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Abstract

Nanoparticle delivery of subunit vaccines may increase vaccine efficacy, leading to a wide variety 

of safe and effective vaccines beyond those available through dosing inactivated or live, 

attenuated whole pathogens. Here we present a versatile vaccine delivery platform based on 

PRINT hydrogels made of biocompatible hydroxy-poly(ethylene glycol) (PEG) that is able to 

activate the complement system by the alternative pathway. These lymph node targeting 
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nanoparticles (NPs) promote the immunogenicity of a model antigen, ovalbumin, showing 

comparable adjuvant effect to alum. We demonstrate that an antigen-specific humoral response is 

correlated with antigen delivery to the draining lymph nodes, in particular, B cell rich regions of 

the lymph nodes. 80 × 180 nm cylindrical NPs were able to sustain prolonged antigen presentation 

to antigen presenting cells (APCs) and elicit a stronger immune response than nondraining 1 × 1 

μm NPs or rapidly clearing soluble antigen. The 80 × 180 nm NPs also show high levels of uptake 

by key APCs and efficiently stimulate CD4+ helper T cell proliferation in vivo, further promoting 

antibody production. These features together produce a significant humoral immune response, 

superior to that produced by free antigen alone. The simplicity of the chemistries used in antigen 

conjugation to PRINT NPs confers versatility to this antigen delivery platform, allowing for 

potential application to many infectious diseases.
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INTRODUCTION

Draining lymph nodes (LNs) are the primary site of action for initiating adaptive immunity, 

where T and B cells, major cell types involved in a humoral immune response, meet antigen 

or antigen-loaded antigen presenting cells (dendritic cells, macrophages).1,2 To activate B 

cells and generate a robust humoral response, two signals are required: direct cross-linking 

of B cell receptors by antigens, and costimulatory signals from CD4+ T cells (e.g., cytokines 

and CD40/CD40L binding).3,4 Antigen presenting cells, especially dendritic cells (DCs), are 

critical in priming T cells to provide helper signals to B cells.4–9 Because of the myriad 

activities of the immune system that take place in the lymph nodes, recent literature has 

focused on delivering vaccines directly to the draining LNs.4,6,7,9,10 By targeting the 

draining LNs, vaccine uptake by antigen presenting cells (APCs), APC maturation, and 

antigen presentation to T and B cells may all occur in close proximity, thus increasing the 

potency of the resulting response.

Utilizing purified and synthetic pathogen subunits (peptides, polysaccharides, lipids, DNA, 

etc.) for vaccination has become an increasingly attractive option due to significantly 

improved safety profiles compared to whole pathogen-based vaccines. Subunit vaccines 

have gained significant clinical success in some diseases, e.g., HPV vaccines (Gardasil from 

Merck and Co., Cervarix from GlaxoSmithKline), seasonal influenza vaccines, 

pneumococcus, HBV, diphtheria, pertussis, etc. However, there is still a tremendous need 

for new strategies to improve subunit vaccines and expand their application to a wider 

variety of diseases. Since purified pathogen subunits used in subunit vaccines are usually 

poor immunogens, experiencing nonspecific degradation and metabolism in vivo and subject 

to rapid clearance from the body,10–13 different strategies are used to improve the 

immunogenicity of these subunit antigens such as the addition of adjuvants or incorporation 

into different vaccine delivery vehicles. Particle mediated delivery has shown great potential 

for subunit vaccine development and has gained increasing attention.6,10–12,14–23 Size, 

shape, and surface properties of particle vectors can be manipulated in order to target key 
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APCs and promote cell uptake of antigens via phagocytosis, or facilitate self-drainage and 

direct delivery of vaccine components to lymph node-resident immune cells.10–13,24 Surface 

display of antigens on particle carriers may allow multivalent interaction with B cells, 

mimicking presentation by natural pathogens and enabling more efficient cross-linking of 

cognate B cell receptors, thereby increasing potency of these agents10,17,25 and achieving 

dose sparing effects.14,25

Many parameters of particulate vaccine carriers (charge, size, and surface properties) may 

all contribute to the quality of the resulting immune response. Previous work on the effects 

of lymphatic trafficking and efficacy of particulate vaccines has explored delivery vehicles 

such as liposomes, polymeric particles, and albumin hitchhiking molecules, among 

others.2,16,19,20,23,26,27 There is a narrow particle size range that appears to harness 

lymphatic flow to the lymph node without becoming trapped at the site of injection; 

however, within the range of 20–100 nm NPs, the optimal particle size appears to be widely 

system dependent.19,21,28,29

Herein we present a versatile vaccine delivery platform based on hydrogel particles made of 

hydroxy-poly(ethylene glycol) (PEG), fabricated via PRINT technology (particle replication 

in nonwetting templates),30–32 a unique mold-based particle fabrication process. The highly 

tunable nature of PRINT allows for a great degree of control over NP size, aspect ratio, 

charge, and surface functionality, facilitating a systematic study of these effects on NP 

trafficking through the lymphatic system and the subsequent immune response. We establish 

that this vaccine carrier has the capacity to deliver subunit vaccine components to the 

draining LNs in a sustained manner and elicit a significant antigen-specific humoral immune 

response.

