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Abstract

Identifying the network of biochemical interactions that underpin disease pathophysiology is a key 

hurdle in drug discovery. While many components involved in these biological processes are 

identified, how components organize differently in health and disease remains unclear. In 

chemical engineering, mechanistic modeling provides a quantitative framework to capture our 

understanding of a reactive system and test this knowledge against data. Here, we describe an 

emerging approach to test this knowledge against data that leverages concepts from probability, 

Bayesian statistics, and chemical kinetics by focusing on two related inverse problems. The first 

problem is to identify the causal structure of the reaction network, given uncertainty as to how the 

reactive components interact. The second problem is to identify the values of the model 

parameters, when a network is known a priori.
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1. Introduction

Chemical engineering has a rich history in using mathematical modeling to describe 

chemical systems [1, 2]. As summarized in Figure 1, mathematical models aim to capture 

our understanding of the underlying mechanisms associated with a variety of reactive and 

physical processes that govern the behavior of chemical systems. The particular formulation 
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of the mathematical model represents a trade-off between computational or analytical 

tractability and realism. The art of modeling is finding the right level of abstraction 

appropriate for the task at hand. The mathematical models are used in one of two scenarios. 

The first scenario is forward modeling, where a mathematical model is used to predict future 

behavior based on changing operating conditions. The second scenario is for inverse 

problems, where mathematical models are used to interpret observations of a chemical 

system as a way to identify the governing physical and reactive processes.

Predictions derived from a mathematical model depend on the relationships specified 

between the interacting species modeled, which is expressed generally as a reaction 

network, and the speed of information transfer by a modeled interaction, which is captured 

by a model parameter. Conceptually, there are then two types of inverse problems. The first 

type of inverse problem, which is more frequently encountered, is parameter inference. 

Parameter inference involves selecting a set of parameter values or initial conditions that 

enable the mathematical model to capture the observed data, where the reaction network is 

known a priori. The second type of inverse problem is network inference, which is more 

challenging. Network inference involves selecting an appropriate set of interactions among a 

set of plausible interactions based on the limited information available about the reactive and 

physical phenomena contained within the chemical system. In dynamic systems, the reaction 

network alone provides constraints as to how the model species could potentially evolve in 

time. The goal of network inference is then to see if the postulated reaction network can 

capture the observed data given any plausible combination of model parameters and initial 

conditions.

Historically, these two types of inverse problems have been treated similarly. However, 

changes in the scientific landscape and advances in technology motivate approaches 

specifically tailored to the specific inverse problem at hand. The focus of this review is as 

follows. First, we will discuss pharmaceutical drug discovery and development as a pressing 

area of inverse problems. Second, we will discuss some of the conceptual and technological 

advances that have enables a more tailored approach towards inverse problems that focus on 

either network inference or parameter inference, especially in cases where significant prior 

information exists.

2. Improving confidence in target selection is a important class of inverse 

problems in pharmaceutical RnD

One important application of mechanistic mathematical models is to help in the discovery 

and development of therapeutic drugs. Using pharmacologic agents to treat disease 

underpins many of the clinical successes in modern medicine. While these successes 

encourage an optimistic outlook, there remain unmet medical needs despite decades of 

intense scientific effort. The emergence of multi-drug resistant bacteria, infectious disease 

outbreaks, and mixed progress in the war on cancer highlight some of these unmet medical 

needs and the complexity of a constantly changing therapeutic landscape. Engineering better 

medicines to fulfill these unmet medical needs is one of the grand challenges of engineering 

[3]. To address these needs, new therapies are discovered and developed by a multi-stage 

process that relies initially on model experimental systems and then testing in humans using 
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clinical trials. With costs associated with bringing a new therapy to market exceeding $1 

billion and the high level of attrition during the research and development process, there is 

significant concern over sustainability of the current model for innovation in the industry [4, 

5, 6].

