
The axon-glia unit in white matter stroke: mechanisms of 
damage and recovery

Rosenzweig Shira and Carmichael S. Thomas
Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, 
USA

Abstract

Approximately one quarter of all strokes in humans occur in white matter, and the progressive 

nature of white matter lesions often results in severe physical and mental disability. Unlike cortical 

grey matter stroke, the pathology of white matter stroke revolves around disrupted connectivity 

and injured axons and glial cells, rather than neuronal cell bodies. Consequently, the mechanisms 

behind ischemic damage to white matter elements, the regenerative responses of glial cells and 

their signaling pathways, all differ significantly from those in grey matter. Development of 

effective therapies for white matter stroke would require an enhanced understanding of the 

complex cellular and molecular interactions within the white matter, leading to the identification 

of new therapeutic targets. This review will address the unique properties of the axon-glia unit 

during white matter stroke, describe the challenging process of promoting effective white matter 

repair, and discuss recently-identified signaling pathways which may hold potential targets for 

repair in this disease.
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1. Introduction

Small vessel infarcts affecting brain white matter are an important clinical problem, 

accounting for up to 25% of all strokes (Arboix and Marti-Vilalta, 2009; Roger et al., 2012; 

Schneider et al., 2004). This percentage may grow in upcoming years due to the increasing 

prevalence of risk factors associated with small vessel disease, such as type II diabetes and 

metabolic syndrome (Bokura et al., 2008; Del Bene et al., 2013; Gouw et al., 2008). Many 

promising neuroprotective therapies for stroke failed the transition from animal studies to 

clinical trials, and a major reason for these failures may be the almost exclusive focus of 

preclinical studies on the neuroprotection of cerebral gray matter, with little attention to 

Corresponding Author: Shira Rosenzweig, Ph.D., Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles 
E. Young Drive South, Los Angeles, CA 90095, USA. shirarosen@ucla.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Brain Res. Author manuscript; available in PMC 2016 October 14.

Published in final edited form as:
Brain Res. 2015 October 14; 1623: 123–134. doi:10.1016/j.brainres.2015.02.019.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



white matter tracts (Gladstone et al., 2002). A probable contributing factor is the 

predominant use of rodents in pre-clinical studies, whose white matter comprises only ~14% 

of total brain volume. Since white matter makes up to 50% of the volume in human brains, it 

is likely that the data from rodent studies misrepresents the relevance of white matter in 

human brain pathology (Matute, 2011; Zhang and Sejnowski, 2000). Although ischemic 

injuries in gray and white matter share some common characteristics, there are unique 

properties of stroke in white matter that are derived from the white matter elements: the 

axons, the oligodendrocytes that enwrap them in myelin, and fibrous astrocytes which 

interact with the former two. These, alongside microglia, progenitor cells and vasculature, 

form an intricate environment and a delicate homeostasis that is highly vulnerable to 

ischemic damage (Hamner et al., 2011; Matute et al., 2001; Matute, 2011; Pantoni et al., 

1996; Stirling and Stys, 2010). Development of effective therapeutic strategies and 

identification of new targets for the treatment of white matter stroke (WMS) would require 

an enhanced understanding of the complex cellular and molecular architecture of white 

matter components. This article will review key mechanisms underlying the white matter 

response to ischemic WMS with focus on the axon-glia functional unit during stroke 

recovery.

2. The unique structure and function of brain white matter

The white matter is comprised primarily of axons and glial cells, and is devoid of neuronal 

cell bodies or their dendrites. Bundles of axons are topographically organized in white 

matter so that axons originating from specific regions form projections which occupy 

distinct parts of the white matter (Filley, 2010; Schmahmann et al., 2008). These tracts of 

axons enable rapid communication between non-adjacent brain regions as well as between 

peripheral and central areas.

The majority of white matter axons are enwrapped by oligodendrocytes which form 

segments of myelin sheaths around the axons. Myelin segments facilitate fast saltatory 

propagation of action potentials, and segregate the axonal membrane into defined regions: 

the node of Ranvier, where clusters of Na+ channels “propel” the action potential along the 

axon (Huxley and Stampfli, 1949; Waxman and Swadlow, 1977), paranode, K+ channel-

rich juxtaparanode, and internode (Rios et al., 2003; Susuki and Rasband, 2008).