MATERIALS AND METHODS

Materials

DyLight 680 maleimide and maleimide-PEG(500)-NHS were purchased from Thermo 

Fisher Scientific, Inc. Alexa Fluor 488 maleimide was purchased from Invivogen. 

Maleimide-PEG(5k)-NHS and NHSPEG(260)-OH were purchased from Creative 

PEGworks. EndoGrade Ovalbumin (98% purity, <1 EU/mg) was purchased in bulk from 

Hyglos GmbH and tested periodically for endotoxin contamination. Alexa Fluor 555 

conjugated ovalbumin was purchased from Life Technologies. Tetraethylene glycol 

monoacrylate (HP(250)A) was synthesized in house. PRINT molds were supplied by 

Liquidia Technologies. All other chemicals and reagents were obtained from Sigma-Aldrich, 

Inc., unless otherwise noted.

Animals

Female Balb/c, C57BL/6, and OT-II mice were purchased from Jackson Laboratory and 

used at age 6–12 weeks. All experiments involving the mice were carried out in accordance 

with an animal use protocol approved by the University of North Carolina Animal Care and 

Use Committee.
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Fabrication of Hydrogel NPs via the PRINT Process

The fabrication of nano- and micron-sized NPs was achieved by mold-based PRINT particle 

fabrication technology31–33 using a composition shown in Table S1 in the Supporting 

Information. Briefly, cure-site monomer (CSM) solutions were prepared at 2.5 wt % solids 

in dry methanol. NPs used in trafficking studies included 2 wt % of a fluorescent dye, either 

DyLight 680 maleimide or AlexaFluor 488 maleimide, covalently cross-linked into the 

particle matrix. The film-split technique for preparing NPs was performed as described in 

the following: using a #5 Mayer rod, 350 μL of CSM solution was cast on a sheet of corona 

treated poly(ethylene terephthalate) (PET), followed by brief evaporation of solvent with a 

heat gun to yield a transparent film (delivery sheet). Patterned Fluorocur PRINT molds 

(Liquidia Technologies) were laminated against the delivery sheet with moderate pressure 

(40 psi) and delaminated at the same pressure. The filled mold was laminated against 

corona-treated PET and subsequently cured in a UV-LED chamber (Phoseon, λmax =395 

nm) for 3.5 min under a nitrogen environment. After photocuring, the mold was removed to 

reveal an array of NPs on PET. NPs were mechanically harvested off the PET with sterile 

water (1 mL/40 in.2). NPs were washed via centrifugation (30 min, 14,000 rpm, 4 °C), 

removal of supernatant, and resuspension in fresh, sterile solvent. NP yield was determined 

by thermogravimetric analysis (Q5000IR, TA Instruments). To conjugate ovalbumin (OVA) 

to the NPs, particles were first PEGylated with heterobifunctional PEG, maleimide-

PEG(5k)-NHS, or maleimide-PEG(500)-NHS, by reacting 1 mg of NPs with 1.6 μmol of 

PEG plus triethylamine (100 μL) in DMF at a final concentration of 1 mg of NPs in 1.4 

mL.33 The reaction was run at room temperature overnight with shaking at 1400 rpm. NPs 

were then washed with fresh DMF. Residual amine groups on the surface of NPs were 

quenched with 13.5 μmol of NHSPEG(260)-OH (Creative PEGworks) following the same 

PEGylation procedure above, or with 150 μmol of succinic anhydride, reacted in the 

presence of 186 μmol of pyridine for 30 min with agitation at 1400 rpm. NPs were then 

washed into water. OVA was conjugated to the free maleimide groups by reacting NPs and 

OVA in a 1:1 weight ratio at a NP concentration of 4 mg/mL in borate buffer pH 9.5 with 

0.1 wt % PVOH, MW 2 kDa, overnight at room temperature with shaking at 1400 rpm. NPs 

were washed with buffer to remove unbound protein and washed with water to remove 

residual salt. For PEG(0) NPs, OVA was conjugated to the NP surface by first reacting the 

free amines on the NPs with succinic anhydride as used in quenching above, followed by 

reaction with OVA, EDC (1-ethyl-3-(3-(dimethylamino)propyl)-carbodiimide), and sulfo-

NHS according to protocol by Thermo Scientific. NPs were washed with buffer to remove 

unbound protein and washed thoroughly with water to remove residual salt. Antigen 

conjugation levels were controlled based on the ratio of NP:OVA during the conjugation 

reaction, varying from 1:1 to 4:1, with a constant total volume of 1 mL for each reaction.

