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Regulated progression through the cell cycle requires sequential expression of a family of 

proteins called cyclins. Upon their induction, cyclins form complexes with specific cyclin-

dependent kinases (CDKs), creating active holoenzymes that phosphorylate target proteins 

that are required for cell-cycle progression. Induction of the proto-oncogene cyclin D1, and 

its binding to CDK4 or CDK6, is a rate-limiting event during cell-cycle progression through 

G1 phase. Some studies suggest that cyclin D1 also has CDK-independent functions 

(reviewed by Fu et al., 2004).

In non-transformed cells, the cyclin D1 gene senses the mitogenic potential of the 

microenvironment during cell-cycle entry from quiescence because its induction requires 

coordinated signaling from the extracellular matrix (ECM) and soluble growth factors 

(Assoian and Klein, 2008). These controls can be lost during cellular transformation, and 

cyclin D1 is correspondingly overexpressed in a number of cancers, including those of the 

breast, liver, lung and brain (Gillett et al., 1996; Hall and Peters, 1996; Yamamoto et al., 

2006; Molenaar et al., 2008; Sanchez-Mora et al., 2008). Conversely, repression of cyclin 

D1 gene expression is a hallmark of cell differentiation (James et al., 2006; Mejlvang et al., 

2007; Takahashi et al., 2007). Since the first descriptions of the cyclin D1 promoter emerged 

~15 years ago (Motokura and Arnold, 1993; Herber et al., 1994), many different 

transcription factors have been identified that directly bind to, or otherwise regulate, the 

cyclin D1 promoter (reviewed by Wang et al., 2004).

Cyclin D1 levels can be regulated transcriptionally and post-transcriptionally (Musgrove, 

2006), and here we examine the transcriptional control of the cyclin D1 gene. We have 

focused this Cell Science at a Glance poster article on the transcription factors and binding 

sites that are functional in intact cells as determined by luciferase-reporter assays and 

chromatin immunoprecipitation (ChIP), and refer readers to Wang et al. (Wang et al., 2004) 

for a review that includes in vitro studies using electrophoretic mobility shift assays 

(EMSAs) as well as transcription factors, the binding sites for which remain unidentified. 

The poster that accompanies this text indicates the methods that have been used to implicate 

individual transcription-factor sequences in the regulation of cyclin D1 transcription. Many 

of these transcription-factor consensus sequences are regulated by multiple effector 

pathways, each of which has its own numerous upstream signaling molecules. We have 

highlighted only a few of the major signaling pathways that regulate each transcription-

factor binding site. Wang et al. provide a thorough list of these upstream pathways (Wang et 
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al., 2004). Finally, we have incorporated a bioinformatics-based, multi-species comparison 

of the cyclin D1 promoter, which allows us to distinguish between highly conserved and 

specialized regulatory mechanisms that control cyclin D1 gene expression.

Inducers of cyclin D1 gene transcription

Perhaps the best-studied activators of cyclin D1 gene transcription are mitogenic growth 

factors. The mitogen-activated protein kinases (MAPKs) play a major role in mitogenic 

signaling, and the canonical Ras-Raf-MEK [MAPK and extracellular signal-regulated kinase 

(ERK)]-ERK pathway can stimulate expression of AP-1 transcription factors, including 

members of the Fos, Jun and activating transcription factor (ATF) families (Balmanno and 

Cook, 1999; Shaulian and Karin, 2001). The human cyclin D1 promoter contains a 

consensus AP-1 site, at −903 bp†, which is regulated by Fos and Jun (Albanese et al., 1995; 

Shen et al., 2007). Jun can also form a complex with ATF2 to regulate the cyclic AMP-

response element (CRE) (Sabbah et al., 1999; Castro-Rivera et al., 2001). ATF2 forms a 

complex with CRE-binding protein (CREB) and stimulates cyclin D1 promoter activity 

(Beier et al., 1999). ATF2-mediated cyclin D1 promoter induction can be stimulated by a 

number of growth-promoting agents, such as estrogen (Sabbah et al., 1999), hepatocyte 

growth factor (Recio and Merlino, 2002) and regenerating gene product (Reg) (Takasawa et 

al., 2006). In addition to regulating AP-1-dependent transcription, growth-factor-dependent 

Ras activation also promotes Sp1-mediated cyclin D1 gene expression – stimulation of 

neurons with nerve-growth factor promotes the formation of a transcription complex 

containing Sp1, p50 [a nuclear factor-κB (NF-κB) family member] and p107 (a pocket 

protein) (Marampon et al., 2008). The Sp1 consensus site can also bind the transcription 

factor B-Myb, resulting in cyclin D1 promoter activity (Bartusel et al., 2005).

