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Abstract

Thiopurine S-methyltransferase (TPMT) polymorphisms affect the enzyme's activity and are 

predictive for the efficacy and toxicity of thiopurine treatment of acute lymphoblastic leukemia 

(ALL), autoimmune diseases and organ transplants. Because inter-ethnic differences in the 

distribution of these polymorphisms have been documented, we sequenced the TMPT gene in 95 

Guatemalans, yet identified no new alleles. We also determined the frequency of the TPMT*2, 

TPMT*3A, TPMT*3B and TPMT*3C alleles in 270 admixed and 177 indigenous pediatric patients 

with ALL and healthy subjects from Guatemala using TaqMan assays and DNA sequencing. 

Among the 447 subjects genotyped, 10.0% of the ALL cases and 13.6% of the healthy controls 

were heterozygous for one of the four TPMT variants screened. The genotype frequencies in ALL 

and control populations were 0.7% and 1.7% for TPMT*1/*2, 7.4% and 10% for TPMT*1/*3A, 

0.3% and 0% for TPMT*1/*B, and 1.5% and 1.1% for TPMT*1/*C, respectively (p= 0.30). No 

statistically significant differences between admixed and indigenous ALL (p= 0.67) or controls 

(p= 0.41) groups were detected; however 17% of the admixed healthy group bore one TPMT 

mutant allele and they have one of the highest reported frequencies of TPMT mutant allele 

carriers. Because of the clinical implications of these variants for therapeutic response, TPMT 

allele testing should be considered in all Guatemalan patients to reduce adverse side-effects from 

thiopurine drug treatments.
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INTRODUCTION

Thiopurine S-methyltransferase (TPMT) is a cytosolic enzyme that metabolizes drugs, such 

as 6-mercaptopurine (6-MP), thioguanine (TG) and azathioprine (AZA), commonly used in 

chemotherapy and immunosuppressive therapies (8, 41). TPMT activity is a good predictive 

factor for the toxicity of these drugs and their effectiveness in the treatment of acute 

lymphocytic leukemia, autoimmune diseases and solid organ transplant. A very low or 

undetectable enzyme activity results in adverse pharmacokinetics and pharmacodynamics 

causing decreased turnover and resulting in myelosuppression, infections and secondary 

tumors (8, 10, 15, 39, 41, 44). It has been well established that the decreased levels of TPMT 

enzyme activity, is caused by single nucleotide polymorphisms (SNPs) in the TPMT gene. 

The most common alleles are TPMT*2 (rs1800462, c.280G>A), TPMT*3A (rs1800460, c.

460G>A and rs1142345, c.719A>G), TPMT*3B (rs1800460, c.460G>A) and TPMT*3C 

(rs1142345, c.719A>G) (1-5, 7, 9, 12, 14, 17-20, 22-25, 27, 28, 30-36, 40, 42, 43, 45-48, 

51). These TPMT variants lead to a reduction in TPMT enzyme activity, and patients who 

are heterozygous for a TPMT mutant allele have an intermediate risk of hematological 

toxicity, whereas in TPMT*3A homozygote subjects or compound heterozygotes the 

enzyme activity is very low or undetectable and the risk of toxicity is high (6, 8, 13, 20, 41, 

47). Hence, independent groups have suggested a dose reduction of thiopurines or the 

selection of alternative therapies in mutant allele carriers to avoid side-effects that can be 

life-threatening due to therapy toxicity (21, 37). However, trinucleotide repeat alleles in the 

TPMT promoter have been described to also affect enzyme levels (38) and variants in 

ABCC4, a thiopurine transporter (26), and several thiopurine metabolic enzymes have also 

been documented to also influence thiopurine metabolism (reviewed in (11)).

Differences in TPMT allele frequencies among ethnic groups have been documented in the 

frequencies of the TPMT alleles with a low of 0.12% in Taiwan and 7.8% in Mexico (30, 

48). The TPMT*3A allele is the most common variant in Europeans (2-4.5%) and Latin-

Americans (1.5-6.5%), whereas in Asian (0.3-1.2%) and African (1.3-7.6%) groups 

TPMT*3C is the most frequent allele (1-5, 7, 9, 12, 14, 17-20, 22-25, 27, 28, 30-36, 40, 42, 

43, 45-48, 51). Among Latin-American populations, TPMT analysis has been performed in 

South (Argentina, Brazil, Colombia, Chile and Bolivia) and North America (Mexico) but no 

data is available from Central-American (2, 7, 17, 24, 28, 31, 36, 48) populations. Hispanic 

populations have a very complex genetic background with high heterogeneity derived from 

the mixture of races during conquests, colonization, importation of slaves, and migration. 