NP Characterization

Scanning electron microscopy (SEM) enabled imaging of hydrogel NPs that were dispersed 

on a silicon wafer, dehydrated, and coated with approximately 1.5 nm of Au/Pd (Hitachi 

S-4700, FEI Helios Nanolab 600). Size and ζ-potential measurements were conducted on 

~20 μg/mL NP dispersions in water using a Zetasizer Nano ZS particle analyzer (Malvern 

Instruments Inc.). OVA conjugation was measured using a standard BCA Assay (Fisher).

Mueller et al. Page 4

Mol Pharm. Author manuscript; available in PMC 2016 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lymphatic Drainage Studies

Mice were dosed with 50 μg of fluorescent NPs in 20 μL of isotonic solution, 

subcutaneously in the rear right footpad. To monitor OVA drainage, 5 μg of OVA labeled 

with AlexaFluor 555 (Sigma), soluble or conjugated to NPs, was injected into the footpad. 

Mice were sacrificed at the indicated time points, and draining popliteal LNs (PLNs) from 

both the dosed and contralateral control sides were resected. Resected PLNs were imaged 

for total fluorescence and/or homogenized into a single cell suspension for analysis of NP 

distribution in various cell types by flow cytometry. Additional dosed PLNs were frozen at 

−80 °C in OCT medium (TissueTek) for histological analysis. The percent-injected dose 

was calculated as (mass of NPs in PLN) ÷ (50 μg injected dose) × 100. Mass of NPs in PLN 

was calculated as (fluorescence of dosed PLN) − (fluorescence of control PLN) and 

compared to a standard curve of NPs. No NP fluorescence was found in other lymph nodes 

or major organs (liver, kidney, spleen, lung, heart) at any time point.

Ex Vivo Imaging

Imaging of resected LNs was done using an IVIS-Lumina II (PerkinElmer, Inc. Hopkinton, 

MA) with analysis done on Living Image software, version 3.2 (PerkinElmer, Inc. 

Hopkinton, MA). For optimal performance of the DyLight 680 dye, excitation and emission 

filters were set to 675 and 720 nm, respectively.

Flow Cytometry

Draining LNs were resected at indicated time points postsubcutaneous injections of 50 μg of 

dye-labeled NPs. Single cell suspensions of LNs were made physically with frosted slides. 

Cells were stained with CD11c-eFluor450, F4/80-FITC, B220-PE, and PDCA-PerCP-

eFluor710, all from eBioscience. Cells were then examined with Cyan ADP (Dako) and 

analyzed with Summit software. For DC subset analysis, LN cells were stained with CD11c-

eFluor450, CD8-FITC, and DEC205-PE (eBioscience).

In Vivo CD4+ T Cell Proliferation

CD4+ T cells recognizing OVA323–339 were isolated from spleens of OT-II transgenic 

mice with a kit (Miltenyi Biotech). The purified T cells were labeled with 4 μM CFSE 

fluorescent dye for 10 min at 37 °C, and 10 million cells were adoptively transferred into 

each C57BL/6 mouse intravenously. On the next day, mice were subcutaneously immunized 

with 1 μg of OVA, soluble or NP-loaded. Spleens were harvested 4 days later, and single 

cell suspensions were stained with CD4-PE-Cy7 and Valpha2-eFluor450 (eBioscience). 

Cells were then examined with Cyan ADP (Dako) and analyzed with Summit software.

Complement Activation

A C3a sandwich ELISA was performed to measure complement activation in mouse serum 

following incubation with NPs. EIA plates (Corning 9018) were coated with an anti-mouse 

C3a monoclonal antibody (BD Biosciences, clone I87-1162) diluted 1:250 in coating buffer 

(eBioscience) overnight at 4 °C. Mouse serum was incubated 1:1 with either PBS or NPs at 

37 °C for 50 min. Serial dilutions of purified mouse C3a protein (BD Biosciences) were 

included in each ELISA plate to establish a standard curve. Serum samples were added to 
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wells in duplicate (50 μL total volume) and incubated for 3 h. Anti-C3a-biotinylated 

detection antibody (BD Biosciences, clone I87-419) was used at a 1:500 dilution in 1× assay 

diluent, and incubated for 40 min. Streptavidin-HRP (BD) was diluted 1:250 in 1× assay 

diluent for 30 min. 1× TMB substrate solution (eBioscience) was added to develop color. 

The reaction was stopped with 0.2 N H2SO4, and absorbance was read at 450 nm with a 

reference wavelength of 570 nm on a SpectraMax (Molecular Devices) plate reader.

Confocal Microscopy

Resected draining LNs were frozen in OCT medium without fixation. 10 μm sections were 

made with Leica cryostat, fixed with ice cold acetone, and stained with purified anti-B220 

(eBioscience) coupled with goat anti-rat IgG-Alexa Fluor 488 or -Alexa Fluor 647 

(Invitrogen), anti-B220-biotin (eBioscience) coupled with Streptavidin-Alexa Fluor 555 

(Invitrogen), or CD11c-biotin (eBioscience) coupled with Streptavidin-Alexa Fluor 633 

(Invitrogen). Sections were examined with a Zeiss 710 confocal microscope.

