTVmc does not occur at a volume difference
of zero.

4. DISCUSSION

Utilizing multiple imaging modalities to define the
true extent of disease has become common practice in

radiation therapy. Each modality has its own advantages
and disadvantages, and only when used synergistically, the
strengths of each modality can complement each other to
provide the best and most complete picture of the target
volume. However, in clinical practice, the use of multiple
modalities in the target definition is often suboptimal. To date,
few attempts have been made to bring different modalities
together into a single segmentation framework for tumor
volume segmentation.21,22

In our approach, accurate image registration is a
prerequisite to accurate segmentation. Misregistration causes
ill-posed feature vectors to feed into the segmentation
algorithm, resulting in the omission of tumor parts or the
inclusion of a larger-than-expected background in the tumor
segmentation. Because of this, we needed to score the
registration accuracy and exclude datasets that could not
be correctly registered. The misregistration occurred mostly
between the simulation CT and MR images because the
immobilization mask used during CT simulation can result
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T II. Comparison of the physician-defined gross tumor volume (GTV-
man), multichannel autosegmented tumor volume (GTVmc), and the PET-
based autosegmented tumor volume (GTVpet). Abbreviation: VDmc, volume
difference between the GTVman and GTVmc; VDpet, volume difference
between the GTVman and GTVpet.

Patient
GTVman

(cm3)
GTVmc

(cm3)
GTVpet

(cm3)
VDpet

(%)
VDmc

(%)

1 4.2 6.6 2.8 −33.3 57.1
3 24.5 21.3 16.3 −33.5 −13.1
4 12.3 11.6 10.0 −18.7 −5.7
6 36.2 32.3 22.4 −38.1 −10.8
7 38.4 44.3 45.1 17.5 15.4

10 35.8 40.6 29.4 17.9 13.4
11 36.9 40.3 24.1 −34.7 9.2
14 20.6 11.9 8.9 −56.8 −42.2
15 18.4 15.7 10.2 −44.6 −14.7
16 12.9 10.4 5.8 −55.0 −19.4
18 22.1 13.7 6.3 −71.5 −38.0

in deformations of the anatomy from its normal resting
stage. In addition, different neck flexions in two scans may
cause deformation as well. These deformations could not be
corrected using the rigid registration between simulation CT
and MR images. In our routine clinic, we need to register
the T1-weighted MRI with contrast to the planning CT for
physicians to draw the GTV contours. In all the clinical cases
we experienced, we have not had one satisfactory MR-to-CT
deformable registration. This partially drove us to opt for
rigid registration in this study. This clinical experience also
directed us to use the T1-weighted sequence with contrast for
multichannel segmentation. However, our investigation found
that the T1-weighted sequence without contrast gave the best
MR-to-CT registration; therefore, this sequence acted as an
intermediate role for the registration purpose. Nevertheless,
there is an imperative need to develop robust deformable
registration between CT and MR images, which will be a
subject of our future study.

To correctly evaluate the segmentation accuracy, we also
needed to ensure that the physician-delineated contour is
a reasonable representation of the gross disease as seen
on imaging. In many cases, physicians have pathological
information, clinical information, and/or previous experience
that can influence them to contour beyond what is visible on

T III. Quantitative comparison between the multichannel autosegmen-
tation and PET-based autosegmentation. Abbreviations: DSI, Dice similarity
index; MSD, mean surface distance; HD, Hausdorff distance.

Multichannel
autosegmentation PET-based autosegmentation

Patient DSI MSD (mm) HD (mm) DSI MSD (mm) HD (mm)

1 0.55 4.2 25.0 0.49 3.3 19.4
3 0.84 1.4 7.0 0.76 2.3 8.9
4 0.75 4.2 25.8 0.74 3.5 26.7
6 0.86 1.4 6.2 0.72 2.9 12.0
7 0.82 2.3 21.5 0.79 2.8 18.5

