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Abstract

Pediatric human immunodeficiency virus (HIV-1) infection remains a global health crisis. 

Children are much more susceptible to HIV-1 neurological impairments than adults, which can be 

exacerbated by coinfections. Neurological characteristics of pediatric HIV-1 infection suggest 

dysfunction in the frontal cortex as well as the hippocampus; limited MRI data indicate global 

cerebral atrophy, and pathological data suggest accelerated neuronal apoptosis in the cortex. An 

obstacle to pediatric HIV-1 research is a human representative model system. Host-species 

specificity of HIV-1 limits the ability to model neurological consequences of pediatric HIV-1 

infection in animals. Several models have been proposed including neonatal intracranial injections 

of HIV-1 viral proteins in rats and perinatal simian immunodeficiency virus (SIV) infection of 

infant macaques. Nonhuman primate models recapitulate the complexity of pediatric HIV-1, 

neuropathogenesis while rodent models are able to elucidate the role specific viral proteins exert 

on neurodevelopment. Nonhuman primate models show similar behavioral and neuropathological 

characteristics to pediatric HIV-1 infection and offer a stage to investigate early viral mechanisms, 

latency reservoirs, and therapeutic interventions. Here we review the relative strengths and 

limitations of pediatric HIV-1 model systems.
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As part of the United Nations Millennium Declaration, the global community took the 

initiative to halt and reverse the worldwide spread of HIV/AIDS by the year 2015.1 Through 

the collective effort of international governments, organizations, local communities and 

advancements in scientific discovery, the number of new HIV-1 infections continues to 

decline.2 Although there has been a decline in mother-to-child HIV-1 transmission over the 

past decade, an estimated 650 children under the age of 15 years become infected with 

HIV-1 each day,3–6 with approximately 50% of these children7 being perinatally infected 

through mother-to-child transmission (MTCT) via breast milk.8–10 The achievement in 

reducing perinatal infection rates has been accompanied by increased survival rates of 

HIV-1 infected children due, in part, to advances and access to antiretroviral therapy 

(ART),11 both in North America and worldwide.2,12–15 However, of the estimated 2.5 

million children under the age of 14 living with HIV-1, only about 25% receive 

antiretroviral therapy.2 In 2012, over 200 000 children died from AIDS-related causes16 

with resource-poor areas such as Sub-Saharan Africa accounting for the majority of children 

under the age of 14 years living with HIV-1 and new infections worldwide.4 Perinatal 

infection rates in North America are less than 2%, mainly due to interventions such as 

routine HIV-1 screening of pregnant women, use of antiretroviral drugs, avoidance of 

breastfeeding, and elective cesarean delivery.3,17–19 Currently, there are an estimated 10 000 

perinatally infected HIV-1 children/adolescents in the United States, who are 

disproportionately distributed among Black/African-American and Hispanic/Latino 

populations.19

Long-term survival poses a set of unique management challenges as perinatally HIV-1 

infected children transition to adolescence and adulthood.13,20,21 Early adolescence marks a 

period whereby adolescents begin to take charge of their own health management and 

lifestyles (life-long habits). There is a general paucity of data concerning the health 

outcomes of perinatally HIV-1 infected children and adolescents.22 Existing data suggest 

poor adherence to antiretroviral medications21,23,24 and marked obesity rates leading to 

physical complications such as cardiovascular disorders.14,22,25–29 This is further 

complicated by a high prevalence of neurodevelopmental and cognitive deficits,30–36 as well 

as increased frequency of reported psychiatric disorders within the perinatally HIV-1 

infected adolescent population.37
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NEURODEVELOPMENTAL DISORDERS

Perinatally HIV-1 infected individuals are disproportionately affected by HIV-1 related 

neurological impairments in comparison to adult infected patients.38,39 Children will often 

display neurobehavioral deficits prior to significant immunosuppression.40 Neurocognitive 

impairment is associated with a greater risk for disease progression and poorer morbidity, 

even in the advent of ART.41 In 2013, only 1 of 4 HIV-1 infected children needing access to 

ART, received it, and thus, the remainder were potentially susceptible to severe neurological 

damage.42 Early ART intervention partially ameliorates the neurological consequences of 

perinatal HIV-1 infection; however, deficits persist even with successful viral 

suppression.38,43–46

In the presence of ART, HIV-1 infected infants present a range of neurodevelopmental 

delays and impairments,47 which include fine and gross motor impairments, cognitive 

delays,48,49 verbal comprehension deficits,50,51 executive function impairments,40,41 

working memory deficits, impaired visual-spatial integration,40 abnormal muscle tone, and 

spasticity.30,32,33,38,40,43,52–56 A higher prevalence of seizure activity57 and multiple-

sclerosis-like illness have also been reported in perinatally infected infants.58 The variety of 

neurological complications that affect perinatally infected children results in impaired 

emotional and social skills, hyperactivity, and anxiety.51,59 The neurobehavioral deficits 

noted in childhood persist through adolescence, with an increased incidence of anxiety and 

depression that typically require psychotropic medication.37,44 As with children, the 

neurocognitive impairments and psychiatric disorders in adolescence interfere with 

performance in social and schooling situations36 and negatively affect overall health care 

management. The impact of HIV-1 viral load on neuropsychological impairment may be 

related to host chemokine receptor expression including CCR2,60 as well as viral factors.61