Immunizations and Antibody ELISA

C57BL/6 mice, 6–8 weeks old, were immunized with soluble OVA or NP-conjugated OVA 

at 5 μg per mouse, subcutaneously in the flank. Mice were primed on day zero and boosted 

on day 21. Plasma samples were collected by bleeding mice submandibularly on day 28, and 

OVA-specific antibody production was examined by ELISA. Briefly, EIA plates (Corning) 

were coated with 10 μg/mL OVA in ELISA coating buffer (eBioscience) at 4 °C overnight. 

The wells were washed and blocked with 200 μL per well of 3% BSA in PBST (PBS with 

0.05% Tween 20) for 2 h. Plasma samples were diluted in blocking buffer and incubated for 

2 h. The wells were washed extensively with PBST, and anti-OVA IgG was detected using 

HRP conjugated goat anti-mouse IgG (Invitrogen) and was visualized by adding 100 μL of 

TMB (eBioscience) to each well. The reaction was stopped after 11 min with 50 μL of 0.2 M 

H2SO4. Optical densities (OD) were read at 450 and 570 nm. The antibody titer was 

determined as the highest dilutions with OD (450–570 nm) > 0.1.

RESULTS AND DISCUSSION

Nanoparticle delivery of protein subunit vaccines to the lymph nodes allows antigens to 

interact directly with the immune system. Additionally, surface display of protein antigens 

similar to antigen presentation by natural pathogens may boost therapeutic efficacy of these 

subunits to the levels associated with whole pathogen vaccines with an improved safety 

profile.4,8,34 This study aimed to evaluate PRINT nanoparticles (NPs) of various size, aspect 

ratio, and surface characteristics for their ability to traffic through the lymphatic system and 

to explore the use of these NPs for antigen delivery in vaccine applications.

A delivery vector that traffics quickly and efficiently to the draining lymph nodes would be 

beneficial for delivering antigens to B cells and other antigen presenting cells (APCs) 

resident in the lymph nodes. A panel of rod/cylindrical PRINT NPs of different size, aspect 

ratio, and surface charge (Table S2 in the Supporting Information) were injected 

subcutaneously in mice to screen for the ability to drain to the popliteal lymph nodes (PLNs) 

(Figure 1). While NPs larger than 100 nm in size do not traditionally drain well through the 
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lymphatics system as shown in the literature,19,21,28,29 rod shaped NPs with two dimensions 

under 100 nm may be sufficiently small to traffic through the extracellular matrix of the 

lymphatic system in order to drain to the lymph nodes while maintaining benefits over 

traditional spherical NPs in terms of cellular uptake as well as an increased surface area for 

cargo loading.31 Ex vivo imaging of resected PLNs revealed that, within 2 h of injection, 

anionic 80 × 180 nm rod NPs were visible in the PLN, with a time dependent accumulation 

over 48 h. In contrast, all other NPs, regardless of size and charge, generally remained at the 

site of injection with less than 0.2% (0.1 μg NPs) of the injected dose trafficking to the PLN. 

In terms of trafficking abilities, NP surface charge appears to be the most important 

determinant when selecting a self-draining NP delivery vehicle, followed by NP size. 

Anionic 80 × 180 nm NPs, the best self-draining particle type of the particles surveyed, were 

chosen for further vaccine delivery studies.

Surface display of antigens greatly increases the chances of direct antigen presentation to B 

cells, facilitating a more robust antibody response. To test immunogenicity of antigen 

delivered by the hydrogel NP carrier, a model protein antigen ovalbumin (OVA) was 

covalently conjugated to the surface of 80 × 180 nm NPs through multiple chemistries, 

including poly(ethylene glycol) (PEG)-based linkers, a common bioconjugation technique 

used to control the distance between ligands and NPs. PEGylation is frequently used to 

increase circulation half-life of small molecule drugs, biologics, and nanoparticles by 

decreasing the binding of serum proteins and opsonins, thus decreasing recognition by the 

mononuclear phagocyte system (MPS).34 For vaccine carriers, PEGylation may enhance 

drainage of NPs from the site of injection to the lymph nodes by blocking interactions with 

the extracellular matrix (ECM); however, a high level PEGylation, especially with high 

molecular weight PEG, could be undesirable as it may prevent NP uptake by phagocytic 

APCs.6 In order to examine the effect of PEG linker length on lymphatic drainage and cell 

uptake, the model antigen OVA was conjugated to the surface of NPs via 5000 Da 

molecular weight PEG (PEG(5k)), 500 Da molecular weight PEG (PEG(500)), or a direct 

amide bond from protein to NP (PEG(0)) representing long, medium, and short linkers, 

respectively. After conjugation of antigen, all NPs remained very well dispersed with 

polydispersity index (PDI) below 0.15 (Table 1). Antigen conjugation levels varied based on 

the ratio of NP:OVA during the conjugation reaction. 48 h postinjection, significantly more 