Native-American, Caucasian and African contribution in different proportions explain the 

very diverse ethnicity of these groups (16, 29). Thus, there is a necessity to identify 

molecular biomarkers that could be used by clinicians as diagnostic and prognostic tools in 

each of these admixed populations, and to include indigenous populations in these efforts.
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SUBJECTS AND METHODS

Subjects

We analyzed 447 subjects from Guatemala, 270 were children with a diagnosis of ALL and 

177 were healthy adults. Oncologists at the major Pediatric Oncology Hospital (UNOP) in 

Guatemala City established the clinical diagnosis using standard morphologic, cytochemical 

and immunological criteria. After informed consent we collected saliva (Oragene, DNA-

Genotek) or blood samples from all participants. Ethical approval was gained from the 

Medical Ethics Committee of the Francisco Marroquin School of Medicine, Guatemala. 

Participants identified themselves as either indigenous or Ladino (admixed), and data was 

collected on the place of birth and languages spoken of all parents and grandparents. 

Indigenous people speak one of 11 languages belonging to the Mayan linguistic group and 

Ladino refers to admixed (indigenous and European) populations, or European, or African 

descent.

DNA Sequencing and Genotyping analysis

Genomic DNA was extracted from saliva samples by using the ORAGENE Purification Kit 

(DNA Genotek Inc. Ontario, Ca.) according to the manufacturer's instructions. DNA purity 

and concentration was determined by spectrophotometry. PCR primers were designed using 

Primer3 (http://frodo.wi.mit.edu/primer3). Sequencing was performed on 95 subjects 

representing indigenous and non-indigenous cases, with ABI Big Dye reagents and 

performed on an ABI 3730XL instrument. Genotyping of the rs1142345 (exon 9) SNP was 

carried out by using TaqMan assay while the rs1800462 (exon 4) and rs1800460 (exon 6) 

variants were analyzed by sequencing. TaqMan PCR was carried out using the ABI PRISM 

7900 system. PCR mix consisted of 10 ng of genomic DNA, 0.45 uM of each primer 

(TPMTY240CF: 5’-GAAGGTTGATGCTTTTGAAGAACGA and TPMTY240CR: 5’-

ACATGTCAGTGTGTATCTATGTCTCA), 0.1 uM of each probe, 2.5 ul of TaqMan 

master mix (Applied Biosystems, Foster City, CA) and ddH2O up to a final volume of 5 ul. 

The amplification protocol included denaturing at 95°C for 10 minutes, followed by 40 

cycles of denaturing at 95°C for 15 seconds and annealing and extension at 60°C for 1 

minute. The genotype of each sample was assigned automatically by measuring the allele-

specific fluorescence using SDS 2.2.3 software for allelic discrimination (Applied 

Biosystems, Foster City, CA). A subset of random samples were genotyped in duplicate for 

rs1142345 and the reproducibility was 100%. To validate the TaqMan results, 3 samples of 

each genotype were sequenced using the forward and reverse primers (Ex-9F: 5’-

GAATCCCTGATGTCATTCTTCA, Ex9R: 5’-CATTACATTTTCAGGCTTTAGCA). PCR 

was performed with the following conditions: an initial denaturation at 95°C for 5 min, 35 

cycles at 95°C for 30 s, 58°C for 30 s, and 68°C for 30 s, and a final extension at 72°C for 7 

min. Sequencing was performed using an automated ABI PRISM 3100 DNA sequencer 

(Applied Biosystems, Foster City, CA, USA). PCR and sequencing conditions described 

below were also used for the rs1800462 (exon 4) and rs1800460 (exon 6) analysis 

(TPMTEx-4F: 5’-CCCTCTATTTAGTCATTTGAAA, TPMYEx-4R: 5’-

AAAACTTTTGTGGGGATATGG, TPMTEx-6F: 5’-GGGACGCTGCTCATCTTCT, 

TPMTEx6R: 5’-TTCAAACTCATAGAAGTCTAAGCTGAT).
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Statistical analysis

The FINNETI algorithm (http://ihg.gsf.de/cgi-bin/hw/hwa1.pl) was used to test Hardy-

Weinberg equilibrium (HWE) for genotype distributions in both ALL cases and healthy 

groups. To evaluate the difference in the genotype and allele frequencies between 

populations, ethnic groups, or genders we used the Chi-square test (Stat-Calc program 

(EPIINFO 2005 V.3.2; Centers of Disease Control and Prevention, Atlanta, GA).