HIV-1 infection worldwide is attributed to different clades (A–K), which are unequally 

distributed by geographical region. Although clade C is predominant worldwide, namely, in 

India and throughout Africa,62,63 clade B has been more extensively studied as it is the 

prevalent form in North America and Europe.64–66 Clade-specific differences in disease 

transmission, including viral replication and progression, have been reported in adult 

populations.64,67,68 Clade-specific induction and severity of neuropathogensis have been 

reported.64,67–69 Specifically, clade B has a higher neurotoxic potential than clade C and 

may account for the higher incidence of HIV-1 associated neurological disorders in adults in 

Western countries.67–70 The scarce reports of neurological manifestations of HIV-1 

infection in children of developing countries suggest a similar neurological profile to 

infected children in Western countries where clade B HIV-1 is prevalent.44,71–76 However, 

clade-specific neuropathological manifestations within the pediatric population has not been 

clearly established. Although, there is a positive correlation between neurological 

impairment and plasma HIV-1 viral load,43,77 the direct relationship between specific 

neuronal lesions and viral load, which is critical for our understanding of disease 

progression, has not been established.41,61,78 Similarly, it has also been shown that low 

neuropsychological function is related to disease progression.41 The longitudinal 

neurobehavioral trajectory of vertically infected adolescents remains grossly understudied36 
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but is of critical importance, as ART has reduced mortality and perinatally HIV-1 infected 

infants now survive into adolescence and adulthood.

NEUROIMAGING

Early neuroimaging studies commonly found global cerebral atrophy and basal ganglia 

calcifications.79–81 Imaging studies from HIV-1 infected children under the influence of 

ART have shown ventricular enlargement, sulcal widening white matter lesions,43,82 and 

altered metabolite concentrations in the frontal cortex and hippocampus.40,56,83,84 A recent 

MRI study in HIV-1 positive children under the age of 6 years found white matter signal 

abnormalities predominantly in the frontal and parietal lobes. Children in this study began 

ART by 8 weeks of life, suggesting that the white matter abnormalities manifest early during 

the infection, possibly due to early entry of HIV-1 into the central nervous system (CNS).85 

There is also an increased prevalence of cerebrovascular disease.86 Diffusion tensor imaging 

also indicates reduced radial diffusivity, suggesting demyelination,56 which is consistent 

with sparse reports of multiple-sclerosis-like disorders in HIV-1 infected children.58 White 

matter abnormalities may occur very early in the infection, possibly within 8 weeks of life.85

NEUROPATHOLOGY AND NEUROTOXICOLOGY OF HIV-1

The scarce pathology reports from HIV-1 infected children indicate that neurological 

damage is an indirect consequence of perivascular inflammatory cell infiltrates containing 

HIV-1 infected macrophages and multinucleated cells, leading to infection of astrocytes and 

activation of a neurotoxic cascade87,88 including apoptosis within the cerebral cortex.88,89 

There is also evidence suggesting a possible direct neuronal infection in infants.90 Pathology 

reports confirm imaging data suggesting ventricular enlargement, myelin pallor, cerebral 

atrophy, and basal ganglia calcification.91 Proinflammatory cytokines related to abdominal 

obesity have also been associated with progressive neurocognitive impairment in HIV-1 

patients.92 Uninfected children (HIV-seroreverter) born to seropositive HIV-1 mothers also 

display neurobehavioral deficits,81,93,94 albeit not as severe or prevalent as vertically 

infected children.40,48,95 This could be due to inflammatory-mediated damage related to 

maternal HIV-1 infection or possibly mitochondrial toxicities related to maternal ART.96–99

The pathophysiology of pediatric and adult HIV-1 infection appears to share key features. 