PEG(500)OVA NPs reached PLNs as compared to the PEG(5k)OVA and PEG(0)OVA NPs 

(Figure 2a). Surface modification with the long PEG(5k) linker was apparently not favorable 

for lymphatic drainage. Further comparison with bare NPs and no-OVA PEG(500) NPs 

indicated that the increase in trafficking for the PEG(500)OVA NPs came from the synergy 

between PEG(500) and OVA, rather than either component alone. PEGylation with a dense 

layer of short PEG(500) may stabilize the NPs under physiological conditions and decrease 

interactions with the ECM, while longer PEG(5k) may have a greater chance of becoming 

entangled with the biopolymers in the ECM.6,35 Additionally, compared to 80 × 180 nm 

PEG(500)OVA NPs, the 1 μm PEG(500)OVA NPs showed poor lymphatic trafficking on 

par with the bare 1 μm NPs (Figures 1 and 2a); conjugation with PEG linker and OVA did 

not improve the drainage of 1 μm NPs. These results demonstrate that, with particles of 

similar surface charge, the size of NP is an essential determinant for lymphatic drainage 
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patterns of particle vectors, which can be subsequently modulated by different lengths of 

PEG linkers.

The best draining particles, 80 × 180 nm PEG(500)OVA NPs, also showed rapid drainage to 

the lymph node and were present in the PLN in as little as 5 min after injection, with the 

concentration of NPs in the PLN continuously increasing over 48 h (Figure 2b). At 48 h, NP 

trafficking reached 10% of total injected dose (5 μg of NPs), five times higher than bare 

anionic 80 × 180 nm NPs (2%, 1 μg, Figure 1).

In order to elicit an immune response, the NP delivery vector must be able to ensure that the 

antigen arrives at the site of action without being degraded or released prematurely. To 

investigate the drainage of NP bound OVA compared to that of free OVA and confirm that 

OVA was still bound to the NPs when they arrived at the LNs, we tagged the NPs and OVA 

with two different fluorophores. Free OVA (red) drained rapidly and was observed in the 

PLN 2 h after injection, but was no longer detectable at 24 h (Figure 2c). This is consistent 

with literature indicating that soluble proteins are subject to quick lymphatic clearance.13 

For 80 × 180 nm PEG(500)OVA NPs, particles and OVA (shown in yellow as overlapping 

of green NPs and red OVA) also drained quickly, as seen previously with the trafficking 

experiments, and were colocalized in the subcapsular regions of the PLN 2 h after injection. 

NP-OVA (yellow) stayed in the PLN much longer than soluble OVA (red) and was still 

observed at 48 h after injection (Figure 2c), although the quantity of NP-OVA (yellow) 

versus NPs alone (green) decreased over time. Importantly, OVA selectively accumulated in 

the B cell follicles, and the presence of OVA in this region persisted for up to 15 days. A 

similar phenomenon was also observed for 80 × 180 nm PEG(0)OVA (Figure 2c). This 

separation of antigen from the delivery vehicle is consistent with findings by Catron et al., 

who observed the cleavage of a model antigen from a particulate delivery vehicle upon 

trafficking to the lymph nodes.36 They determined that this cleavage occurred in a protease-

dependent manner over a course of several hours, allowing antigen to accumulate in B cell 

follicles without the need for the particles themselves to be taken up by APCs. Overall this 

result indicates that in general 80 × 180 nm hydrogel NPs are able to efficiently deliver 

antigen to B cells in the LNs, supporting sustained antigen retention in B cell rich regions. 

The longer residence time of NP-conjugated OVA in the PLN may help increase the 

interaction between antigen and B cells and LN-resident APCs compared to free OVA, 

resulting in an enhanced antibody response.

In addition to the delivery of antigens to B cells and cross-linking of cognate B cell 

receptors, eliciting a potent humoral response and B cell memory also requires help from 

CD4+ T cells;24 therefore good vaccine carriers need to be able to deliver antigens to APCs 

and prime T cells efficiently. Analysis of cells from draining LNs by flow cytometry showed 

that, 48 h postsubcutaneous dosing, 80 × 180 nm hydrogels with OVA linked through all 

three linker lengths reached 10–20% of the DCs, and 10–35% of the macrophages in the 

PLNs, while 1 μm PEG(500)OVA NPs were found in less than 2% of DCs or macrophages 

(Figure 3a), indicating that the 80 × 180 nm NPs may efficiently deliver antigens to key 

APCs. Although the total drainage to LNs of these three NPs with various linker lengths 

(Figure 2a) did not directly correlate with the uptake of NPs by cells in the PLNs, both 

results suggest that a long PEG linker is less favorable for antigen delivery to immune cells. 
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The colocalization of the 80 × 180 nm PEG(500)OVA NPs with DCs was also observed by 

confocal microscopy analysis of sectioned draining LNs (Figure S1 in the Supporting 