In a recent NIH white paper, an industrial and academic working group found that the 

source of attrition had shifted over the last couple of decades from Phase I clinical trials, 

which focus on toxicology, to Phase II clinical trials [7]. The objective of a Phase II clinical 

trial is to test the therapy in patients diagnosed with the disease. A Phase II success is to 

improve clinical outcome relative to the current standard of care. To illustrate the challenges 

of demonstrating efficacy, a recent retrospective analysis of clinical trials in patients with 

acute myeloid leukemia found that, of the 37 therapies that received positive indications in 

early phase clinical trials, only 1 drug actually made it to clinical use [8]. This NIH working 

group observed that the failures in demonstrating efficacy stem from an incomplete 

understanding of clinical importance of a specific biological mechanism that was targeted by 

the therapy. Understanding how a drug interacts with a target is challenging as many 

diseases of therapeutic interest (e.g., cancer, heart disease, and diabetes) are multi-genic, 

progressive, and heterogeneous in that each case may have a different mechanism of origin. 

While pre-clinical studies using model systems supported the clinical trials, the failure in 

translation suggests that the model systems have unclear fidelity in capturing the complexity 

of human disease.

One of the main recommendations to improve innovation was to focus on a network-centric 

view of biology to balance the “one-gene, one-receptor, one-mechanism” (OGRM) 

paradigm prevalent within the industry [9]. In short, methods developed under the OGRM 

paradigm select drugs that modulate a specific therapeutic target in experimental systems 

that have been taken out of context. From the network-centric perspective, a drug target 

resides within a complex network of interactions that responds in dynamic and non-linear 

ways to therapeutic modulation. Moreover, these networks can be altered in disease such 

that the importance of a particular target in regulating phenotype can be quite different in 

health and disease. Beyond this, current multi-genic and progressive diseases are the result 

of a multi-variate pathology such that drug efficacy is poorly predicted by only considering 

a drug’s primary target. For example, most so-called ”targeted” tyrosine kinase inhibitors for 

cancer therapy actually have broad spectrum activity against several kinases, and in fact 

some of the ”dirtiest” drugs that target multiple kinases are some of the most effective [10].

Upon this network-centric foundation, mechanistic modeling and simulation are integrated 

with quantitative wet lab studies to advance the systems-level understanding of the 

pathophysiology relevant for drug discovery and development. While the mechanistic 

modeling and simulation aspects are more aligned with the discipline of chemical 

engineering than pharmacology, the strong focus on translational medicine motivated the 

group to coin a new field called quantitative and systems pharmacology.
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3. Quantitative and systems pharmacology versus systems biology: What’s 

the diff?

On a simplistic level, one may view quantitative and systems pharmacology (QSP) as a 

simple extension of systems biology with the addition of drug dynamics. However, they are 

motivated by two different objectives and are orthogonal approaches to organize data and 

knowledge about biological systems [9, 7]. QSP is motivated by applied translational 

research questions that require vertical integration. To inform drug discovery, the structure 

of the model tends to be focused around the targeted pathways and disease mechanisms. 

Mathematics is used to integrate vertically data and mechanistic knowledge that span 

multiple levels of biological organization thereby linking molecular targets to clinical read-

outs. For instance, a team of 3 PhD-level engineers and 3 PhD-level immunologists worked 

for 2 years to build a mechanistic model of the NOD mouse model of type 1 diabetes [11]. 

To predict changes in blood glucose levels, cellular immune responses in the endocrine 

pancreas and a secondary lymphoid organ and the trafficking of cells between these two 

locations were modeled. In addition to these tissue- and organism-level phenomena, 

cytokines and cellular decision-making processes were also represented, as these are 

potential points of therapeutic intervention. The model was used to evaluate alternative 

strategies to induce tolerance to insulin, such as the optimal dose, frequency of 

administration, or stage of disease progression [12, 13]. Representing drug pharmacology 

adds an additional layer of complexity as drugs exhibit multi-organ dynamics that are 

important for their clinical performance and that can vary significantly from patient to 

patient. In contrast, systems biology studies tend to be motivated by a desire for deep 

understanding of a biological network. Mathematics is used to integrate horizontally data 

and knowledge focused at a particular scale of biological organization. For instance, Covert 

and coworkers developed a model of the obligate intracellular pathogen Mycoplasma 

genitalium [14]. To capture an archtypical cell between cell division events, 28 different 

cellular processes were modeled including metabolism, transcriptional regulation and repair 

of DNA, synthesis and processing of RNA, and post-translational modification and 

macromolecular assembly of proteins. The model was then used to relate genotype to 

cellular phenotype. While one could envision a future where these two approaches lead to 

similar models that link genotype to clinical read-outs, these two different approaches are 

tailored to achieve the research aims given current limitations in biological knowledge and 

experimental methods.