HIV-1 primarily targets CD4+ T cells by the binding of the HIV-1 envelope glycoprotein 

120 (gp120) to the CD4 cellular receptor and a chemokine coreceptor, mainly CCR5 and 

CXCR4. Binding to these receptors causes conformational changes in the gp120 proteins 

that lead to fusion of the HIV-1 particle with the host cell. The capsid of the virus 

disintegrates and it releases HIV-1 RNA, reverse transcriptase, integrase, ribonuclease, and 

protease into the cell. Then, the single stranded RNA of the virus is reverse transcribed to 

double-stranded DNA, which is incorporated into the host cell genome and then 

replicated.11,100,101 The virus can kill infected cells directly, via immune-mediated 

mechanisms, or can cause apoptosis in uninfected cells.

Neuronal damage within the CNS is mediated through viral proteins Tat (trans-activator of 

transcription), Nef, Vpr (viral protein R), and gp120. Indeed, both Tat and gp120 have been 

shown to directly induce neuronal apoptosis, while Nef and Vpr are key regulators of 
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apoptosis of infected cells.11,102 Indirect neurotoxicity may result from the release of 

cytokines, metalloproteinases, gp120, and Tat from HIV-1 infected macrophages and 

microglia.11,103 HIV-1 associated proteins have been shown to directly impact the viability 

and function of the neurons.11 They also affect neurotoxicity by affecting the formation of 

ion channels that trigger excitatory responses in hippocampal neurons.11 HIV-1 

pathogenesis in infants goes beyond gp120 and Tat toxicity, as elevated levels of 

proinflammatory cytokines (TNF-α, INF-γ, IL-12) are negatively correlated to 

neurocognitive function in HIV-1 positive children.34 Neural progenitor cell proliferation is 

also adversely affected by HIV-1 infection and related viral proteins.11,104,105 Moreover, 

postmortem studies of brain specimens from patients with HIV-1 associated neurological 

disorders showed a greater decrease in neural progenitor cells in the dentate gyrus, 

compared to HIV-1 negative controls and HIV-1 positive individuals that did not possess the 

same neurocognitive deficits.106

The ability of HIV-1 infected monocytes or T cells to progress into the brain relies on the 

ability of the virus to transverse the blood-brain barrier (BBB),107 to replicate within the 

brain, and to initiate the cascade of neuroinflammation. The BBB functions as a selective 

barrier between the CNS and the bloodstream. The BBB also adjusts inflammatory and 

immune responses by reducing the passage of toxins and pathogens into the CNS from the 

bloodstream. Like the immune system, the perinatal brain BBB is in an immature state108 

and it is hypothesized that HIV-1 infection interferes with the formation of the BBB by 

reducing the population of pericytes, a significant constituent of the BBB.109,110 

Neuroinflammation and breakdown of the BBB have been implicated as mechanisms 

contributing to HIV-1 related neurological disorders.87,111–115 Once the virus transverses 

the BBB in cell-free or cell-associated form, the ability of HIV-1 to infect new cells within 

the brain depends on the presence of CCR5 and CXCR4, which are known to be transiently 

expressed during early development of the CNS in primates.116 Expression of the main 

HIV-1/SIV receptor CD4 and of the chemokine coreceptors CCR5 and CXCR4 in the brain 

are critical in the neuropathogenesis of HIV-1,116 and signaling through these receptors 

might alter the balance between survival and proinflammatory neuronal death.117 These 

receptors are expressed on neural progenitor cells and have been proposed to play a role in 

HIV-1 induced reductions in neurogenesis.11,103,118,119 The ability of HIV-1 to induce 

neuroinflammatory and neuroapoptotic cascades appears to be pathway specific.118–120 For 

example, cathepsin B, which is secreted from activated macrophages, has been linked to 

HIV-1 induced neuroapoptosis120 and activation of the p38 mitogen-activated protein kinase 

is involved with HIV-1-induced deterioration of the BBB.111

ANIMAL MODEL SYSTEMS

As evidenced from the scarcity of neuroimaging and pathological reports, a main and 

obvious obstacle in pediatric HIV-1 research is sample access. The developing immune 

system is clearly more susceptible than the adult to adverse viral infections;121 therefore, it 

is critical to design and test potential intervention therapies in pediatric animal model 

systems.122 There are relatively few research groups investigating the pathogenesis and 

prevention of pediatric HIV-1 infection in animal models.123–129 Here we will examine 
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recent neurological findings in both rodent and primate models of pediatric HIV-1 that will 

guide the discussion on validity and choice of model systems.