RESULTS

Subjects

A total of 270 children fulfilled the diagnostic criteria of ALL for this study, 186 (69%) 

were admixed and 84 (31%) were Indigenous; 156 (58%) were male whereas 114 (42%) 

were females. The healthy group consisted of 177 adults belonging to the same admixed 

(51%) and indigenous (49%) populations, 53 (30%) of them were males and 124 (70%) 

were females (Table 1). Most of the indigenous subjects speak Kaqchikel, K'iche' or Mam 

languages (83%), whereas the rest are from Q'eqchi', Ah'chi, Q'anjob'al, Sakapulteco, Popti/

Jakalteco and Tz'utujil language groups (12%).

Genotyping

The distribution of the TPMT genotypes was in HWE in cases and controls, separately, and 

as a whole, and also when stratified by ethnicity and gender (p> 0.05). Genotyping analysis 

revealed that 10% (27/270) of ALL cases and 14% (24/177) of the healthy subjects carried 

one mutant allele, either TPMT*2, *3A, *3B or *3C alleles (p= 0.28). A comparative 

analysis between admixed and indigenous populations showed no statistical differences in 

TPMT heterozygosity in either ALL or healthy groups (p= 0.67 and 0.41, respectively). In 

the admixed sample, 11% (20/186) of the ALL and 17% (15/88) of the control subjects were 

TPMT allele carriers (p= 0.48), whereas 8.3% (7/84) and 10% (9/87) of ALL and healthy 

indigenous subjects (p= 0.74), respectively carry at least one mutant allele. Of the 447 

subjects included, only one homozygote mutant allele carrier was identified (0.2%). The 

TPMT*3A allele was the most frequent TPMT allele detected, being found in 3.7% (20/540) 

of the ALL (14 admixed/6 indigenous) and 5.7% (20/354) of the control (10 admixed/9 

indigenous) subjects. No statistically significant differences in the distribution of this allele 

between cases and controls or admixed and indigenous were observed. The TPMT*2 and 

TPMT*3C alleles were identified exclusively in admixed samples, 2 and 4 vs. 3 and 2 ALL 

patients and controls, respectively. The TPMT*3C allele was present in admixed samples 

(ALL; 2.1% and healthy: 2.3%) but not in subjects from indigenous origin (Table 1). 

Stratification by gender did not show any statistically significant differences.

The frequency of TPMT mutant alleles in Guatemalan healthy subjects (7.1%) was 

comparable to those reported in Latin-America (Mexico: 5.3-7.8%, Bolivia: 6.5%, 

Argentina: 4.0%, Brazil: 4.8%, Colombia: 4.0%, Chile: 3.8%), European (3.5% - 5.5%) and 

some African (4-7.4%) populations. However the Guatemalan TPMT frequencies differ 

from most Asian and Middle-East ethnics groups (0.6-2.7%). As in other Latin-American 

(2.9 - 6.5%, except Brazil) and European (2.0 - 4.5%) populations, the TPMT*3A was the 

most frequent inactive allele in Guatemala (5.6%) (Table 2).
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DISCUSSION

TPMT genotypes have been proven to be an important molecular biomarker in the response 

prognosis of drugs currently used in the treatment of hematological malignancies, 

autoimmune diseases, and organ transplant (8, 41). On the basis of population studies, three 

alleles account for more than 95% of the clinically relevant TPMT variants: TPMT*2, 

TPMT*3A, TPMT*3C and subjects who have absent or a reduced rate of enzyme activity 

than normal have higher circulating drug concentrations and are vulnerable to toxicity when 

the standard dosage is used. In single TPMT functional and non-functional allele carriers, the 

initial doses of AZA or 6-mercaptopurine should be reduced by 30-70%, whereas in 

homozygote non-functional allele carriers the doses of thiopurine drugs should be reduced 

10-fold, or patients should receive alternative therapy (35). Therefore a simple test for 

TPMT genotypes can provide an important molecular biomarker that predicts drug response 

for hematological malignancies, autoimmune diseases, and organ transplantation (8, 41).