The lack of neuronal cell bodies and dendrites means there are no “classical” synapses in the 

white matter, but recent work demonstrates the existence of “axo-myelinic” synapses which 

involve vesicular transmitter release from axons, acting on receptors on the inner surface of 

the myelin sheath (Stys, 2011). Neurotransmitters released from unmyelinated white matter 

axons can also act on surrounding glia (Alix and Domingues, 2011). These types of signals 

are at the base of a bidirectional neuron-glia communication involving the secretion of 

endosome-derived vesicles by oligodendrocytes and their subsequent internalization by 

neurons through endocytosis (Fruhbeis et al., 2013). Whether this occurs in white matter is 

still unknown. Oligodendrocytes are also suggested to contribute to long-term axonal 

integrity by delivering products of aerobic glycolysis which are rapidly metabolized in 

axons (Funfschilling et al., 2012).
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Additional important players in white matter homeostatic maintenance are fibrous 

astrocytes. The long processes of these cells run along axons and connect to blood vessels 

(Oberheim et al., 2009). White matter astrocytes are also an important source of energy, 

supplying axons with lactate converted from deposits of glycogen (Brown et al., 2003; 

Ransom and Fern, 1997). Astrocytic endfeet on brain capillaries are an important part of the 

blood–brain barrier (Abbott, 2005; Alvarez et al., 2013), and they also participate in 

regulating local microcirculation (Attwell et al., 2010; Gordon et al., 2008). In addition, 

astrocytic processes form contact with myelinated axons at the nodes of Ranvier, where they 

participate in “siphoning” of K+ ions that accumulate following action potential generation 

(Kamasawa et al., 2005; Rash, 2010).

White matter microglia play an important role in neurodegeneration and inflammation. They 

are activated by cytokines, neurotransmitters and modulators, and can also synthesize and 

release many cytokines, chemokines, reactive oxygen radicals and neurotrophins which can 

be either injurious or beneficial to the surrounding axons and oligodendrocytes (Raivich and 

Banati, 2004).

The white matter components and the complex interactions among them create an optimal 

environment for fast transmission of signals along tracts of axons. However, the low blood 

flow and little collateral blood supply in deep white matter compared to gray matter make 

this intricate milieu highly susceptible to ischemic injuries (Iadecola et al., 2009; O’Sullivan 

et al., 2002), which disrupt white matter function with oftentimes devastating consequences.

3. White matter pathology in humans and WMS models

White matter “lacunar infarcts” in humans range in size up to 15 mm and often result in 

severe physical and mental disability including vascular dementia (Dufouil et al., 2009; 

Goldberg and Ransom, 2003), with an elevated mid-long-term risk of recurrence (Arboix 

and Marti-Vilalta, 2009; Norrving, 2008). Smaller white matter “micro-infarcts” with mean 

diameters between 0.2 and 1 mm are thought to have a similar ischemic origin and are even 

more common, appearing in a third of cognitively normal elderly patients (Smith et al., 

2012). Infarcts in white matter are characterized by an irregular lesion bordered by reactive 

astrocytes and microglia/macrophages in older lesions, while acute lesions feature a necrotic 

encephalomalacic core (Bailey et al., 2012). The axons adjacent to white matter stroke show 

altered nodal structure and molecular disorganization that indicates a peri-infarct region of 

partial damage that radiates out from the infarct (Hinman et al., 2015)

In animals, transient focal ischemia achieved via injection of a vasoconstricting drug into 

white matter is thus far the closest model for human white matter lacunar infarcts. These 

injections produce focal white matter injury, with wide-scale axonal and oligodendrocyte 

damage (Hughes et al., 2003; Sozmen et al., 2009). In the striatum, these models were also 

shown to produce lesions with a peri-infarct penumbra region displaying axon pathology 

