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Objective. To assess the utility of imputing race/ethnicity using U.S. Census race/eth-
nicity, residential address, and surname information compared to standard missing
data methods in a pediatric cohort.
Data Sources/Study Setting. Electronic health record data from 30 pediatric prac-
tices with known race/ethnicity.
Study Design. In a simulation experiment, we constructed dichotomous and continu-
ous outcomes with pre-specified associations with known race/ethnicity. Bias was intro-
duced by nonrandomly setting race/ethnicity to missing. We compared typical
methods for handling missing race/ethnicity (multiple imputation alone with clinical
factors, complete case analysis, indicator variables) to multiple imputation incorporat-
ing surname and address information.
Principal Findings. Imputation using U.S. Census information reduced bias for both
continuous and dichotomous outcomes.
Conclusions. The new method reduces bias when race/ethnicity is partially, nonran-
domly missing.
Key Words. Multiple imputation, U.S. Census location and surname data, race
and ethnicity, health disparities

Comparative effectiveness research using electronic health record (EHR) data
promises timely understanding of health disparities (Olsen, Aisner, and
McGinnis 2007; Fiks et al. 2012) but requires accurate racial/ethnic data,
which are often completely or partially missing in EHR data (Bierman et al.
2002; Kressin et al. 2003; Hasnain-Wynia, Pierce, and Pittman 2004;
Fremont et al. 2005; Bilheimer and Sisk 2008; Smith et al. 2010;Wynia, Ivey,
and Hasnain-Wynia 2010; Bergdall et al. 2012).
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Novel analytic methods for missing EHR race/ethnicity data are
needed, as many current methods have shortcomings. Complete case analysis
confined to observations without missing values produces biased estimates,
except when data are missing completely at random (MCAR)—unassociated
with any outcomes or covariates—or when the chosen statistical model
assumes only missingness at random (Molenberghs and Kenward 2007;
National Research Council (United States), Panel on Handling Missing Data
in Clinical Trials, National Research Council (United States), and Committee
on National Statistics 2010; Graham 2012). The missing indicator method—
using a missing category indicator for missing variables such as race/ethnicity
—also produces biased estimates and (Greenland and Finkle 1995; Knol et al.
2010). Mean imputation can understate variance and underestimate p-values.
Multiple imputation, though effective when used appropriately, is inefficient
compared to an analysis based on all data if no values were missing, especially
when a large fraction of the data is missing or key predictors of missing values
are absent (Rubin 1987).

To address problems of missing race/ethnicity in disparities research,
RAND researchers created the Bayesian Improved Surname Geocoding
(BISG) method to impute race/ethnicity among adult patients using U.S. Cen-
sus geospatial and Census surname data (Fiscella and Fremont 2006; Elliott
et al. 2008, 2009). Subsequently, a categorized version of the 2009 algorithm
was validated for classifying patients into racial/ethnic groups, with favorable
results across the age spectrum (Adjaye-Gbewonyo et al. 2014), and a couples
version was validated in a study of marriage licenses (Elliott et al. 2013). The
Centers for Medicare & Medicaid Services and health plans have successfully
used the BISG to better understand racial/ethnic disparities (Derose et al.
2013; Martino et al. 2013).

Here, we used the BISG’s probability outputs in a pediatric cohort to
enhance generally accepted methods of imputing missing race/ethnicity data.
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METHODS

Using a retrospective cohort design, we added BISG probability outputs to
pediatric data to evaluate whether these probabilities improve existing meth-
ods of imputing missing race/ethnicity. We extracted EHR data for children
with known race/ethnicity and experimentally assigned race/ethnicity to
“missing” for a sample of these children to measure the performance of differ-
ent strategies for estimating missing race/ethnicity. We included children who
received preventive health care at 30 practices in Pennsylvania and New Jer-
sey between July 1, 2009, and June 30, 2010, before their 19th birthday. The
30 practices routinely recorded parent-reported race/ethnicity during regis-
tration. Children were identified by preventive health care evaluation and
management codes in the EHR (CPT codes 99381-99385, 99391-99395).

Beginning with 220,090 children, we excluded 26,007 children whose
address could not be accurately geocoded, 1,608 for whom U.S. Census race/
ethnicity data were not available for their census block group, 19,447 with
unknown or low-frequency race/ethnicity values (e.g., Native American, mul-
tiracial), and 2,857 children without insurance, leaving 170,171 children.

Study variables included demographic and clinical characteristics possi-
bly associated with race/ethnicity. In addition to parent-reported race and eth-
nicity, these variables were child surname, home address, gender, age and
insurance type, presence of asthma, and presence of attention-deficit hyperac-
tivity disorder (ADHD) as identified by ICD-9 codes specific to these condi-
tions on the problem list (codes beginning with the digits 493 and 314,
respectively).