10 0.69 4.1 25.5 0.72 3.7 21.1
11 0.76 3.1 16.7 0.65 4.1 10.7
14 0.70 2.8 11.2 0.58 3.8 14.0
15 0.76 2.1 11.1 0.67 2.8 11.7
16 0.73 2.4 16.6 0.60 2.8 9.3
18 0.68 3.1 12.7 0.44 5.1 15.9

a scan. Incorrect registration at the time of the contouring for
treatment planning (not the same registration as we performed)
can also affect the extent of the disease that the physician
contours. For that reason, we decided to evaluate the accuracy
with which the physician contoured radiographically visible
disease, since comparing the algorithm-defined contour with
a contour that includes anything other than what can be
seen on imaging would provide an inaccurate estimation of
the algorithm’s performance. At our institution, radiologists
examining diagnostic scans, particularly diagnostic CT scans,
estimate the maximum tumor diameter. Therefore, we
compared the maximum diameter of the GTV defined by
the radiation oncologist to that estimated by the diagnostic
radiologist as a measure of the manual GTV delineation
accuracy. We then selected GTVs whose estimations by the
radiation oncologist and radiologist were consistent.

The dataset QI was devised specifically for this study to
select cases for evaluation of our segmentation algorithm. It
was formulated in such a way so that only datasets with a
QI less than 2 would be included. It works generally fine for
most cases but not perfect. One exception is the inclusion
of patient 18 (Table I). The small difference between the
physician diameter estimates resulted in the inclusion of
patient 18 despite its relatively low registration accuracy

F. 6. (a) The Dice similarity index (DSI) was positively correlated with the physician-defined gross tumor volume (GTVman). (b) The sensitivity was
negatively correlated with the quality index (QI).
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F. 7. The Dice similarity index (DSI) plotted against the volume difference between GTVmc and GTVman for all 11 patients. The second order polynomial
fit to the data is also shown.

(RS = 3). However, other 10 patients that were selected had a
RS less than or equal to 2, which was what we expected.

In the postprocessing, the decision on the different
thresholds for inclusion of a class in the tumor volume was
based on our own experience, reports of common thresholds in
the literature, and reports of typical uptake values in common
normal tissues in the head and neck region. Threshold SUVs
in the range from 2.5 to 3.5 are commonly reported34,35 to
decide benign or malignant diseases. At the same time, normal
tissue SUVs in the head and neck region can average over
3 for organs such as the palatine tonsil, base of tongue, and
palatine mucosa.36 From our observation, the T2 point in Fig.
4(b) was typically greater than 4. Since we wanted to include
regions with lower SUVs that had image intensities consistent
with disease as observed on CT and/or MR images, lower
secondary thresholds of 4, 3.5, and 3.3 were chosen. The
chosen thresholds provide a compromise between including
the entire tumor and minimizing the false positives. The most
common false positive in our results was in the contralateral
tonsil tissue (as illustrated in the bottom row of Fig. 5).

We also observed that perhaps not surprisingly, PET domi-
nates the segmentation. PET provides a much stronger signal
than CT or T1-weighted MR with contrast. On CT without
contrast, boundaries are evident at anatomical landmarks such
as bony anatomy and air cavities, but soft tissues are difficult
to delineate; therefore, tumor surrounded by muscle has no
clear boundary in most cases. In addition, even with contrast,
T1-weighted MRI does not provide distinct image intensities
inside the tumor, despite the fact that the tumor seems visually
obvious. On MRI, tumor is easy to delineate from surrounding
structures because of the heterogeneous image intensities
that comprise the tumor and the clearly identifiable normal
structures in the vicinity. However, tumor image intensities
on MRI can be similar to other image intensities in the tumor
background, which makes it difficult for an image intensity-
based algorithm, such as the one developed with this work,
to separate tumor from background. Therefore, the algorithm
relies mostly on the PET signal to perform the segmentation
and distinguish tumor from background. The role of the CT

and MRI signals in the algorithm is 2-fold. In the high PET
intensity region, they provide regularization, by instructing
the algorithm to avoid obvious normal structures such as air
and bone. For example, in the top and bottom rows of Fig. 5,
the multichannel autosegmented contour avoids the air cavity
in the pharynx, despite having to exclude high uptake regions
as seen on PET. At intermediate PET intensities, CT and MR
can be the deciding factor in determining whether to include
certain regions in the segmented tumor. For example, if the
PET SUV intensity in a region continuous with known tumor
is moderate (around 3–5 SUVs) and both CT and MR signals
in that region are similar to those in the tumor, then that
moderate SUV region could be included as part of the tumor.
Alternatively, if the PET intensity in a region is on the border-
line and the CT or MRI signals do not show good agreement
with the intensities in the tumor then this region would be
excluded. For example, in the top row of Fig. 5, it can be seen
that the contralateral right tonsil area is correctly included in
the GTV despite having moderate SUV intensity on PET as a
result of the similarity of the CT and MR intensities.