(Frost et al., 2006; Lecrux et al., 2008). In subcortical white matter, similar focal lesions 

evolve over time and features oligodendrocyte and axonal loss at the core, and a penumbra 

region displaying demyelination, inflammation and axonal degeneration which are in part 

age-dependent (Rosenzweig and Carmichael, 2013; Sozmen et al., 2009).
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The sensitivity of different white matter elements to ischemia has been demonstrated in 

numerous models of cerebral artery occlusion. Swelling of white matter glia has been 

observed as early as 30 minutes after middle cerebral artery occlusion, followed by loss of 

oligodendrocytes (Irving et al., 1997; Pantoni et al., 1996), and axonal degeneration within 

120 minutes of ischemia (Dewar and Dawson, 1997; Valeriani et al., 2000). Short transient 

ischemia was sufficient to cause widespread striatal white matter injury with extensive glial 

and axon pathology (Kubo et al., 2009).

The progressive damage to oligodendrocytes, myelin and axons observed in white matter 

stroke models and in human white matter stroke may be attributed to glutamate-mediated 

excitotoxicity and downstream molecular pathways. Glutamate, released from astrocytes 

during ischemia due to reversal of Na+-dependent glutamate transporters, acts on ionotropic 

AMPA/kainate and NMDA receptors (Baltan et al., 2008; Micu et al., 2006; Tekkok et al., 

2007). Prolonged activation of glutamate receptors in oligodendrocytes causes influx of 

Ca2+ and its accumulation within mitochondria, which prompts the production of radical 

oxygen species and activation of caspase-mediated cell death (Matute et al., 2006; Sanchez-

Gomez et al., 2003). Oligodendrocytes are particularly sensitive to oxidative stress due to 

their low supplies of the cellular antioxidant glutathione, which is further depleted by 

excessive glutamate (Back et al., 1998; Thorburne and Juurlink, 1996).

A second source for the rise in cytosolic Ca2+ in oligodendrocytes is activation of 

metabotropic P2Y receptors and ionotropic P2X7 receptors by adenosine triphosphate 

(ATP) (James and Butt, 2001; Matute et al., 2007). ATP released from oligodendrocytes 

through pannexin hemichannels was shown to activate P2X7 receptors that cause 

oligodendrocyte death, myelin damage and axon dysfunction (Domercq et al., 2010). High 

levels of cytosolic Ca2+ were also shown to activate Ca2+-dependent enzymes such as 

calpains and phospholipases, resulting in white matter degradation (Stys, 2004; Vosler et al., 

2008). In addition to oligodendrocytes, P2X7 receptors can be found in white matter 

microglia, and their activation mediates inflammation that could further contribute to 

ischemic damage (Xiang and Burnstock, 2005).

The effects of ischemia on oligodendrocytes are directly relevant to axonal function. 

Documented changes in the ultrastructure of myelinated axons following ischemia and Ca2+ 

activation include splitting, retraction of myelin at paranodes and separation of the myelin 

lamellae, suggestive of loss of axoglial contact (Fu et al., 2009; Mclver et al., 2010). Other 

changes documented in mice as early as 3 days after mild cerebral hypoperfusion include a 

progressive reduction of paranodal neurofascin signal and a loss of septate-like junctions, 

increase in nodal length and changes in the spatial distribution of myelin-associated 

glycoproteins (Reimer et al., 2011).

Such changes in the axon-glia structure disrupt the spatial segregation of Na+ and K+ 

channels in the node and juxtaparanode areas. This segregation is critical to proper axonal 

conduction of action potentials and its perturbation has been suggested to contribute to many 

pathological conditions that involve failure of axonal function (Arroyo et al., 2002; Hinman 

et al., 2006; Rasband, 2011; Salzer et al., 2008). Studies in models of multiple sclerosis 

demonstrate that disrupted or less efficient axonal conductance may manifest as severely as 
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a complete loss of axonal function, due in most to the spatial and temporal summation 

requirements that are the hallmark of neuronal signaling; for a target neuron to reach 

threshold, several action potentials (from one or more axons) must arrive to its synaptic 

terminals within a narrow time window. Thus, even a small delay in conduction may equal a 

complete arrest of the signal downstream (Waxman et al., 1995). Many suggested repair 

strategies for white matter pathology, therefore, focus on restoring axonal function through 

oligodendrocytes and myelin repair.