To begin to determine the distribution of alleles in Central America, we sequenced the entire 

TPMT gene in 95 Guatemalans, half of whom were indigenous peoples, and found only 

known alleles. We then genotyped the TPMT*2, TPMT*3A, TPMT*3B and TPMT*3C 

alleles in a cohort of 447 ALL and healthy subjects from Guatemala (admixed and 

indigenous ethnicities). The TPMT*1/*3A was the most common genotype found in 

Guatemala, and only one (0.85%) TPMT*3A/*3A homozygote subject was identified. We 

did not find the compound heterozygote’s TPMT*2/*3A, TPMT*2/*3B or TPMT*2/*3C but 

our statistical power is insufficient to rule out the presence of TPMT*3B/*3C carriers. 

Several studies have shown that patients who are homozygous or compound heterozygotes 

for TPMT mutant alleles are at a higher risk of severe bone-marrow suppression (29, 41, 

49).

Comparative analysis between populations showed that Guatemalans (6.5%) exhibit a high 

frequency of the TPMT*3A allele similar to that reported in Bolivia and independent studies 

from Mexico City (6.5%, 4.4% and 5.7%, respectively). Guatemala and Mexico both 

contain diverse populations; with both ancient and recent admixture between Amerindian, 

European and African people; and both countries have significant Mayan indigenous 

populations. Although the ancestral indigenous population lived in a variety of ecological 

circumstances in a broad swath of the Americas, anthropological and archeological studies 

demonstrate that the Mayans all share certain cultural features derived from the Olmecs 

(21). These features include Mayan hieroglyphic writing, complex calendars, and a 

sophisticated knowledge of astronomy. On the other hand, anthropological study shows that 

Mexican and Guatemalan mestizo populations are primarily a mix of Amerindian and 

Spanish peoples, which also could explain the high similarities between the two populations. 

These observations are consistent with the gene frequencies that we observe among the 

common polymorphisms at the TPMT locus within and between these populations.

Despite the complex composition of Guatemala populations, TPMT*C the major variant in 

African (1.3-3.8%) and Asian (0.3-1.0%) populations was not found in our sample. These 

data indicate a low intermixing of indigenous Guatemalans with African or Asian 

descendants, and do not support the hypothesis of a recent Asian origin in indigenous 
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population with an ancestral origin of the TPMT*C allele (3, 16). However a larger and 

more geographically diverse sample would be needed to confirm this result. On the other 

hand, Guatemalan admixed populations have one of the highest observed toxicity risk rates 

for treatments based on thiopurine drugs (17 %, see Table 1). This percentage could be an 

underestimate, considering that at least 20 additional mutant variants have been identified in 

TPMT (TPMT*3D, *4, *5, *6, *7, *8, *10, *23, *28, etc) and that SNPs in other genes, such 

as inosine triphosphate pyrophosphohydrolase (ITPA 94C>A) also affect thiopurine 

metabolism (3, 15, 29, 50).

In summary, this is the first study that assesses the TPMT variant allele frequencies in 

Guatemalan populations. Because at least one out of every 10 Guatemalans bears a TPMT 

mutant allele, genotyping could be performed in patients with hematological malignancies, 

immune diseases and organ transplants to avoid or reduce side-effects during treatments 

based on thiopurine drugs. Furthermore, additional studies are needed to characterize and 

identify polymorphisms in additional thiopurine metabolizing enzymes should be studied in 

Guatemalan and Central American populations.
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Table 1

Comparative analysis of the TPMT allele frequencies between patients and healthy individuals and by 

ethnicity.