Bayesian Improved Surname Geocoding Method

The BISG method estimates a posterior probability of membership in each of
six racial/ethnic categories—(1) Hispanic/Latino; or non-Hispanic (2) black/
African American; (3) white; (4) Asian/Pacific Islander; (5) Native American/
Alaska Native; or (6) multiracial—using the patient’s surname and the U.S.
Census block group of their home address. The BISG algorithm in this
instance used 2000 U.S. Census data about the race/ethnicity of each block
group and the probability of each surname belonging to each of the six racial/
ethnic categories above. Race/ethnicity information is available only for sur-
names that occur at least 100 times in the U.S. population (Word et al. 2008);
for rare surnames, the algorithm uses aggregate race/ethnicity information for
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all U.S. Census respondents whose surnames occur fewer than 100 times
(Elliott et al. 2009).

Geocoding Address to Census Block Group

Patient address was geocoded to the corresponding latitude, longitude, and
2000 census block group using the Geocoder/U.S. v2.0 software package (Erle
n.d.), which scored the confidence of the match with a 0 to 1 score. Scores less
than 1 indicated the need for corrections (e.g., misspelled street names).
194,083 (88 percent) of the children in our cohort were geocoded with a score
of 0.8 or higher. To ensure accurate geocoding, we manually validated a ran-
dom sample of 50 addresses with scores in the 0.8 to 0.9 range and confirmed
that all were geocoded correctly.

Statistical Methods

As a first comparison, we used logistic regression to model the true racial/eth-
nic category as a function of the imputed value. This model produced an area
under a receiver operating characteristic curve (AROC) as a measure of the
predicted value’s ability to discriminate between the given racial/ethnic cate-
gory and other categories.

Iterative Simulations. We iteratively performed 200 simulations with the fol-
lowing steps: (1) generated hypothetical outcomes, both continuous and bin-
ary; (2) set known race/ethnicity to missing; (3) applied four strategies for
analyzing data in the presence of missing values; and (4) used regression mod-
els to estimate the association of the outcomes with the racial/ethnic groups.
We compared the true values for the hypothetical outcomes with the median
values and interquartile ranges for each analytic method: complete case analy-
sis, missing value indicator method, imputation using patient information,
and imputation with BISG probabilities added to patient information. The
simulation analysis was performed on a 10 percent sample of children
(n = 17,017) for computational efficiency.

Generating Outcome Variables. To test our ability to derive unbiased estimates
for the association of race/ethnicity with outcome, we constructed two outcome
variables strongly associated with race/ethnicity: one continuous and one
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dichotomous (equations 1 and 2). The continuous outcome represented a nor-
mally distributed score similar to an ADHD symptom score (Wolraich et al.
1998), with mean of 100 and standard deviation of 10. The dichotomous out-
come represented an endpoint such as pediatric asthma hospitalization, often
strongly associated with black/African American race/ethnicity. We con-
structed these outcomes to have plausible associations with race/ethnicity and
disease status that could result in bias if the data were not missing randomly.

Race/Ethnicity Missing Not at Random. Using the complete dataset with the
added outcomes noted above, we then set race/ethnicity to missing for a frac-
tion of the observations. For the continuous outcome, we used an equation
that increased the chances of beingmissing for black children with an outcome
score that was less than 90, and for Hispanic children whose outcome scores
exceeded 105. This equation correlated the probability of missingness with
true race/ethnicity and also with the value of the outcome, resulting in a no-
nignorable (or Missing Not At Random) missing data mechanism. Similarly,
for the binary outcome simulations, we increased the chance of missingness
for black children when the outcome was 0 and for Hispanic children where
the outcome was 1 (Table 1).

Missing Data Methods. We used four strategies to handle missing race/ethnic-
ity: (1) complete case analysis, using only children with nonmissing data; (2)
missing indicator method; (3) traditional multiple imputation without BISG
enhancement (Schafer 1999); and (4) traditional imputation enhanced by the
BISGmethod.

For traditional multiple imputation, we used variables that might be pre-
dictive of race/ethnicity. We used the method of chained equations with race/
ethnicity as a multinomial outcome in the regression model to impute race/
ethnicity from the following patient-level covariates: gender, age in years,
insurance type, diagnosis of asthma, and diagnosis of ADHD (Royston 2004;
Van Buuren 2007; White, Royston, and Wood 2011). In addition, because the
location of care in a highly diverse major city and its suburbs might be highly
predictive of race/ethnicity, we included as a series of 29 indicator variables
the primary care practice site. Finally, as recommended (Little 1992), we used
the dichotomous and continuous outcome scores as predictors in the imputa-
tion model. In the enhanced imputation, we used these same predictor
variables—including care location—and the probability of membership in the
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six race/ethnicity categories calculated with the U.S. Census geospatial and
surname data (the BISG method’s output). For each of the 200 iterations in
this simulation, we repeated the imputation to construct 10 datasets for both
the traditional imputation and the enhanced imputation.