Information), indicating that these NPs are able to access all regions of the PLNs where B 

cell and T cell activation can occur, facilitating activation of both humoral and cellular 

immune responses. While B cells did take up significantly more 80 × 180 nm 

PEG(500)OVA and 80 × 180 nm PEG(0)OVA NPs compared to the 80 × 180 nm PEG(5k) 

and 1 μm PEG(500)OVA NPs, less than 5% of B cells took up particles for all groups 

(Figure 3a). This is not surprising: B cells are not phagocytic cells, unlike macrophages and 

DCs, which are specialized for taking up particulate matter. Our own and others' work has 

shown that nonphagocytic cells like epithelial cells are much less efficient in internalizing 

neutral and negatively charged NPs.37 However, anionic NPs can still be taken up efficiently 

through receptor-mediated endocytosis when a targeting ligand is available on NPs.38 

Activation of B cells requires recognition and uptake of antigens through their cognate B 

cell receptors. The accumulation of NPs in B cell regions would still greatly increase the 

chance of encountering an antigen by B cells carrying its cognate BCRs for initiation of an 

immune response. In addition, as seen in Figure 2c, over time proteases in the lymphatic 

fluid cleave antigen from the NPs, also allowing for the antigen to interact with B cells 

without the NPs being taken up.36

Lymph nodes are home to a large population of DCs, especially CD8α+ DCs, which have 

been shown to be the most efficient DCs in antigen cross-presentation.6,9,39 In addition, 

there are other major DC subsets including migratory Langerhans cells and dermal DCs, 

normally resident in distal areas of the body, as well as LN resident double negative DCs as 

defined by surface markers CD8 and DEC20522 (Figure S2 in the Supporting Information). 

Subsequent analysis of DCs from draining LNs showed that initially 80 × 180 nm 

PEG(500)OVA NPs distributed in all four different subsets of DCs somewhat evenly with 

an increase in the percentage of LN resident CD8α+ DCs over a 30 min period (Figure 3b). 

This suggests that these NPs are indeed self-draining, not fully dependent on uptake by 

migratory APCs to reach the LNs. This is further verified by the presence of NPs in the 

PLNs at as early as 5 min postinjection (Figure 3b): cell-mediated delivery of NPs has been 

shown to occur over several hours to days.3,40 At 27 h after injection, the percentage of NP+ 

LN resident DCs decreases and the percentage of NP+ migratory dermal DCs increases, 

likely due to continuous uptake of NPs by dermal DCs at the injection site followed by cell 

mediated transport to PLNs. These results demonstrate that the 80 × 180 nm hydrogel NPs 

can traffic to the PLNs both through self-draining and through cell mediated delivery and 

are able to access various DC subsets, with a high percentage of CD8α+ DCs and dermal 

DCs internalizing NPs, potentially preparing them for T cell priming.

The T cell priming ability of the 80 × 180 nm PEG(500)OVA NPs was examined with an in 

vivo proliferation assay using CD4+ OT-II cells that recognize peptide epitope OVA323–339. 

As displayed in Figure 3c, immunizations with 80 × 180 nm PEG(500)OVA NPs loaded 

with just 1 μg of OVA effectively stimulated the proliferation of CFSE-labeled CD4+ OT-II 

T cells, causing a dilution of the fluorescent dye. The dividing cells reached about 60% of 

total CFSE-labeled cells in 3 days (Figure 3d). On the other hand, minimum proliferation 

was seen in mice that were untreated or dosed with 1 μg of soluble OVA. Together with the 

flow cytometry data, we can deduce that the 80 × 180 nm PEG(500)OVA NPs are 
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effectively taken up by APCs, where they can deliver antigen cargo and activate helper T 

cells.

The complement system not only acts as the first line of defense for the body but also links 

innate and adaptive immunity and plays an important role in peripheral lymph nodes to 

enhance B and T cell responses.41 The complement system is activated by three different 

pathways: classical, lectin, and alternative; however, all three pathways share a common 

step: activating the central component C3. Hubbell and coworkers reported that 

nanoparticles can be engineered to activate the complement system and improve immune 

responses to vaccines.16,42,43 Additionally, Link et al. showed that activation of complement 

played an important role in recognition of virus-like nanoparticles by noncognate B cells, 

leading to antigen retention by key DC subtypes.44 Here we show that PRINT hydrogel NPs 

activate the complement system, as indicated by increase in the conversion of C3 to C3a 

(Figure 4a). Both bare and OVA-conjugated NPs promoted the conversion of C3 to C3a, 

suggesting that activation may result from the NP composition rather than postfabrication 

modifications to the NPs. However, surface modification with long chain PEG may reduce 

the capacity of the NPs to activate the complement system, possibly due to a higher degree 

of shielding of the NP surface groups that would otherwise interact with components in the 

complement system. Furthermore, EDTA but not EGTA blocked the conversion of C3 to 

C3a (Figure 4b), indicative of complement activation via the alternative pathway rather than 

the classical pathway. These results demonstrate that, in addition to the efficient LN targeted 

delivery of antigen, PRINT hydrogel NP vaccine vectors may potentially improve immune 

responses by activating the complement system.