Rodent Models

Small animal model systems such as mice and rats provide an efficient and accessible 

method of investigating neuropathogenic mechanisms of pediatric HIV-1. There are, 

however, a number of limitations of rodent models. Foremost, mice and rats are not the 

natural hosts of HIV-1 and are not susceptible to HIV-1 infection and therefore do not 

develop disease.130 To date, there are no known HIV-1 rodent homologues. Alternate 

strategies to study HIV-1 pathogenesis in rodents131 include intracranial administration of 

Tat/gp120 proteins,132,133 inducible Tat/gp120 transgenic mouse models,104,134 and 

humanized mouse models.135,136 Although rodent models are the most common non-tissue-

culture means of investigating HIV-1 neuropathogenesis, only the Tat/gp120 intracranial 

administration has been used to model the neurological consequences of pediatric HIV-1 

infection.132,133

Rodent models have demonstrated that Tat1–72 and gp120 are involved in the 

neuropathophysiology of HIV-1 infection, with the hippocampus being particularly 

susceptible to the neurotoxic cascade of HIV-1 proteins.124,132,137 Bilateral 

intrahippocampal administration of Tat1–72 on postnatal day 1 (PND1; third trimester 

equivalent) in rats has been shown to alter prepulse inhibition that lasted from adolescence 

into adulthood (PND 30 and 60 for males; PND 30, 60, and 90 for females), suggesting 

impaired sensorimotor gating, which is a reflection of cognitive processing.138 Tat1–72 

administration also impairs spatial memory in adolescence.132 In contrast, neonatal 

intrahippocampal gp120 administration transiently alters sensory-motor function (deficit at 

PND 3 but not PND 8);139,140 however, it may alter dopaminergic activity, leading to long-

term sensorimotor gating deficits (assessed at PND90–120).141 Combined gp120/Tat1–72 

affects eye opening and negative geotaxis (examined at PND 14–16 and PND 3–4, 

respectively).132 Neonatal administration of the Tat1–86 protein, encoding for exons 1 and 2, 

results in altered reflex development, increased response latency for negative geotaxis, and 

failure to habituate in a locomotor activity chamber.133 In this model, design-based 

stereology revealed that neonatal intrahippocampal gp120 and Tat1–72 administration results 

in differential and regionally selective cell loss within the hippocampus. gp120 reduces the 

neuronal population within the of the cornu ammonis subfields 2/3 (CA2/3). In contrast, 

neonatal intrahippocampal Tat administration reduced the neuronal population in the CA2/3 

subfields and the hilus of the dentate gyrus (DGH), elevated the astrocyte population in the 

DGH and subiculum, and elevated the oligodendrocyte population in the DGH (~PND 

200).137 The postnatal timing of intrahippocampal Tat1–72 administration is related to the 

toxicity of this viral protein. When Tat1–72 administration is delayed to PND10, still in the 

rodent third trimester equivalent, neuronal numbers within the hippocampus are not altered. 

However, glial cells and astrocytes are increased in the DGH and subiculum and 

oligodentrocytes are increased in the DGH, similar to the effects following PND1 Tat1–72 

administration.124 Neither intrahippocampal neonatal Tat1–86 or gp120 administration was 

able to induce inflammatory proteins such as IL-1β, or transcription factors NF-kβ and I-

Kβ.133 The effect on cell number in the DGH was indicative of the spatial memory 
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alterations observed in adulthood.132 These results support the hypothesis that Tat plays a 

significant role in pediatric HIV-1 neuropathogenesis and the development of psychological 

impairments that are found in HIV-1 infected children.124

The main limitation with neonatal intracranial viral protein administration is that it is not an 

infection model. The humanized mouse model has the potential to overcome this limitation. 

Within the past two decades, humanized rodent models have been utilized to study HIV-1 

infection.142,143 HIV-1 infection in the humanized rodent model leads to persistent HIV-1 

infection and immunopathogenesis, including immune-activation and depletion of human 

CD4 T cells.144 In recent years, improvements in the ability to engraft human cells and 

tissues into immunodeficient mice have led to successful infection by various strains of 

HIV-1, namely, by “knockout” or “knockin” host innate immune system.145 Adult HIV-1 

infection in the NOD/scid-IL-2Rγc
null humanized mouse model leads to an influx of CD8+ 

cells in the brain, microglia activation, neuronal reductions, compromised oligodendrocyte 

numbers, and meningitis.135,136,142 Behaviorally, these mice have a lack of habituation to 

the open field, memory loss, and anxiety-like behavior,142 similar to that seen in neonatal 

gp120/ Tat intracranial injections.133 The humanized mouse model has the potential to 

unravel the complex neuropathogenesis of HIV-1 infection and be a vessel for testing 

therapeutic approaches, however this model system has not yet been employed to investigate 

pediatric HIV-1 infection. Hypothetically, it is possible to humanize mice at a young age, 

but it does require surgery as well as a 12 week latency between transplantation and 

reconstitution thereby limiting its value as a potential model of neonatal and pediatric 

HIV-1 infection.146

The EcoHIV mouse also holds potential as a pediatric model as it takes advantage of a 

murine retrovirus, ecotropic murine leukemia virus, to recapitulate HIV-1 infection. EcoHIV 

can be injected systemically with minimal invasiveness to the immunocompetent host.147 