Estimating the Association of Race and Ethnicity with Outcome

The associations between demographic characteristics (race/ethnicity, gender,
age, and primary care site) and the outcome variables were calculated using
multivariable linear regression for the continuous outcome and multivariable
logistic regression for the dichotomous outcome. We compared the associa-
tions observed in each of the experimental datasets with the true associations
observed in the gold standard dataset.

Linear and logistic regressions were performed using Stata v 13.0 (2008;
Stata Corp, College Station TX, USA). The Institutional Review Board at The
Children’s Hospital of Philadelphia approved the study and waived the
requirement for consent from individual children/families.

RESULTS

Demographic and clinical characteristics for the study cohort appear in
Table 2.

Performance of BISG-Supplemented Imputation

The surname for 171,093 (88 percent) of the 194,083 geocoded patients
exactly matched entries in the U.S. Census surname list, similar to the popula-
tion rates of common surnames (Elliott et al. 2009). As expected from the con-
struction of the Census surname list (Word et al. 2008), the unmatched
surnames included hyphenated names, misspellings of common names, and
uncommon names. All unmatched surnames were included as “rare sur-
names” (see BISGmethods section).

Ability of BISG-Supplemented Imputation to Identify True Race/Ethnicity

For the major race/ethnicity categories, the census-based probabilities had
good qualities as a test for parent-reported race and ethnicity. The AROC was
high for all race and ethnicities prevalent in our cohort (Table 3).
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Estimated Racial/Ethnic Proportions in the Cohort

By design, the distribution of race/ethnicity among cases with nonmissing data
differed substantially from the true proportions. In all categories, the addition
of the BISG probabilities to formal imputation models slightly improved the
estimates for the proportion of children in each race/ethnicity category. In
most categories the addition of care location also resulted in slight improve-
ments (Table 4).

Performance of Imputation Methods

Median values from simulations for the association of race/ethnicity and out-
come appear in Table 5. As expected by the design, the regression estimates
obtained using all data in the gold-standard dataset matched the stipulated val-
ues for both the continuous and dichotomous outcomes. Two methods for
handling missing data—complete case analysis in which only data with non-
missing values are used and the missing indicator variable method—produced
highly biased results. With the binary outcome for these two methods, the
direction for the odds ratio was reversed for the black subjects (an odds ratio
greater than 1 was estimated when the true odds ratio was 0.5).

Standard multiple imputation reduced the bias somewhat, especially
for the estimates of both the continuous and dichotomous outcome associ-
ated with black race. However, in the case of the dichotomous outcome,

Table 2: Characteristics of the Study Cohort

Group N %

Hispanic or Latino ethnicity 8,706 5.1
Non-Hispanic

White 101,377 59.6
Black or African American 55,286 32.5
Asian or Pacific Islander 4,802 2.8

Gender
Female 83,700 49.2
Male 86,471 50.8

Age
Birth to 4 years 54,987 32.3
5 to 11 years 65,950 38.8
12 years and up 49,234 28.9

Disease
Asthma 22,216 13.1
Attention-deficit disorder 7,462 4.4
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the odds ratio estimate using multiple imputation was only slightly less
than 1 for black race/ethnicity (true value 0.5). Bias fell substantially,
although it did not disappear, for BISG-supplemented-multiple imputation.

Table 3: Area under the Receiver Operating Characteristic (AROC) Curve
as a Measure of the Ability of the BISG Measures of Race/Ethnicity to Dis-
criminate among the True Race and Ethnicity Groups

Race or Ethnicity* N ROC Area† %Correctly Identified‡

Hispanic or Latino 8,706 0.88 50.2
White 101,377 0.95 97.2
Black or African American 55,286 0.97 75.8
Asian or Pacific Islander 4,802 0.91 62.6
Total 170,171 0.95§

*American Indian/Alaska Natives andmultiracial categories were excluded.
†ROC area compares the performance of the BISG probability membership in a particular race
or ethnic group as a continuous score (as in a diagnostic test score) compared to the true dichoto-
mous value for the child’s membership in that group (i.e., 1 if the child is a member of that race/
ethnic group, versus 0 if the child is not).
‡Reports the percent of children in each race/ethnic group for which the BISG algorithm assigned
the highest probability to the correct group. This metric corresponds to the less accurate dichotim-
ization of BISG probabilities (Adjaye-Gbewonyo et al. 2014).
§Population-weighted average of area under the receiver operating characteristic curve. This met-
ric corresponds to the more accurate direct uses of BISG probabilities (Elliott et al. 2009).