As one might expect, the moderate correlation we observed
between the DSI and GTV implies that larger tumors had a
larger DSI value, which indicated that DSI was affected by the
volume of the structure under evaluation. At the same time, the
moderately negative correlation between sensitivity and the QI
suggests that the dataset QI can affect the evaluation results.
We also found a strong polynomial relationship between the
DSI and volume difference. The fitted polynomial function
was centered in negative volume difference territory, as would
be expected based on the overall underestimation of the tumor
volume observed with the algorithm (median of−10.7%). This
relationship also suggests that even if the absolute volume
difference is 20%, the spatial agreement can still be high.
Therefore, to correctly evaluate the segmentation, one may
need to take into account the tumor volume, the volume
difference, and the DSI simultaneously. On the other hand,
a dosimetric evaluation of the difference of dose volume
histogram (DVH) between the autosegmented GTV and the
manual GTV may provide insight into the clinical benefits of
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the proposed approach. In a future study, we will evaluate how
much volume difference or spatial disagreement may produce
significant dosimetric impact.

Although our algorithm shows great promise in defining
target volumes for head and neck radiotherapy, this study
had certain limitations. Varied sources of uncertainties may
contribute to the segmentation errors. A major contribution
might come from the image registration inaccuracies, which
are further associated with the limited image resolution
in MR and PET images, CT image slice thickness, and
image resampling issues, etc. The multichannel segmentation
algorithm is also subject to the impact of image noise.
In addition, uncertainties in manual contours might affect
the evaluation. Due to the lack of ground truth (e.g., the
pathological size), we chose to evaluate the segmentation
using contours that were manually defined by a physician
for clinical use. At our institution, all tumor contours are
peer-reviewed by three or more head and neck physicians
in so called planning clinics. The resulting GTVs represent
“consensus” contours, which implicitly include the knowledge
of multiple observers. However, as discussed earlier, factors
other than imaging information may have influenced their
contouring and therefore may not be limited to actual gross
disease. Quantifying the manual contouring uncertainty will
be a future study where the GTV segmentation can be
evaluated within the context of interobserver contouring
uncertainty. Furthermore, although anatomical information
is implicitly taken into account by utilizing the CT scan in
the segmentation, the algorithm is still essentially an image
intensity based method. More explicit approaches of including
anatomical information could be explored in future studies to
improve the robustness of the algorithm. For this application
of the algorithm, we focused on segmenting primary tumors.
The variability in uptake of nodal disease with, in many cases,
negative PET appearance makes it difficult to have an accurate
nodal volume estimate from this method that was as discussed
earlier heavily dependent on PET images. In addition, tumors
with heterogeneous FDG uptake can also potentially have
a compromised segmentation performance, since they can
exhibit regions with low FDG uptake (e.g., necrotic areas).
However, with the inclusion of contrast CT or alternative MRI
sequences (such as DWI) with stronger tumor to background
ratios, the algorithm could become less dependent on PET and
therefore more robust when it comes to uptake inhomogeneity.
Future studies will be necessary to assess the robustness
of the algorithm under these conditions. Finally, imperfect
registration may negatively affect the segmentation accuracy.
A more sophisticated segmentation approach may involve
using segmentation results to correct registration errors and
iterate between registration and segmentation, similar to the
single-modality approach described by Lu et al.37

5. CONCLUSIONS

We developed an automatic segmentation approach that
takes into account information from multiple imaging modal-
ities simultaneously to segment an optimal tumor volume

encompassing all radiographically visible disease. The
autosegmented contours compared favorably with the
physician-defined contours. We expect that this algorithm will
reduce interobserver contouring variability, a major source of
uncertainty in head and neck cancer radiotherapy. With further
validation, this algorithm could become a clinically useful tool
for more consistent target definition.
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