While systems biology may receive more attention from academic circles, mechanistic 

modeling and simulation represents ”dark matter” within the pharmaceutical industry, given 

the financial incentives for keeping competitive advantages secret. In recent years, many of 

the major pharmaceutical companies have created QSP teams. Yet, there are few tangible 

case studies illustrating how mechanistic modeling and simulation financially impact the 

drug discovery process. Related examples include developing monoclonal antibodies against 

ErbB3 for treating cancers addicted to Epidermal Growth Factor signaling [15, 16]. This 

target is interesting as a OGRM approach would not have selected ErbB3 as a target, since it 

is a catalytically inactive kinase. By focusing on the network, ErbB3 was found to be an 

obligate dimerization partner to other ErbB receptors targeted by trastuzumab (i.e., ErbB2) 
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or lapatinib (i.e., ErbB1/ErbB2) [17]. In assessing toxicity, QSP approaches have yielded 

better classifiers for arrhythmia risk [18] and predictive models for hepatic injury [19].

4. Biological systems present unique challenges in contrast to more 

traditional chemical processes

The conceptual toolkit developed to analyze and design chemical systems provides a rich 

framework to aid in understanding how biological networks function in health and disease. 

The focus on how cells process information is a natural point of focus as the transfer of 

information with a cell involves the reactive conversion and intracellular transport of a 

number of biochemical species, as described in Box 1. Moreover, decades of detailed 

biochemical and molecular biology studies have identified the major components of these 

intracellular signaling networks. This prior information can significantly reduce the set of 

possible networks that can explain observed behavior. For instance, candidate networks can 

be obtained by mining the published literature[20, 21]. However, this prior information can 

also significantly bias how we interpret experimental observations, given the limited 

observability of biological systems.

Experimental observability is probably one of the biggest differences between traditional 

chemical processes and biological systems. Cellular decision making is regulated by the 

spatial localization and post-translational modification of proteins within a cell. Given 

technical limits in detecting small numbers of proteins, many assays measure cellular 

decision making indirectly or using significant assumptions. Given that nucleotides can be 

easily amplified using PCR, changes in gene expression is used as a surrogate measure of 

nuclear localization of a signaling protein. Assuming that a large population of cells (e.g., 1 

× 106 cells) behave identically, protein abundance and post-translational modifications can 

be quantified by western blot [22]. In practice, these experimental limitations imply that 

multiple approaches must be used and the resulting data should provide a self-consistent 

picture of cellular decision making. As described in the next section, math models aid in 

testing whether these data are self-consistent and consistent with what we currently know 

about the biology. For example, single-cell biochemical and imaging measurements 

acquired over time and in different cell types in response to different perturbations were 

used to identify the dynamic regulation of adhesive contacts between adjacent cells [23].

In addition, biological systems contain a number of complex biological processes that 

confound identifying the underlying physical and reaction processes from experimental 

observations of cellular behavior. Cellular responses to extracellular cues are governed by a 

variety of biological processes that can influence protein structure, protein abundance, the 

functional response to signaling protein activation, and other contextual cues present within 

the local microenvironment of the cell (Figure 4). Each of these biological processes also 

have associated time scales in which a change can be observed in response to a perturbation. 

Introducing a time delay between an experimental perturbation and assaying a cellular 

response implies that many of these different biological processes can become involved in 

influencing the cellular response. The challenge in improving our understanding of 

biological systems comes from deconvoluting the contributions of these different biological 
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processes, which remains a pressing problem in identifying the networks that regulate 

cellular responses [31].