4. Activity-dependent remyelination and oligodendrocyte response to white 

matter ischemia

While myelination is, at its core, a developmental process, the adult mammalian central 

nervous system (CNS) retains at least some capability of remyelination and regeneration 

following injury (Duncan et al., 2009; Franklin and Ffrench-Constant, 2008). In the case of 

white matter ischemia, demyelination and axonal degradation occur quickly in the ischemic 

core, yet gradual restoration of oligodendrocytes and remyelination have been observed in 

the peri-infarct area (Gregersen et al., 2001; Tanaka et al., 2003). An important feature of 

this process is oligodendrogenesis, which occurs following ischemia. This proliferative 

response of oligodendrocyte progenitor cells (OPC), peaks at 5–7 days after stroke induction 

and declines 14–28 days later (Iwai et al., 2010; Sozmen et al., 2009). However, this robust 

regenerative response appears to encounter a roadblock of OPC differentiation failure, 

which ultimately limits recovery after demyelination (Syed et al., 2008). A deeper 

understanding of this regenerative failure is crucial, since remyelination is key in preventing 

axonal degeneration (Irvine and Blakemore, 2008). Figure 1 offers a schematic overview of 

potentially successful repair vs. regenerative failure.

It is hypothesized that during regeneration there is recapitulation of many developmental 

processes. In the case of myelination, neuronal activity plays a crucial role during 

development. Suppressing neural activity during development reduces OPC proliferation 

and disrupts myelination (Barres and Raff, 1993; Demerens et al., 1996), while inducing 

neuronal activity via electrical stimulation promotes proliferation, survival and 

differentiation of oligodendrocytes, as well as axon myelination (Gary et al., 2012; Gibson 

et al., 2014; Ishibashi et al., 2006). In injured spinal cord, electrical activity was similarly 

demonstrated to promote OPC differentiation and remyelination, as well as improve 

locomotor recovery (Zhang et al., 2014).

The underlying mechanisms for this neuron-glia regulation are complex, and several known 

pathways and genes are discussed in the next section. A summarized view of these and other 

pathways is offered in Table 1. Some direct signals that have been identified include 

neurotransmitters such as glutamate and acetylcholine which are released from depolarized 

neurons and act on oligodendrocytes and OPC to modulate proliferation, migration, and 

differentiation (De Angelis et al., 2012; Gudz et al., 2006; Wake et al., 2011; Zonouzi et al., 

2011).

Activity-dependent release of ATP enhances OPC differentiation and myelination (Ishibashi 

et al., 2006; Stevens et al., 2002). Oligodendrocytes express each of the different adenosine 
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receptor subtypes (Othman et al., 2003), and treatment of OPC in culture with adenosine 

promotes their maturation and migration through a A1 adenosine receptor-mediated pathway 

(Othman et al., 2003; Stevens et al., 2002).

Cyclic adenosine monophosphate (cAMP) may be another activity-dependent regulator of 

myelination. Electrical stimulation increases neuronal cAMP in vivo (Udina et al., 2008), 

and depolarized neurons affect myelin protein processing in oligodendrocytes in a cAMP-

dependent manner (Trajkovic et al., 2006). In addition, elevating cAMP levels enhanced 

remyelination in a cuprizone demyelination model (Sun et al., 2012). Recently, cAMP was 

demonstrated to act as an activity-dependent pathway in neurons to promote myelination 

(Malone et al., 2013).

5. Molecular pathways involved in ischemic white matter damage and 

repair

Ischemia is associated with alterations in multiple biological processes and molecular 

pathways, and many proteins greatly affect repair processes in white matter. This section 

will address some of the recently identified molecular systems and their potential function in 

white matter regeneration. At present, the majority of findings come from commonly-used 

demyelination models rather than models of WMS, but it is likely that signals which play a 

role in these models are, to some extent, relevant to WMS pathology.

5.1 Extracellular Matrix related proteins

The extracellular matrix affects proliferation, survival, migration and differentiation of 

oligodendrocytes, as well as process extension and myelination (Sherman and Back, 2008). 