EcoHIV has been shown to infect the liver, lung, and brain with an accompanying elevation 

of IL-6 and TNFα expression, suggesting systemic inflammation after 3–4 weeks of 

infection of adult mice.148,149 The EcoHIV model presents a relatively inexpensive and 

accessible model in which to investigate pediatric HIV-1 infection. However, immune and 

brain development in neonatal rodents differs substantially from human neonates, suggesting 

limited use of the humanized mouse model to answer questions related to pediatric HIV-1 

induced neuropathogenesis.122,150

Nonhuman Primate Models

The complex neuropathogenesis of HIV-1 infection is not readily recapitulated in rodents, 

necessitating the need for alternative models. Simian immunodeficiency virus (SIV) 

infection in macaques is a valid alternative, because SIV and HIV-1 have similar 

pathogenesis, including routes of transmission, infection of CD4+T cells and macrophages, 

immune suppression, disease progression and neurological complications in juvenile and 

adult primates.151 Moreover, mother-to-child transmission (MTCT) can occur by the same 

routes in both monkeys and humans.122 In addition, infant macaques show similar immune 

and neurodevelopment to human infants.122,152,153
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There are several reported models investigating the neuropathogenesis of pediatric SIV 

infection. In the pigtailed macaque (Macaca nemestrina) model, vertical infection was 

induced by intravenous inoculation of the dam during the third trimester with HIV-2287, 

with 58% of the infants being infected at birth. These infants displayed significant cognitive 

and motor delays in the Well and Screen Task used to test object permanence and the Fine 

Motor Task used to evaluate motor capabilities. Deficits in motor and cognitive 

development were correlated with CD4+ lymphocyte cell counts at birth.154 Another cohort 

of pigtailed macaques that received perinatal intravenous or intrathecal HIV-2287 on PND36 

displayed similar behavioral manifestations to those infected in utero. Viral RNA was 

detectable in the cerebrospinal fluid (CSF) within one week postinoculation and peaked 

within 2–3 weeks followed by a decline. The concentration of quinolinic acid, an associated 

marker of neuronal death, was elevated 4–8-fold within 5 weeks postinoculation. 

Histopathologically, these infected animals displayed evidence of periventricular white 

matter loss, microgliosis, perivascular lymphocyte infiltration, and neuronal 

degeneration.154,155 The extent and type of cell loss, however, has not been reported in this 

model.

In the rhesus macaque (Macaca mulatta) model, three isolates of SIV (SIVmac239, 

SIVmac239/316, and SIVmac251), known to penetrate the CNS, have been used to investigate 

pediatric HIV-1. In one study comparing the three isolates, subjects (n = 18) were 

intravenously inoculated within 24 h of birth with approximately 103 50% tissue culture 

infectious doses/kg with one of the isolates.128 Histological lesions of the CNS included 

perivascular lymphocyte infiltration with in the basal ganglia and cortical white and gray 

matter. Only one subject had detectable gp120 protein by immunohistochemistry in the 

CNS. In order to detect the virus in the CNS, a more sensitive PCR-based probe had to be 

used. This method detected viral DNA as early as 3 days postinoculation mainly in the 

cortical gray matter and basal ganglia. Viral RNA was detectable in the CSF of all subjects 

within 14 days of inoculation.128

As described extensively, SIVmac251 infected newborn rhesus macaques infected 

intravenously or orally with virulent, uncloned SIVmac251 show persistently high viremia 

and rapid immunosuppression, with the majority of animals developing clinical disease and 

meeting the criteria for euthanasia (often including neurological signs) within 6 months of 

infection.156 In one study, newborn rhesus macaques received 100 tissue culture doses of 

50% (TCID50) of SIVmac251 within 72 h by the intravenous route to ensure a 100% infection 

rate.122 Animals were sacrificed when they met clinical criteria for euthanasia of retrovirus-

infected animals, as early as 7–10 weeks post-infection. Brains were extracted and prepared 

for histological analysis.157 Each brain was serially sectioned, with each hemisphere 

yielding approximately 1400 sections and banked in antigen preserve. This method of serial 

sectioning and brain banking maximizes the utility for design-based stereological analysis 

and immunohistochemistry.158–160 Design-based stereology is a mechanism for 

quantitatively estimating cell populations within a given brain region while reducing the bias 

of cell shape, size, orientation, and distribution.158 Data from this model indicates that, 

within two months of infection, SIV significantly reduces the hippocampal neuronal 

population (Figure 1) in the pyramidal layer of the CA1, CA2, and CA3 subregions. 
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Immature neurons within the dentate gyrus also experience a significant loss (Figure 2).161 