5. Bayesian Statistics and Markov Chain Monte Carlo methods are 

reshaping how we approach inverse problems in reactive networks where 

prior knowledge exists

In part, these two types of inverse problems reflect a distinction between concepts associated 

with statistics and causality [32]. Statistical concepts are applied to quantify uncertainty, 

which is captured through the use of distributions [33]. In contrast, causality concepts are 

used to identify how observable events are structured into independent and dependent 

variables, which implies that the value of one variable is conditioned on the value of another 

variable. Causality can be depicted as a directed graph, where the variables comprise the 

vertices, such as the ligand and receptor in Box 1, and causal relationships are depicted as 

directed edges, such as an arrow that indicates that a ligand binds to the receptor to form a 

multi-protein complex. A directed edge is a generalization of a reactive event that can range 

from elementary steps to lumped reactions, which is more common in biology. The key idea 

drawn from chemical kinetics is that causality among reactive species is determined based 

on how the variables dynamically respond to perturbations [34]. For instance, observed 

species can be rank ordered into primary, that is those species impacted directly by the 

perturbation, and secondary, that is those species impacted indirectly by the perturbation 

through intermediates, based on their kinetic responses [35, 36, 37]. Given the uncertainty 

associated with experimental observations, the statistical and causal concepts are integrated 

through the use of conditional probability: P(Y|X, M), which is the probability of observing 

the value of a dependent variable (Y), given the value of the independent variable (X) and the 

causal model (M) that captures our understanding of the relationship between X and Y.

In silico model-based inference is an emerging approach that can be applied to inverse 

problems especially where prior knowledge exists [38], as summarized in Figure 5. To test 

the implications of the causal structure of a network model, the posterior distributions in the 

model predictions (P(Ŷ|M)) need to be established, which also depend on the available data 

(Y) and the uncertainty in the model parameters (P(Θ|M)). To account for these confounding 

influences, we can formulate the problem as an integral:

(1)

As P(Θ|M, Y) is difficult to obtain directly, Bayes theorem is used to re-express this in terms 

of quantities that we can calculate,

(2)

to give:

(3)
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In equation 3, P(Θ|M) is the probability of sampling a point (Θi) in parameter space Θ prior 

to any knowledge about data Y (i.e., the prior for Θ) and P(Y|Θi, M) is the conditional 

probability of observing data similar to the simulated response Y when Θi and M are given 

(i.e., the likelihood of Y, given Θi and M). Generally, P(Ŷ|Θ, M) represents how the modeled 

variables will evolve in time, based on a set of parameter values and a mathematical model. 

In the case of a deterministic model, this conditional probability collapses down to a single 

path that describe how the variables evolve in time for a single set of parameter values.

To solve for P(Ŷ|M), integration over the finite discrete set of experimental observations (Y) 

is equivalent to a sum over the comparisons between each model prediction, Ŷ, and the 

corresponding observation, Y, as represented by the likelihood term: P(Y|Θ, M). Integrating 

with respect to the parameters, Θ, is more difficult. Exponential leaps in computational 

power have enabled Markov Chain Monte Carlo (MCMC) methods to integrate Equation 3. 

Given the explosion of MCMC methods in general, resources for MCMC integration are 

abundant, including reference texts [39, 40], stand-alone software [41, 42, 43, 44, 45], and R 

packages [46]. While MCMC algorithms are relatively simple to program, they can be a 

challenge to implement correctly such that the results provide an estimate of P(Ŷ|M). For 

instance, the criteria to assess convergence of the Markov Chains should be applied to the 

model predictions and not the model parameters due to the presence of kinetic slaving in 

dynamic systems [47, 28]. Kinetic slaving means that the overall speed of information 

transfer within a network is slaved to the slowest step within the network. Other steps in the 

network are either near equilibrium or are kinetically unimportant.