CNS damage leads to accumulation of several extracellular matrix components, particularly 

Chondroitin Sulfate Proteoglycans (CSPGs) and hyaluronan, in and around the injured area 

(Back et al., 2005; Galtrey and Fawcett, 2007). In white matter, high levels of CSPGs like 

aggrecan, neurocan and versican, as well as high molecular weight hyaluronan and one of its 

receptors, CD44, are found in active multiple sclerosis demyelinating lesions and neonatal 

white matter injury (Back et al., 2005; Buser et al., 2012; Sobel and Ahmed, 2001). In 

models of traumatic spinal cord injury and lysolecithin-induced demyelination, 

accumulation of CSPGs inhibits OPC migration and their maturation into myelinating 

oligodendrocytes, while clearance of CSPGs was correlated with remyelination (Karimi-

Abdolrezaee et al., 2012; Lau et al., 2012; Siebert et al., 2011).

High molecular weight hyaluronan blocks OPC differentiation and maturation both in vitro 

and in vivo (Back et al., 2005; Dean et al., 2011; Marret et al., 1994; Sloane et al., 2010). It 

is digested to bioactive forms by the hyaluronidase PH20 which is highly expressed by OPC 

and reactive astrocytes in demyelinated lesions. Overexpression of PH20 inhibits 

oligodendrocyte differentiation in vitro and hyaluronan fragments generated by PH20 block 

remyelination in vivo (Preston et al., 2013). Similarly, overexpression of CD44 in 

myelinating oligodendrocytes induces progressive demyelination (Tuohy et al., 2004). In 

addition to CD44, hyaluronan inhibits OPC differentiation by acting through Toll-like 

receptor 2 (Sloane et al., 2010).
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Dysregulation of matrix metalloproteinases (MMPs), a family of zinc endopeptidases which 

degrade extracellular matrix proteins, was also linked to damage and repair after stroke and 

other neurological diseases (Alvarez-Sabin et al., 2004; Anthony et al., 1997; Horstmann et 

al., 2003). MMPs, and especially MMP-2 and MMP-9, are known to break down myelin 

basic protein and myelin-associated glycoprotein (MAG), two major components of the 

myelin sheath (Chandler et al., 1995; Gijbels et al., 1993). Transient global ischemia 

increases activity of MMP-2 enzyme in reactive astrocytes in corpus callosum, with 

significant suppression of delayed myelin degradation apparent after treatment with the 

MMP inhibitor BB-94 (Walker and Rosenberg, 2010).

5.2 Wnt signaling

The Wnt/β-catenin pathway is involved in many developmental processes, one of which is 

oligodendrogenesis (Ortega et al., 2013). Canonical Wnt signaling through the intranuclear 

mediator Tcf, which is upregulated in OPC during white matter pathology, has been linked 

to impaired myelin repair after injury (Fancy et al., 2009). The binding of Wnt ligands to 

OPC promotes the stabilization of a β-catenin/Tcf/LEF complex and activation of 

downstream genes which, during instances of high activity, inhibit the differentiation and 

maturation of OPC into myelinating oligodendrocytes, ultimately leading to impaired 

myelination (Fancy et al., 2009; Fancy et al., 2014; Feigenson et al., 2009; Ye et al., 2009).

In spinal cord, Wnt and bone morphogenic protein (BMP) signaling pathways have 

overlapping temporal activity and a similar effect of inhibiting oligodendrocytes 

differentiation (Feigenson et al., 2011). Blocking BMP signaling prevents Wnt-mediated 

inhibition of oligodendrocyte differentiation, but not vice versa, suggesting that BMP signals 

act downstream from Wnt (Feigenson et al., 2011). BMP signaling is active in 

oligodendroglia and astrocytes within the demyelinated corpus callosum, and infusion of the 

BMP antagonist Noggin into the brains of mice during demyelination promoted mature 

oligodendrocyte regeneration and remyelination (Sabo et al., 2011).

Axin2 is a transcriptional target of active Wnt signaling that also serves to autoregulate and 

inhibit Wnt signaling by promoting β-catenin degradation (Jho et al., 2002; Lustig et al., 

2002). Axin2 expression is upregulated in OPC in neonatal white matter injury and active 

multiple sclerosis lesions, and its deletion in mice delays OPC maturation and impairs 

remyelination following spinal cord demyelination injury (Fancy et al., 2011). 