Table 4: Estimated Proportion of Races by Method of Imputation in the
Sample Cohort (ExcludesMultiracial Designations)

Group†

Before Imputation Traditional Imputation
BISG-Enhanced

Imputation

Parent-
Report (%)‡

Exclude
Missing (%)§ No Site (%)

With
Site (%)

No
Site (%)

With
Site (%)

Hispanic 5.1 4.9 4.9 4.8 4.9 5.0
White 59.6 67.6 65.2 62.8 61.9 61.4
Black¶ 32.5 24.5 26.8 29.3 30.4 30.7
Asian 2.8 4.9 3.1 3.1 2.8 2.9

Notes: N = 17,105; 10% random sample of the cohort. These results are not based on simulations.
†American Indian/Alaska Natives andmultiracial categories were dropped.
‡Parent-report reflects the actual report of race/ethnicity in the study practices prior to setting data
to missing.
§Data were assigned to missing in a nonrandom fashion and then imputed using standard and cen-
sus enhanced imputationmethods.
¶Black race was significantly under-represented after data were set to missing. Adding additional
predictors (primary care practice site and BISG probabilities) to multiple imputation partially
recovered the true proportions.
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In the case of the dichotomous outcome, only the BISG-supplemented
approach correctly estimated the odds ratio associated with black race/eth-
nicity to be less than 1.

As a final check, we assessed whether the use of the BISG probabilities
introduced bias in multiple imputation when race/ethnicity data were missing
in an unbiased fashion. We found that no bias was introduced by the use of
BISG data in this scenario (data not shown).

DISCUSSION

One promise of “big data” is that large datasets derived from EHR and admin-
istrative sources will expedite understanding of health disparities. Unfortu-
nately, large clinical data research networks that aggregate data from multiple
health systems, such as those funded by the Patient-Centered Outcomes
Research Institute, will encounter randomly and nonrandomly missing race/
ethnicity data for the foreseeable future.

We investigated whether the addition of the new information derived
from the BISG surname/address method to traditional methods of multiple
imputation, improves the accuracy of estimates in the presence of partially
missing data on race and ethnicity in a large pediatric EHR dataset. We delib-
erately used conventional missing data methods because the software for
those methods is increasingly available and the output provides discrete cate-
gories rather than probabilities, allowing reporting both from regression
analyses and contingency tables. A case of extreme bias with a calculated odds
ratio in the wrong direction for a dichotomous outcome was almost com-
pletely corrected using the BISG-enhanced imputation approach. In this case,
the BISG-enhanced imputation odds (0.65) were similar to the true odds (0.5).
In our cohort, the enhanced imputation model improved estimates and
reduced bias. An additional advantage of formal imputation of missing data,
as contrasted with use of only complete data, lies in the increased statistical
power of the larger usable samples.

Limitations

Although the 30 primary care sites in this study care for a racially and ethni-
cally diverse group of children, the sample was limited to a single health sys-
tem in two states. The data for this study were derived from EHRs captured as
part of routine care and likely include misclassification errors in all variables.
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We excluded multiracial children from the dataset because there was no
reliable way to enter this classification in our EHR. Multiracial children were
typically described as having “other” or “unknown” race/ethnicity at the time
of this study. Also, as less than 1 percent of the children in our cohort were
American Indian, we were unable to evaluate performance for this subgroup.
Insurance type was our only marker for socioeconomic status. More precise
markers such as household income should be included in multiple imputation
when available.

Race/ethnicity probabilities from the BISG algorithm do not include
estimates of the uncertainty of those probabilities. However, uncertainty in
BISG probabilities has been shown to have negligible effects on estimation
under reasonable assumptions (McCaffrey and Elliott 2008). Finally, with
increasing numbers of racially blended families, the surnames of children over
timemight have decreasing value in predicting racial/ethnic backgrounds.

CONCLUSIONS

When used with standard statistical tools for proper imputation of missing val-
ues, the additional data from an algorithm for identifying race/ethnicity using
U.S. Census data on surnames and home address lead to reduced bias in typi-
cal analyses of associations between race/ethnicity and health outcomes. Our
results suggest that, even in pediatric settings, this algorithm should be pre-
ferred over standard methods for addressing missing race/ethnicity data.
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