5.1. Applications to network inference

To achieve meaningful learning, one must first identify and address misconceptions that are 

specific to a scientific domain (i.e., prior knowledge) [48]. In the context of network 

inference in biology, a discrepancy between our model and an observation identifies flaws in 

our current understanding of the modeled system. Historically, the models most frequently 

used are mental models, which are communicated as cartoons (see Box 1). However, 

biological systems, like cell signaling networks, exhibit characteristics that make it 

extremely difficult to test our mental models, namely embedded dynamics, feedback 

regulation, or competing pathways. Dynamic mathematical models, like systems of coupled 

ordinary differential equations, provide a quantitative framework for encoding our causal 

knowledge about systems [32]. Predictions derived from the models can be used to test our 

models against data. Historically, these predictions are a single dynamic trajectory that is 

dependent on the values of the underlying model parameters. However, uncertainty in the 

model predictions is convoluted with the uncertainty of the model parameters. Thus, it is 

impossible to make confident statements about model inadequacy, given our ignorance of 

the underlying parameter values and the biology (e.g., protein-protein interaction energies or 

protein abundance) that they represent.

In a network inference context, in silico model-based inference methods can be used to 

encode competing hypotheses regarding the causal network and then generate posterior 

distributions in the model predictions by statistically sampling over all parameter values that 

give predictions that are consistent with the observed data. As the error between a model 
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prediction and observed data should be normally distributed with a zero mean value, 

competing hypotheses can be rejected if they systematically deviate from the observed 

experimental data. Competing hypotheses that pass model invalidation criteria can then be 

evaluated using a Bayes Ratio, which quantifies the strength of evidence that favors one 

model over another, as illustrated in [49, 45]. Alternatively, a number of other model 

selection criteria, like the Akaike Information Criterion, have been proposed, as reviewed in 

[50]. These criteria quantify the perceived trade-off between predictive power, as commonly 

quantified by the summed squared error between the observations and model predictions, 

and a penalty term associated with model complexity, which can be related to the number of 

parameters. While these model selection criteria provide a simple metric, there are a number 

of underlying assumptions in developing these relationships that are not commonly 

encountered in biology. First, these criteria are applied in the asymptotic limit of empirical 

clarity, which means that the states of the system are all observed and all of the model 

parameters can be identified. Second, the penalty terms are ad hoc, which makes the criteria 

qualitative as a different weighting scheme would select a different winner among similarly 

scoring models [51]. In biology, the complexity of the model is influenced heavily by prior 

knowledge of the reactive network and observability is limited. A biologically realistic 

model inevitably includes many parameters that can not be identified in practice. To 

improve parameter identifiability, timescale analysis of reactive networks provides a data-

based approach to select the appropriate complexity [28].

As all models are abstractions of reality, the value of the model ultimately depends on the 

fitness-of-purpose of the model for aiding inductive/deductive reasoning. The goal, then, is 

not necessarily to confirm our existing knowledge, but to use mathematical models to 

capture our cognitive understanding of the system and challenge these models with 

experimental data to identify flaws in our current understanding, as discussed in [38]. One 

example of the approach is mentioned in Box 1, where the differential regulation of STAT1 

versus STAT4 phosphorylation, an indirect measure of activity, in response to IL12 

stimulation was identified after an initial data set was unable to distinguish between 

competing hypotheses [29]. Another example focuses on the dynamic regulation of adherens 

junctions [23], which maintain the integrity of epithelial tissues through extracellular 

homotypic bonds. Experimentally, quantitative single-cell and population-level in vitro 

assays were used to quantify the endogenous pathway dynamics following the proteolytic 

disruption of the adherens junctions. Using prior knowledge of isolated elements of the 

overall network, these data were interpreted using in silico model-based inference to identify 

the topology of the regulatory network. While not previously recognized as playing a role in 

this network, an endocytic recycling pathway was essential to capture the observed data. 

Collectively, the data suggest that the regulatory network contains interlocked network 

motifs consisting of a positive feedback loop, which is used to restore the integrity of 

adherens junctions, and a negative feedback loop, which is used to limit beta-catenin-

induced gene expression.