Administration of an Axin2 stabilizer was found to be sufficient to promote myelination in 

cerebellar slice cultures after acute hypoxia and in demyelinated spinal cord (Fancy et al., 

2011).

Adenomatous Polyposis Coli (APC) is another regulator of Wnt/β-catenin signaling (Miller 

et al., 2009; Nathke, 2006). APC is transiently expressed in oligodendrocytes during 

development and demyelination- induced regeneration. It was found to enhance proliferation 

and differentiation of OPCs in a cell- autonomous manner (Lang et al., 2013). Its deletion in 

oligodendroglial lineage cells revealed that APC regulates oligodendrocyte differentiation 

through β-catenin-independent, as well as β-catenin-dependent, mechanisms, with the β-

catenin-independent mechanism involving cytoskeletal regulation (Lang et al., 2013).
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Recent work has demonstrated a role for Hypoxia-inducible factors (HIFs) in Wnt7a/7b-

mediated OPC regulation (Yuen et al., 2014). These factors act as transcriptional mediators 

of the cellular response to hypoxia (Majmundar et al., 2010; Semenza and Prabhakar, 2012). 

OPC HIF1/2α activity, triggered by hypoxia, inhibits myelination via autocrine Wnt7a/7b 

signaling, which also has a novel paracrine role in promoting Wnt-dependent vessel growth 

into developing postnatal white matter tracts. Loss of OPC-encoded HIF1/2α function 

inhibits angiogenesis in developing white matter, resulting in catastrophic loss of corpus 

callosum axons (Yuen et al., 2014). This possible interaction between OPC differentiation 

and angiogenesis is a promising research link in stroke, given the natural occurrence of 

angiogenesis in stroke tissue reorganization. It is possible that the HIF-Wnt7a/7b pathway is 

activated by decreased oxygen levels that are associated with ischemic white matter injury, 

and that it plays a role in modulating OPC and blood vessels in infarcted areas, but this has 

yet to be studied.

The SRY-box 17 (Sox17) transcription factor is a regulator of oligodendrocyte 

differentiation (Sohn et al., 2006), which was found to affect Wnt signaling at multiple 

levels, including Sox17-mediated proteasomal degradation of β-catenin (Chen et al., 2013; 

Chew et al., 2011). Enhanced Sox17 expression in oligodendrocytes was detected in active 

remyelinating lesions (Moll et al., 2013), and transgenic overexpression of Sox17 was 

shown to promotes oligodendrocyte differentiation and attenuate lysolecithin-induced 

demyelination (Ming et al., 2013).

5.3 Nogo related proteins

Myelin-associated inhibitory factors such as NogoA and MAG are among the most well-

known factors that inhibit regeneration in the CNS (McKerracher et al., 1994; Schwab, 

2010). These factors bind to the Nogo receptor 1 and 2 (NgR1, NgR2) which are expressed 

by neurons and glial cells (Huang et al., 2012; Hunt et al., 2002). NgR1 is well known to 

inhibit regeneration processes in multiple pathological conditions, but most studies have 

focused on its effects on axonal sprouting and regeneration (Harvey et al., 2009; Wahl et al., 

2014; Yu et al., 2008). Much less is known about the effect of myelin inhibitory factors on 

remyelination and oligodendrocyte regeneration. This information is important in light of 

growing evidence showing that blocking NgR and its ligands improves the outcomes in 

demyelination models (Karnezis et al., 2004; Petratos et al., 2012; Yang et al., 2010). Recent 

reports have indicated that NogoA plays a direct role in regulating myelination in vitro and 

in an in vivo model of focal demyelination (Chong et al., 2012). Furthermore, blocking 

NgR1 significantly enhanced the remyelination process, recruitment of proliferating OPC to 

the lesion site, and functional recovery after demyelination in the optic nerve 

(Pourabdolhossein et al., 2014). The mechanism for NgR1-mediated inhibition of neurite 

outgrowth involves activation of RhoA and its downstream effector Rho kinase ROCK 

(Niederost et al., 2002), however, whether this mechanism also plays a role in the regulation 

of OPC and remyelination is still unknown.