ALL cases Total
N=270

Healthy subjects Total
N=177*

Admixed
n= 176

Indigenous
n= 84

Admixed
n= 88

Indigenous
n= 87

Sex , (%)

59.7 53.6 57.3 22.7 37.9 31.1

Male 40.3 46.4 42.2 77.3 62.1 58.9

Female

Genotypes, (%)

TPMT*1/ TPMT *2 1.1 0 0.7 3.4 0 1.7

TPMT*1/ TPMT *3A 7.5 7.1 7.4 11.4 9.2 10.2

TPMT*3A/ TPMT *3A 0 0 0 0 1.1 0.56

TPMT*1/ TPMT *3B 0 1.2 0.3 0 0 0

TPMT*1/ TPMT *3C 2.1 0 1.5 2.3 0 1.1

Total 10.7 8.3 10.0 16.9 10.3 13.6

P value 0.67 0.41

Allele frequency, (%)

TPMT *2 0.55 0 0.035 1.7 0 0.8

TPMT *3A 3.75 3.6 3.7 5.7 5.7 5.7

TPMT *3B 0 0 0.015 0 0 0

TPMT *3C 1.05 0.6 0.75 1.1 0 0.6

Total 5.4 4.2 5.0 8.5 5.7 7.1

P value 0.67 0.41
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Table 2

Worldwide distribution of the most common TMPT alleles in healthy subjects.

Region Country Total
alleles

*2
(%)

*3A
(%)

*3B
(%)

*3C (%) Deficiency
alleles
(%)

Reference

Central
and
South
America

Guatemala 324 0.85 5.6 0 0.56 7 .1 Current
study

Colombia 280 0.4 3.6 0 0 4.0 [7]

Argentina 294 0.7 3.1 0 0.2 4.0 [8]

Brazil 408 2.1 1.5 0.2 1 4.8 [9]

Bolivia 230 0 6.5 0 0 6.5 [10]

Chile 420 0.24 2.9 0 0.71 3.8 [11]

North-
America

Mexico 216
300
720

0.9
0

0.28

3.24
3.0
5.7

2.3
0.3
0.28

1.4
2.0
0.56

7.8
5.3
6.8

[12]
[13]
[14]

USA
 Caucasian
  African-
 descendent

564
496

0.17
0.4

3.2
0.8

0
0

0.17
2.4

3.5
3.6 [15]

Europe British 398 0.5 4.5 0 0.3 5.1 [16]

Portugal 274 1.1 2.4 0 0.7 4.2 [17]

France 608 0.7 3.0 0 0.4 4.1 [18]

Sweden 1600 0.06 3.8 0.13 0.44 4.0 [19]

Germany 2428 0.2 4.4 0 0.4 4.8 [20]

Slovenia 388 0 4.1 0.3 0.5 4.9 [21]

Sardinia 518 1.74 0.58 0.39 0.77 6.9 [22]

Spain
 Spaniards
  Basque
   Gypsy

276
102
198

-
-
-

3.3
2.9
2.0

1.4
0.98
1.5

1.4
0
0

6.1
3.9
3.5

[23]

Czech 1392 0.1 4.3 0.1 0.4 4.9 [24]

Russia 1990 0.1 2.3 0 0.4 2.0 [25]

Italia 1886 - 2.2 0.26 0.26 2.7 [26]

Poland 788 0.38 3.15 0 0.13 3.7 [27]

Asia Japan
* 384

302
0
0

0
0

0
0

0.8
0.3

0.8*

0.3*

[28]
[29]

China 1404 0 0.02 0 0.9 0.92* [30]

Taiwan
 Aborigines

354
818

0 0 0 1.2
0.12

1.2*

0.12
[31]

India 400 0 0.5 0 0.8 1.3* [32]

Tibet 100 0 0 0 1 1.0* [10]

Middle-
East

Turkish 212 0.9 0.9 0 0.9 2.7* [33]

Iran 1664
1000

2.16
0.1

1.68
0

1.62
0

0.54
2.5

6.0
2.6*

[34]
[35]

Jordania 338 0 1.2 0 0.6 0.89* [36]
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Region Country Total
alleles

*2
(%)

*3A
(%)

*3B
(%)

*3C (%) Deficiency
alleles
(%)

Reference

Izrael 388 0 1.8 0 1.1 1.8* [37]

Africa Ghana 434 0 0 0 7.6 7.4 [16]

Kenya 202 0 0 0 5.4 5.4 [38]

Egypt 400 0 0.3 0 1.3 1.6* [39]

Mozanbique 472 0 0.2 0 3.8 4.0 [17]

*
p< 0.05 statistical differences in the distribution of the mutant alleles among Guatemala and these populations
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