5.2. Applications to parameter inference

The parameters of a model can include rate parameters that quantify the propensity of a 

reaction to proceed, initial values of the model, and nuisance parameters that are required to 
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map a mathematical model onto experimentally observed values. By integrating equation 3 

using a MCMC approach, the predictions contained within the converged segments of the 

Markov Chains represent samples from posterior distribution in the model predictions, P(Ŷ|

M). In addition, the corresponding parameter values from the converged segments of the 

Markov Chains represent samples from the posterior distributions in the parameters (P(Θ|Y, 

M)):

(4)

where P(Θ|M) is the prior for the model parameters and P(Y) serves effectively as a 

normalization constant.

In implementing a MCMC approach for parameter inference using mechanistic models of 

dynamic systems, there are a couple of points to keep in mind. First, the parameter priors 

should have heavy tails, meaning that prior probability for a particular set of parameter 

values (P(Θ|M)) should be greater than the posterior probability. In traditional chemical 

kinetic systems, the priors for parameters may be well defined in thermodynamic terms and 

calculated using ab initio methods (e.g., [52]). In models where multiple kinetic processes 

are grouped together as a lumped reaction, the prior distribution may be broad as possible 

values of the parameters are known only within a couple of orders of magnitude. Second, the 

data should “swamp” the prior, which means that the posterior distribution should reflect the 

combination of the data and the model used to interpret the data rather than an arbitrary 

choice of prior distributions for the parameters. Although in practice, this is difficult to 

diagnose, which leads to the last point. Finally, the structure of mechanistic models of 

biological systems are created based on the prior knowledge of the key variables involved in 

a system. In creating a more realistic model of the biology, additional parameters become 

incorporated into the model. However, the available data may only constrain a subset of the 

parameters through a process described as kinetic slaving.

In kinetic slaving, parameters associated with reactions that are fast, such as pre-formed 

multi-protein complexes, or that are kinetically unimportant, such as stationary reactions, 

exhibit one-sided distributions.[28]. This means that parameters associated with fast (or 

stationary) reactions are only constrained such that the value has to provide a time scale that 

is faster (or slower) than the observable time scales associated with the rate-limiting steps. 

This is a subtle but important point as many studies that apply statistical inference methods 

to inverse problems related to dynamic biological networks provide distributions in the 

model parameters that have bounds all supposedly informed by data (i.e., a posterior 

distribution) but that are in the form of a multivariate Gaussian distribution (i.e., all the 

parameters are bounded). Distributions in parameters of dynamic system models that are 

inconsistent with kinetic slaving is an indication that distributions do not reflect the 

experimental data but are constrained by the prior or that the model has been overly 

simplified to achieve an empirical fit.
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6. Conclusion

In understanding traditional chemical processes and in engineering better medicines, making 

mechanistic models of these reactive systems involve similar challenges, which involve 

establishing causal relationships among reactive components of a system based on their 

observed dynamics. Moreover our existing knowledge of these systems is incomplete, as we 

have some prior knowledge of the likely reactive components and how they influence 

system response, and our ability to observe the system is limited. Nonetheless, these 

mechanistic models aim to assist our natural intuition and facilitate communication by 

providing a concrete realization of how we think the system works. While mathematics and 

simulation play central roles in addressing these problems, advances in computational power 

have enabled more sophisticated methods that provide a solid statistical and probabilistic 

foundation to test our mechanistic understanding against data.

Here, we provide an overview of some of the emerging model-based inference tools that 

leverage Markov Chain Monte Carlo methods enabled by increases in computational power 

and concepts drawn from Bayesian statistics, probability, and chemical kinetics. We have 

focused on applications related to cellular signal transduction networks, which transmit 

molecular information within a cell to regulate a functional response. Given the importance 

of understanding cellular behavior to engineer better medicines, cellular systems are 

particularly challenging as limited observability of these intracellular networks is more acute 

and potential reactive components of these systems are being discovered at an increasing 

pace. Computational approaches built upon solid statistical and causal foundations, as 

described here, will be increasingly used to help think more clearly about the dynamic 

relationships among the components of reactive networks.
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Highlights

• Discovering new drugs requires knowing the flow of information within 

networks.