Immunogenicity of antigen delivered by this NP vector was tested by vaccinating mice 

against OVA delivered either in soluble form or conjugated to NPs as described previously. 

The display of antigen on the NP surface may increase the chance of direct presentation of 

antigen to B cells, although this strategy may be less protective to the antigen than 

encapsulation techniques. The immune response to free versus particulate OVA was 

evaluated following a prime-boost regimen. Seven days after the boost dose, mice 

immunized with 80 × 180 nm PEG(500)OVA NPs showed a 10-fold increase in OVA-

specific IgG production compared to free OVA and free OVA + bare NPs (p < 0.05, Figure 

5a), whereas the NPs that were coinjected with free OVA did not augment the immune 

response. This data suggests that covalent conjugation to the NP vector is necessary for 

enhanced immunity. NP-OVA was compared to free OVA plus the adjuvant alum, the 

standard of care for adjuvanted vaccines.45 Free OVA + alum elicited higher antibody titers 

than NP-OVA; however, NP-OVA + alum gave a significant increase in antibody response 

compared to free OVA + alum (Figure 5b), indicating that this NP-based vector for antigen 

delivery may be able to further improve the antibody response against protein antigen in 

adjuvanted vaccines. Previous work has shown that the PRINT hydrogel NPs induce no 

inflammatory response on their own;46 therefore the major advantage of the NP vector over 

alum comes from its efficient delivery of antigen to immune system in addition to direct 

immunomodulation through complement activation.

The correlation between trafficking and immune response was examined by comparing the 

anti-OVA IgG antibody production after OVA delivery via 80 × 180 nm NPs with various 
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PEG linker lengths as well as the 1 μm NPs. Interestingly, despite the influence PEG linker 

length had on NP trafficking (Figure 2a), PEG linker length appeared to have no statistical 

effect on antigen-specific IgG production (Figure 6a). All linker lengths showed a 10-fold 

increase in OVA-specific IgG production compared to free OVA, but the IgG levels were 

equivalent among the NP groups. However, the size of the NPs used to deliver OVA 

appeared to have a more dramatic effect on the total IgG. The antibody response against the 

80 × 180 nm PEG(500)OVA NPs was over 1000 times higher than the response to the 1 μm 

PEG(500)OVA NPs (p < 0.05, Figure 6b). Remarkably, IgG response to 1 μm 

PEG(500)OVA NPs was even lower than that for soluble OVA, strongly suggesting that 

drainage of vaccine carrier and antigen interaction with LN-resident B cells are crucial to 

eliciting a humoral response. It is likely that there is a threshold amount of antigen needed in 

the lymph nodes for initiating a humoral immune response. This level may be sufficiently 

reached by the 80 × 180 nm NPs, including the relatively low self-draining 80 × 180 nm 

PEG(5k)OVA NPs, while the 1 μm NPs do not appear to deliver enough antigen to the LNs 

to do so.

CONCLUSION

In conclusion, we have designed and optimized a versatile vaccine delivery platform based 

on PRINT NPs. We demonstrate that the size, aspect ratio, charge, and surface 

characteristics of NPs are all important in improving the lymphatic trafficking of NPs and 

their subsequent uptake by key APCs. Anionic hydrogel NPs, with dimensions smaller than 

100 nm, loaded with a model antigen showed high levels of self-drainage and were able to 

efficiently deliver antigen to B cells and major APCs, inducing antigen-specific humoral and 

cellular responses superior to free antigen alone. The simplicity of the chemistries used in 

antigen conjugation confers versatility to this delivery platform, allowing for potential 

application to many infectious diseases. Increasing the efficacy of subunit vaccines through 

a particulate delivery platform is of great interest and may lead to a wide variety of safe and 

effective vaccines based on dosing pathogen subunits.
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Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

The authors thank Dr. Ashish Pandya for the synthesis of HP(250)A, the University of North Carolina Animal 
Studies Core for their assistance with animal experiments, and the Chapel Hill Analytical and Nanofabrication 
Laboratory (CHANL) for support with NP imaging. This work was supported by the NIH Director's Pioneer Award 
(5-DP1-CA174425-04) and Liquidia Technologies.

ABBREVIATIONS USED

NP nanoparticle

PRINT particle replication in nonwetting templates

APC antigen presenting cell
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PLN popliteal lymph node

LN lymph node

DC dendritic cell

OVA ovalbumin
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Figure 1. 
Lymphatic drainage of blank hydrogel particles. Mice were injected with 50 μg of 

fluorescently labeled particles dispersed in 20 μL of isotonic solution in the hind footpad. 