This is congruent with adolescent and adult rodent models that have also demonstrated 

attenuated neurogenesis. The loss of immature neurons and pyramidal neurons may explain 

the neuropathogenesis and long-term neurological consequences observed in HIV-1 positive 

children.104,121,162–164 Potentially exacerbating the neurological consequences of pediatric 

HIV-1 infection is potential demyelination. In humans, myelination is developmentally 

protracted throughout childhood with adult levels not being obtained until sexual 

maturity.165 The effects of HIV-1 infection on this prolonged myelination are still unclear; 

however, clinical data suggests multiple sclerosis type behavior58 and reduced radial 

diffusivity, an indicator of demyelination, in diffusion tensor imaging56 have been reported. 

There are also reductions in hippocampal myelination in our perinatally SIV-infected 

subjects166 (Figure 3), which may provide the anatomical basis for clinical reports. Data 

from this model do not preclude deficits in other brain areas. The brain banking of 

histological sections provides versatility for exploring the extent and type of neuronal loss in 

other brain areas and potential mechanisms of neurotoxicity through immunohistochemistry.

Can Animal Models Be Utilized to Study Neurological Consequences of Pediatric HIV-1 
Infection?

Cell culture systems have been used extensively to elucidate the cytotoxic roles of HIV-1 

genes (gag, pol, env, tat, rev, vif, vpu, vpr, and nef), but are limited in their ability to address 

dynamic physiological interplay between cell types, proteins and organ systems.167 Animal 

models are critical for investigating the complex neuropathogenesis of HIV-1 during each 

phase of infection. The development and choice of animal model depends on the question 

being proposed. The seminal work of Willner168 set forth a convention of criterion to 

evaluate animal model validity that included face, predictive and construct validity. These 

criteria have further been expanded to include homological, pathogenic, mechanistic, face, 

and predictive validity.169

1. Homological validity is used to assess species and strain in relation to the research 

question.

2. Pathogenic validity addresses disease process similarities (i.e., transformation into 

a pathological condition).

3. Mechanistic validity refers to the ability of the model to assess proposed 

mechanisms of action in the human condition by producing similar behaivoural/

cognitive signs and biological markers that are reactive to human therapeutic 

agents.

4. Face validity refers to the similarity of observable disease features between the 

animal and human condition, including disease-induced behavioral and biomarker 

alterations.

5. Predictive validity concentrates on the ability of the model to make predictions 

about the efficacy of pharmacological interventions aimed at reducing disease 

related signs in the model system as well as the relationship between disease 

induction and its observable effects on the organism.169
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These five criteria will be used in this Review to assess the relative strengths and limitations 

of both rodent and nonhuman primate animal models that investigate the neurological 

consequences pediatric HIV-1 infection (Table 1).

Homological Validity

On the surface, it would seem that nonhuman primate model systems would provide the 

highest degree of homological validity considering the similarities with humans in overall 

fetal and infant development, including neurodevelopment,150 homologous brain 

areas,170,171 immune systems,122,172 and the homologous nature of SIV to HIV-1.122,151 

The degree of homological validity depends on the investigative question, which is 

interrelated to mechanistic validity. For example, to study the roles of specific HIV-1 

proteins on the developing dopamine system, intracranial injection rodent models would 

provide homologic validity.173 Alternatively, if the aim of the investigation is to examine 

the host–virus interaction to include systemic infection and related inflammatory cytokine 

actions in the pediatric setting, then the humanized mouse, EcoHIV mouse, or SIV primate 

models could also provide the homologous validity.

Pathogenic Validity

Although neonatal intracranial injection of viral proteins results in long-term behavioral and 

anatomical alterations, it is not pathogenic and neuroinflammatory cytokine activity is not 

elevated38,132,133,137,138,140 and therefore is limited in pathogenic validity. The humanized 

mouse and EcoHIV mouse models have the potential to overcome this 

limitation124,148,149,174 but have not yet been used in the pediatric setting. Infant macaques 

infected with SIVmac251 will generally progress into simian AIDS within 6 months.122 

Neonatally, SIV can be delivered either orally or intravenously, rapidly disseminate within 1 

week, and cause elevated systemic proinflammatory cytokine activity and monocyte 

infection.122,126,128,154 Neonatally SIV-infected animals also show CNS penetration of the 

virus.128 Given that the humanized and EcoHIV mouse models have not yet been tested in 

neonatal mice, the pediatric SIV models reviewed here offer a superior pathogenic validity.

Mechanistic Validity

Neonatal rodent and primate models offer unique strengths in terms of mechanistic validity. 