• Identifying the causal structure of a network from data is a type of inverse 

problem.

• Computational solutions use ideas from Bayesian statistics and chemical 

kinetics.

• Methods use prior knowledge of network and tolerate limited observability.

• While easy to implement, obtaining useful results requires critical analysis.
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Translating cartoons to mechanistic models: A case study of the JAK-
STAT pathway

In contrast to more traditional chemical systems, the analysis of reaction networks 

associated with biological systems is characterized by lumped reactions and poor 

observability. To illustrate this point, consider the canonical Janus kinase (JAK)-signal 

transducer and activator of transcription (STAT) signaling pathway, which is highly 

conserved across eukaryotic organisms. As summarized in Figure 2, this compact 

signaling pathway transmits extracellular polypeptide signals, through transmembrane 

receptors, to control gene expression in a variety of fundamental cellular processes, 

including innate and adaptive immunity [24], regulation of cell growth and apoptosis 

[25], and control of embryonic stem cell self-renewal [26].

While cartoons like Figure 2 summarize the flow of molecular information down 

particular pathways within cells, identifying the network associated with a specific JAK-

STAT signaling pathway within a specific cell type is more challenging. To illustrate this 

point, we will consider how Interleukin-12 (IL12) activates a JAK-STAT signaling 

pathway in type 1 CD4+ T helper cells [27, 28, 29]. In the case of IL12, the integrated 

use of modeling, simulation, and experimentation identified that multiple STAT proteins 

(STAT4 and STAT1) can become activated in response to receptor ligation and the 

activity of these STAT proteins are differentially regulated through uncharacterized 

negative feedback mechanisms, as summarized in Figure 3. The relationships between 

the abundance of activated STAT4 in the nucleus and de novo protein production and 

release are unique for each secreted protein, such as Interferon-γ (IFNG) and IL10 [29]. 

In addition, IL12 stimulation also enhances cell survival, which suggests that receptor 

ligation activates additional signaling pathways like the phosphoinositide-3-kinase-

protein kinase B/Akt (PI3K-PKB/Akt) pathway [30]. Given the emerging complexity of 

the IL12 signaling pathway, experimental observability of this pathway is a challenge. 

For instance, flow cytometry can be used to obtain multiplex single-cell measures of 

protein phosphorylation, protein copy numbers, and mRNA abundance. Assuming that 

bench skills and reagents are up to the task, an experiment to monitor intracellular 

signaling activation and a functional response as a function of time in a cell line can cost 

$10,000.1 Inevitably, limitations in bench skills, reagents, or financial resources impose a 

suboptimal experimental design. The mathematical models then aid in interpreting the 

acquired data in light of our current understanding of how a cell interprets IL12 to 

orchestrate a response.

1We are assuming an experimental design involving a negative control and cells stimulated with a single concentration of ligand 
that is observed at the following time points: 0, 15’, 30’, 1hr, 2hr, 4hr, 8hr, and 16hr. Flow cytometric measurements include copy 
numbers of a heterogeneous receptor (IL12RB1 and IL12RB2), viability, phosphorylation of signaling proteins (STAT1, STAT4, 
and AKT), abundance of inducible negative regulators of cytokine signaling (SOCS1 and SOCS3), and abundance of three 
mRNAs using single-cell RNA Fluorescence-in situ hybridization (FISH). Experiments would be performed twice with three 
replicates per independent trial.
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Figure 1. Overview of the role of mathematical modeling in the context of reactive systems
The behavior of reactive systems can be described in mathematical terms that represent the 

underlying physical, kinetic, and reactive processes. The specific mathematical relationships 

incorporated into a model reflect a trade-off between computational and analytical 

tractability and realism that relate to the specific design objectives associated with how the 

mathematical model will be used. Modeling applications can be categorized into one of two 

applications. The first application, called forward modeling, predicts the behavior of the 

system based on prior knowledge of the relative importance of the physical, kinetic, and 

reactive processes. The second application is to identify aspects of reactive system that 
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govern the behavior of the process using experimental observations of the system. This 