Draining popliteal lymph nodes were resected and examined for particle fluorescence by 

IVIS imaging. Error bars stand for SEM, N ≥ 4. Statistically significant differences between 

experimental groups were determined by two-way ANOVA followed by Tukey's multiple 

comparisons post-test. ***, p < 0.001.
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Figure 2. 
Drainage of OVA-loaded hydrogel NPs to lymph nodes. (a) Total drainage of NPs in lymph 

nodes. 50 μg of fluorescently labeled 80 × 180 nm hydrogel NPs was subcutaneously 

injected into footpads of C57BL/6 mice, and draining popliteal LNs were collected at 48 h 

and imaged with IVIS Lumina. Mass of NPs administered was held constant with minor 

variations in OVA dosage. Statistically significant differences between experimental groups 

were determined by one-way ANOVA followed by Tukey's multiple comparisons test. *, p 

< 0.05; ***, p < 0.001. Error bars stand for SEM. N = 4–14. (b) 80 × 180 nm 

PEG(500)OVA NPs drained rapidly to the lymph nodes accumulated over 48 h. Error bars 

stand for SEM. N = 4–8. (c) Persistent delivery of antigen to B cells by hydrogels. Blue, 

B220 (B cells); green, NPs; red, OVA-AF555. Scale bar: 200 μm.
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Figure 3. 
Delivery of antigen to APCs and T cell priming by OVA-loaded hydrogel NPs. (a) 80 × 180 

nm NPs are efficiently taken up by key antigen presenting cells (DCs, macrophages, and B 

cells respectively) in LNs 48 h postsubcutaneous injection, as analyzed by flow cytometry. 

N ≥ 4. (b) Uptake of NPs by various DC subsets in draining LNs, with an increase in the 

percentage of migratory DCs over time. (c) In vivo CD4+ OT-II T cell proliferation. (d) 

Quantitative analysis of OT-II T cell proliferation. The percentage of proliferation represents 

the ratio of cell numbers in R5 and R4 shown in panel c (R5/R4). N = 3–4. Hydrogel-

mediated delivery of antigen is more efficient in stimulating CD4+ T cell proliferation than 

soluble antigen. Statistically significant differences between experimental groups were 

determined by one-way ANOVA followed by Tukey's multiple comparisons test. Error bars 

stand for SEM. *, p < 0.05; **, p < 0.01, ***, p < 0.001.
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Figure 4. 
Hydrogel NPs activate complement system. Serum from C57BL/6 mice was incubated with 

(a) 0.5 mg/mL NPs and (b) 1.2 mg/mL NPs for 50 min at 37 °C. Conversion from C3 to C3a 

was assayed by ELISA. The data represent one of two similar individual experiments; bars 

are average of two replicate wells in each experiment.
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Figure 5. 
NP conjugated OVA elicits higher antibody titers than soluble administration. (a) OVA 

conjugated to NPs elicits higher response than soluble OVA or soluble OVA admixed with 

NPs, indicating that conjugation to NPs is necessary for increased immunogenicity. (b) 

OVA delivered via NPs elicits higher antibody titers than soluble antigen when both groups 

are delivered with or without alum adjuvant. Mice were immunized on day 0 and again on 

day 21 with 5 μg of OVA, soluble or conjugated to PRINT hydrogel NPs. OVA-specific IgG 

in plasma was examined by ELISA. Statistically significant differences between 

experimental groups were determined by one-way ANOVA followed by Tukey's multiple 

comparisons test. *, p < 0.05; **, p < 0.01; ***, p < 0.001. Error bars stand for SEM. N = 5.
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Figure 6. 
Size rather than PEG linker length dramatically influences IgG response. (a) Length of PEG 

linker for OVA conjugation does not affect IgG response. (b) Large 1 μm NPs elicit lower 

IgG production than soluble administration or smaller 80 × 180 nm NPs. Mice were 

immunized as in Figure 5, and plasma IgG was evaluated by ELISA. Statistically significant 

differences between experimental groups were determined by one-way ANOVA followed 

by Tukey's multiple comparisons test. *, p < 0.05. Error bars stand for SEM. Data represent 

two or three individual experiments of N = 4.
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Table 1

Characterization of OVA-Conjugated Particles

monomer size (diam, nm) PDI zeta potential (mV) OVA loading* (μg/mg NP)

80 × 180 nm bare 200.8 ± 11.6 0.025 ± 0.017 −24.6 ± 0.3

80 × 180 nm PEG(0)OVA 246.8 ± 1.2 0.139 ± 0.010 −33.6 ± 1.2 54 ± 28

80 × 180 nm PEG(500)OVA 192.0 ± 2.1 0.044 ± 0.014 −39.3 ± 1.6 57 ± 24

80 × 180 nm PEG(5k)OVA 191.3 ± 0.6 0.076 ± 0.004 −27.5 ± 0.3 51 ± 36

1 μm PEG(500)OVA 1459 ± 189.4 −7.0 ± 0.5 74 ± 54

1 μm PEG(5k)OVA 1238 ± 23.4 −9.6 ± 0.4 42 ± 33

*
OVA loading for each particle type was determined prior to dosing. Values represent average of 4–12 batches.
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