First the neonatal rodent intracranial injection model allows for the in vivo analysis of 

specific HIV-1 proteins on neurodevelopment. In this manner, it is possible to dissociate the 

mechanistic actions of each of the HIV-1 related proteins.117,111,102,116 The limitation of 

this approach is that CNS and systemic inflammatory proteins, which are thought to 

participate in the pathogenesis of HIV-1,87,111–115 are not activated. Pediatric SIV infection 

overcomes this limitation, but then suffers from the inability to delineate specific roles of 

viral proteins.

Face Validity

Similar to mechanistic validity, both neonatal rodent and primate models parallel the 

observable disease features of the human condition. Impaired sensorimotor gating, cognitive 

processing,138 spatial memory,132 and sensory-motor function139,140 along with elevated 
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numbers of glial cells and astrocytes124 and differential decreases in hippocampal neuronal 

populations137 have all been reported in neonatal rodent models. Likewise, in the several 

models of pediatric SIV infection, subjects have shown cognitive and motor delays,129 

elevated CSF markers of neuronal death, periventricular white matter loss, microgliosis,130 

perivascular lymphocyte infiltration,106,130 hippocampal neuronal loss, immature neuronal 

loss, and demyelination.155 Results from both rodent and nonhuman primate models support 

face validity based on similar behavioral/cognitive signs and biological markers to those 

reported in HIV-1 infected children.124

Predictive Validity

Since the advent of ART, the prevalence of severe neurological impairment has declined in 

both the pediatric38,43–50 and adult175 clinical settings. Despite ART therapy success in 

partially ameliorating the neurological consequences and increasing the life expectancy of 

infected individuals, there remains controversy in its use in both pediatric and adult HIV-1 

patients.175–178 In particular, there is potential for chronic ART to contribute to CNS and 

peripheral nervous system (PNS) neurotoxicity through oxidative stress 

mechanisms.175,176,179 The majority of therapeutic interventions have concentrated on 

controlling systemic viral infection and its neurological consequences through ART.175,176 

There is robust literature reviewing the efficacy of ART in adult nonhuman primate and 

rodent models,175–177,179 so the evaluation of predictive validity here will concentrate on the 

pediatric primate model system.

The SIVmac251 pediatric animal model of SIV-infected newborn macaques has been used to 

test the efficacy of antiviral drugs. Early studies demonstrated that pre- or early 

postexposure zidovudine treatment led to reduced viremia, delayed disease progression with 

improved CNS function in SIVmac251- or SIVsmm/B670-infected newborn macaques.180–182 

In a later study, treatment of SIVmac251-infected infant macaques with the more potent 

drug tenofovir (PMPA) was the first demonstration of in vivo efficacy of this c gtompound 

against established SIV infection.183 Some tenofovir-treated animals survived for 7–14 

years, without any significant lesions observed on routine brain histopathology.183,184 This 

high efficacy of tenofovir was translated into clinical practice, as tenofovir has become a 

widely used drug to treat adult and pediatric HIV-1 infection. Despite the limited data in 

SIV-infected newborn macaques, several antiretroviral drug studies in SIV-infected juvenile 

or adult macaques included more detailed evaluation of neurological function, 

histopathology or virus levels in the CNS. In an established model of neuropathogenesis in 

which animals are infected with a combination of neurovirulent SIV/17E-fr and the 

immunosuppressive strain SIV/Deltab670, relative early therapy (12–24 days after infection, 

i.e., acute viremia) with maraviroc, quadruple antiretroviral therapy, or with the antibiotic 

minocycline had neuroprotective effects based on viral RNA levels in CSF and brain, 

markers of inflammation and immune activation, and amyloid precursor protein 

levels.185,186 Simian immunodeficiency virus infected macaques treated with highly active 

antiretroviral therapy have reduced central nervous system viral replication and 

inflammation but persistence of viral DNA.186,187 Few studies investigated the effect of 

drug treatment during chronic infection. Fox et al.188 demonstrated that tenofovir treatment 
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of SIV-infected adult macaques during the chronic stage of infection normalized 

neurophysiological abnormalities, but not movement abnormalities.

Limiting the effectiveness of ART to treat neurological consequences of HIV-1 infection is 

the ability of the various antiretrovirals to penetrate the CNS. The CNS penetration 

effectiveness (CPE) ranks provides a scale based on the pharmocodynamic properties of the 

antiretroviral drugs to penetrate the CNS and reduce CSF viral loads with higher scores 

correlating to lower detectable CSF viral loads. For example, tenofovir has a CPE score of 1 

with few reports of adverse CNS effects, while nevirapine has a rank of 4 but patients have 

reported psychotic symptoms.178

A recent trend is to develop and test non-ART pharmacological agents to treat HIV-1 related 

neuropathology. In both adult and neonatal HIV-1 models, neurogenesis and proliferation 

are altered by viral infection103,161,164,189 which can be a prime target for 

intervention.104,105,190 Like most other areas of HIV-1 research, the focus has been on adult 

models, but pediatric rodent and nonhuman primate models presented here offer a unique 

platform to test therapeutic intervention aimed at ameliorating the negative consequences of 

HIV-1 in the CNS.