second application is called an inverse problem.
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Figure 2. A cartoon illustrating the canonical JAK-STAT signaling pathway that initiates a 
cellular response, as depicted by secreted protein production, in response to stimulation with an 
extracellular ligand
An extracellular soluble cue binds to a multi-protein complex that is comprised of 

transmembrane receptor proteins and associated Janus kinases. Upon ligand binding, the 

receptor changes conformation enabling the JAKs to phosphorylate STAT binding sites 

within the cytoplasmic tails of the receptors. The STAT proteins then associate with the 

activated receptor complex and sub-sequently become phosphorylated by the JAKs, as 

indicated by the green dot. The phosphorylated STAT proteins dimerize and migrate to the 
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nucleus to initiate the transcription and translation of the corresponding STAT-responsive 

genes, which include cytokines that are released by the cell to help coordinate cellular 

response. STAT proteins become deactivated following dephosphorylation by a number of 

different phosphatases, including protein tyrosine phosphatases (PTP), that are present 

within the cell.
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Figure 3. The emerging JAK-STAT pathways associated with IL12 signaling in type 1 T helper 
cells
IL12 binds to a multi-protein receptor complex comprised of two transmembrane receptor 

proteins, IL12RB1 and IL12RB2, that are bound to the Janus kinases TYK2 and JAK2, 

respectively. Binding of the receptor complex by IL12 results in the phosphorylation of both 

STAT1 and STAT4. STAT1 plays a role in the expression of IL12RB2 while STAT4 

promotes the transcription and translation of Interferon-γ (IFNG) and Interleukin-10 (IL10). 

While initially activated by IL12, STAT1 becomes dephosphorylated through an unclear 

mechanism that may involve the inducible expression of a phosphatase, like a Suppressor of 

Cytokine Signaling (SOCS). The intracellular transport of the receptor complex (i.e., 

receptor trafficking), dilution of proteins due to cell proliferation, and signaling pathways 

that connect IL12 stimulation to enhanced cell viability are some of the biological processes 

not depicted in this diagram.
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Figure 4. Besides the physical and reactive processes typically associated with chemical systems, 
a variety of additional biological processes influence how cells respond to extracellular cues
A sampling of biological processes that orchestrate the cellular responses to an extracellular 

cue (ligand) are shown as a function of their associated kinetic time scales. With the fastest 

time scales, ion changes in the cytosol and post-translational modifications influence protein 

structure. Changes in protein structure alter the affinity of protein interactions. Protein 

abundance can be altered due to signaling-induced changes in abundance via de novo 

synthesis, degradation, or dilution within an expanding cell population. Epigenetic changes 

influence the relationship between transcription factor activation and the resulting protein 

synthesis by altering promoter binding sites, mRNA stability, or translation. Finally, cellular 
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response can be modified by additional secreted or metabolic cues present within the local 

microenvironment that can, in turn, be shaped by the cell populations themselves.
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Figure 5. A schematic of an emerging approach for inverse problems that use mechanistic 
mathematical models of reactive systems
This approach leverages concepts from Bayesian statistics, probability, and advances in 

computational power to test competing hypotheses regarding causal structure of the reaction 

network. A mechanistic model of the reactive system, prior knowledge of parameter values, 

and experimental data are inputs to a computational filter. If prior knowledge of the key 

processes that govern the behavior of the reactive systems is weak, multiple competing 

hypotheses could be pro-posed as a reaction network. If prior knowledge of the parameter 

values is also weak, the computational filter uses this information as it searches parameter 

space to select a statistically-based ensemble of parameter values (red region of parameter 

space), given the uncertainty in the experimental data and model. This ensemble of 

parameter values are then used to generate a corresponding ensemble of predictions that 

describe probabilistically how the system evolves in time from the initial values, given the 

specific data and network model. A model invalidation step involves testing whether the 

difference between the model pre-dictions (Ŷ) and experimental data (Y) do not have 

systematic differences (i.e., {Ŷ − Y} ≠ N(0, σ2)). Finally, a Bayes Ratio can be used to select 

among competing hypothesis as to the governing processes associated with the reactive 

system.
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