LINGO-1 is a single transmembrane protein specifically expressed in CNS neurons and 

oligodendrocytes. It is an essential signaling co-receptor within the NgR1 complex, and has 

no known direct ligands (Mi et al., 2008). Reduced function of LINGO-1 in OPC promotes 
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differentiation and maturation in these cells, while overexpression of LINGO-1 inhibited 

these processes. Concordantly, increased myelination is present in LINGO-1 knockout 

animals (Lee et al., 2007; Mi et al., 2005; Zhao et al., 2007). An antagonist of LINGO-1 

promoted remyelination and OPC differentiation in vivo after experimental demyelination 

(Mi et al., 2009). The mechanism for LINGO-1-mediated negative regulation of 

oligodendrocytes differentiation appears to involve self-association of the receptor in trans, 

as well as homophilic intercellular interactions (Jepson et al., 2012).

5.4 Positive regulators of repair and trophic factors

Several new positive regulators of white matter repair have emerged in recent years. The 

morphogen Sonic Hedgehog (Shh) controls the generation of oligodendrocytes during 

development and regulates their production in the adult white matter by inducing expression 

of the transcription factors Olig1 and Olig2 (Traiffort et al., 2010). Administration of Shh 

increases the number of OPC and premyelinating oligodendrocytes in the cerebral cortex 

and corpus callosum (Loulier et al., 2006), and an increase of Shh expression induces 

oligodendrogenesis and promotes recovery after chronic demyelination (Harsan et al., 2008). 

In a model of focal lysolecithin demyelination in mouse corpus callosum, Shh transcripts 

were upregulated in oligodendrocytes within the lesion but not in normal white matter, 

suggesting a broad reactivation of the Shh pathway. Adenovirus-mediated transfer of Shh 

into the lesioned brain attenuated the lesion extent and increased OPC maturation and 

differentiation, while blocking of Shh decreased OPC proliferation and differentiation, and 

prevented repair (Ferent et al., 2013).

Netrin-1 plays a role in axon guidance during development and contributes to white matter 

formation by influencing OPC proliferation, differentiation, and migration (Bradford et al., 

2009; Tsai et al., 2006). The mechanism underlying the effect of Netrin-1 on OPC and 

oligodendrocytes involves signaling through the receptor Dcc, expressed by both cell types, 

and downstream inhibition of RhoA (Rajasekharan et al., 2009). Under pathological 

conditions, Netrin-1 inhibits inflammation and apoptosis, as well as promotes repair after 

ischemic stroke by increasing angiogenesis (Lu et al., 2012; Rosenberger et al., 2009; Sun et 

al., 2011). Overexpression of Netrin-1 increases proliferation and differentiation of OPC 

into mature oligodendrocytes, and promotes white matter remyelination and neurobehavioral 

outcomes after focal cerebral ischemia in mice (He et al., 2013).

Leukemia inhibitory factor (LIF) is a cytokine that exerts pleiotropic effects on cell survival 

(Metcalf, 2003). Intracerebral injections of LIF attenuate injury when administered after 

focal ischemia (Suzuki et al., 2005). LIF also promotes myelination by oligoderndrocytes 

when released by astrocytes in response to activity-dependent rise in ATP (Ishibashi et al., 

2006). More recently, LIF effectively reduced infarct volume, reduced white matter injury 

and improved functional outcomes when administered to rats following permanent middle 

cerebral artery occlusion. The underlying mechanism for LIF-mediated white matter 

protection appears to involve activation of the Akt signaling pathway and antioxidation via 

inhibition of lactate dehydrogenase release from oligodendrocytes, reduction of superoxide 

dismutase activity and induction of peroxiredoxin 4 (Rowe et al., 2014).
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6. Conclusion