In summary, the use of SIV-infected nonhuman primates as a model for pediatric 

neuropathogenesis has been limited, possibly due to cost, accessibility, or institutional 

infrastructure. Available data suggests that perinatally infected primates share a similar 

neuropathophysiology to their human counterparts, and that antiretroviral treatment, 

especially if initiated early, has beneficial effects. Pediatric SIV models evaluating CNS 

involvement are scarce, but could be utilized effectively in future studies to close gaps in our 

knowledge, such as mechanisms of early infection, the effects of ART on 

neurodevelopment, the potential of the CNS as reservoir for latent virus, the long-term 

behavioral implications, and the development of new strategies to reduce mechanisms of 

neurological dysfunction that are not resolved by antiretrovirals.

CONCLUSIONS

Early ART intervention partially ameliorates the neurological consequences of perinatal 

HIV-1 infection; however, deficits persist even with successful viral suppression.38,43–46 

Despite the neurologic improvement with ART, there is evidence to suggest that some ART 

regimens may act synergistically with HIV-1 to induce neuronal damage in the 

CNS46,179,191 and thus remain controversial. Thus, given the persistent high rate of HIV-1 

infection in infants in resource-poor countries, and increased life expectancy of HIV-1 

infected children receiving an overall health benefit ART, there is an urgent need to assess 

the impact of HIV-1 infection and ART therapy on neurodevelopment, with the goal of 

optimizing ART regimens. Neonatal rodent HIV-1 and perinatal SIV models support clinical 

evidence that the neurons of the hippocampus, as well as hippocampal neurogenesis, are 

particularly susceptible to the neurotoxic cascade of HIV-1 proteins.132,133,137,140,161 

Although the immature neuronal population is susceptible to perinatal HIV-1 infection, it 

may also be the key to therapeutic intervention aimed at reducing the impact of HIV-1 

induced neurological impairment.39,104,121,192 The extent of HIV-1 infection of specific cell 
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types, neuronal loss, and its relationship to viral loads, and the CNS as a potential reservoir 

for latent HIV-1 in infants is currently unknown. This limits the ability to develop and 

evaluate therapeutic paradigms to minimize the neurological impairments as a result of 

HIV-1 infection. While each animal model presents its own limitations, rodent and 

nonhuman primate models are poised to address specific mechanistic and therapeutic 

questions.
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Figure 1. 
Hippocampal neuronal loss. SIV infected infants have apparent enlarged ventricles and 

thinned pyramidal neuronal layers (A, B) compared to control subjects (C, D). In these 

cresyl violet stained sections, neurons can be differentiated from glia based on a clearly 

visible nucleolus surrounded by cytoplasm. The CA fields were delineated on the basis of 

cyto- and chemoarchitecture, and equidistant sections were evaluated throughout the entire 

length of the hippocampus. Design-based stereology of the hippocampal CA subregions 

found an overall 42% neuronal reduction. There were no overall volume differences in 

hippocampus. Magnifications of (A, C) 1.25× and (B, D) 20×; scale bars = 5 mm and 200 

μm, respectively. Figure adapted from Curtis et al., 2014.157
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Figure 2. 
Immature neuronal loss. Serial sections from the entire extent of the hippocampus were 

immunostained with doublecortin, a putative marker for immature neurons.193 At this 

developmental period, immature neurons densely populate the dentate gyrus as evidenced in 

the control subjects (C, D). In the SIV subjects (A, B), however, individual neurons can be 

detected throughout the dentate gyrus, suggesting an apparent lack of double cortin positive 

neurons. Magnifications of (A, C) 1.25× and (B, D) 20×; scale bars = 5 mm and 200 μm, 

respectively. Figure adapted from Curtis et al., 2014.157
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Figure 3. 
Myelination. Matched sections throughout the hippocampus were stained with gold chloride, 

a putative marker for myelin.194 Reductions in myelination are apparent in each region of 

the hippocampus of SIV infected subjects as compared to control subjects. It is not clear if 

the reduction of myelination is due to decreased neurons, axonal degeneration, or 

demyelination of axons. These reductions of myelination further validate the clinical 

relevance of this model. Magnifications: hippocampus 1.25× (A, C), 4× (B, D); dentate 

gyrus 10× (A, D), 20× (B, E), and 100× (C, F); CA1 and CA3 10× (A, C), 20× (B, D).
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