Although white matter damage is an important part of many neurological disorders, and in 

particular white matter stroke, mechanisms of white matter damage and repair are relatively 

understudied compared to those in gray matter. The key to improving recovery, restoring 

function, and reducing long-term disability after white matter stroke lies in a better 

understanding of white matter biology and the changes that occur in different elements of 

the white matter following an ischemic insult. Signals transmitted between injured axons 

and glia, ionic imbalance, and downstream regulation of several genes and signaling 

pathways ultimately contribute to the complex pathology of white matter stroke. Animal 

studies have attempted to promote white matter repair and recovery in different models of 

white matter pathology, by identifying and manipulating specific factors, genes or signals 

involved in damage and repair processes. Considerable attention has been directed to 

preserving and restoring axonal integrity and conductance through remyelination, by 

targeting OPC and oligodendrocytes and promoting their differentiation. While some 

successes have been recorded, it is likely that an effective therapy for white matter stroke in 

humans would require a more comprehensive approach involving multiple targets.
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Highlights

• Unique properties of stroke in white matter are derived from the main white 

matter components: axons and glia

• A limited regenerative response takes place in the peri-infarct area following 

white matter stroke

• Neuronal activity, trophic factors and positive regulators contribute to repair and 

remyelination
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Figure 1. Damage and repair following white matter stroke
Complete loss of axons and glia in the necrotic ischemic core (left). Glutamate-mediated 

excitotoxicity and rising Ca2+ levels promote oligodendrocytes death and demyelination in 

the peri-infarct area. A regenerative response initiates with OPC proliferation, but inhibitory 

signals lead to a differentiation and maturation block. Vulnerable demyelinated axons may 

suffer secondary degeneration (bottom right). Alternatively, neuronal activity, trophic 

factors and positive regulators may contribute to oligodendrocytes maturation and successful 

remyelination (top right).
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Table 1

Regulators of white matter damage and OPC regeneration, and their documented effects.

Pathway/protein Mechanism/activity Outcome/effect Reference

Activity-dependent signals

 ATP A1 adenosine receptor on 
oligodendrocytes

↑ OPC differentiation, maturation and 
migration

Othman et al., 2003
Stevens et al., 2002

 cAMP MEK-ERK pathway (?) ↑ T remyelination
↑ OPC maturation

Malone et al., 2013
Sun et al., 2012

ECM-related proteins

 CSPGs Inhibitory GAG chains ↓ OPC differentiation, maturation and 
migration

Lau et al., 2012
Sherman and Back, 2008

 hyaluronan Digested by Hyaluronidase CD44, 
TLR2 signaling

↓ OPC differentiation, maturation
↑ progressive demyelination

Back et al., 2005
Sloane et al., 2010

 MMPs Degradation of MBP, MAG and ECM 
proteins

↑ T demyelination Walker and Rosenberg, 
2010

Wnt signaling

 Wnt/β-catenin Nuclear β-catenin/tcf/LEF complex ↓ OPC differentiation, maturation Fancy et al., 2009
Feigenson et al., 2009

 Axin2 β-catenin degradation ↑ remyelination Fancy et al., 2011

 APC β-catenin regulation cytoskeletal 
regulation

↑ OPC proliferation, differentiation Lang et al., 2013

 HIF Autocrine Wnt7a/7b signaling ↓ developmental myelination
↑ White matter angiogenesis

Yuen et al., 2014

 Sox17 β-catenin degradation ↑ oligodendrocyte differentiation Ming et al., 2013

Nogo related proteins

 NogoA/NgR RhoA(?), Rho kinase ROCK (?) ↓ remyelination, OPC recruitment Pourabdolhossein et al., 
2014
Niederost et al., 2002

 LINGO-1 self-association, homophilic 
intercellular interactions

↓ OPC differentiation, maturation
↓ remyelination

Mi et al., 2009
Jepson et al., 2012

Additional regulators

 Shh Induces Olig1 and Olig2 expression ↑ oligodendrogenesis
↑ OPC maturation, differentiation

Harsan et al., 2008
Ferent et al., 2013

 Netrin-1 Signaling through Dcc, RhoA inhibition ↑ OPC proliferation, differentiation
↑ remyelination

Rajasekharan et al., 2009
He et al., 2013

 LIF Akt signaling, antioxidation ↓ white matter injury, infarct volume Rowe et al., 2014
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