Mitogen-stimulated Rac activity also induces cyclin D1 transcription, although the 

mechanism is not fully understood. In certain cellular contexts, Rac is upstream of NF-κB 

activity (Joyce et al., 1999), whereas in others, Rac and NF-κB signal through parallel 

pathways (Klein et al., 2007). Despite variances in mechanism, it is well established that 

both Rac and NF-κB are strong inducers of cyclin D1 gene expression (Guttridge et al., 

1999; Hinz et al., 1999; Joyce et al., 1999; Matos and Jordan, 2005; Reddig et al., 2005; 

Klein et al., 2007; Yang et al., 2008). Furthermore, NF-κB activity can be enhanced by 

forming a complex with JunD in a phosphoinositide 3-kinase (PI3K)-and phosphoinositide-

dependent kinase-1 (PDK1)-dependent manner (Toualbi-Abed et al., 2008).

Similar to growth factors, cytokines also stimulate cyclin D1 gene expression. Cytokines 

bind cell-surface receptors and initiate signaling through the JAK-STAT pathway. Janus-

activated kinase (JAK) binds to ligand-bound cytokine receptors, and phosphorylates 

cytoplasmic signal transducers and activators of transcription (STAT) transcription factors, 

causing their translocation to the nucleus. Cytokines, such as interleukin-3 and interleukin-6, 

stimulate cyclin D1 promoter activity via STAT3 and STAT5 (Matsumura et al., 1999; 

Mishra and Das, 2005; Leslie et al., 2006; Wang et al., 2007; Gu et al., 2008).

†All numbering is based on the human genomic sequence (accession number NT_078088).
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In addition to these soluble factors, the ECM has a prominent role in regulating cyclin D1 

gene expression (Assoian and Klein, 2008; Kothapalli et al., 2008). ECM proteins such as 

collagen, fibronectin and vitronectin activate focal adhesion kinase (FAK) upon integrin 

clustering. FAK activity can stimulate ERK signaling, leading to either AP-1- or EtsB-

mediated transcription (Renshaw et al., 1999; Zhao et al., 2001). Additionally, FAK can 

activate the human cyclin D1 promoter by inducing the transcription factor Kruppel-like 

factor 8 (KLF8) (Zhao et al., 2001; Zhao et al., 2003). ECM proteins also activate Rac and 

are required to couple Rac-GTP to its effectors (del Pozo et al., 2000). Hyaluronan, a widely 

distributed, non-proteinaceous component of the ECM, regulates the signaling of ERK and 

Rac to cyclin D1 through its receptor, CD44 (Kothapalli et al., 2008).

As a consequence of its proliferative potential, cyclin D1 is a crucial regulator of Wnt- and 

Notch-regulated organism development (Hsu et al., 2001; Pal and Khanna, 2006). When 

Wnt binds its receptor, Frizzled, β-catenin is released to translocate from the cytoplasm to 

the nucleus, where it forms a complex with the ternary complex factor (TCF) and/or 

lymphoid enhancer-binding factor (LEF) transcription factors (Smalley and Dale, 1999) and 

stimulates cyclin D1 gene transcription (Shtutman et al., 1999; Tetsu and McCormick, 

1999). β-catenin–TCF-mediated cyclin D1 gene transcription is further regulated by active 

Rac signaling (Esufali and Bapat, 2004), phosphorylation by protein kinase A (PKA) 

(Taurin et al., 2008), overexpression of the androgen receptor (Schweizer et al., 2008) and 

by forming a complex with AP-1 transcription factors (Toualbi et al., 2006). Proliferation 

and development are also regulated by Notch signaling through the activation of the CBF-1/

suppressor of hairless/LAG-1 (CSL) transcription factor (Stahl et al., 2006). Interestingly, 

Notch-CSL signaling can also inhibit cyclin D1 induction, as described in the next section. 

The switch between inducer and repressor might be a result of the context-dependent 

recruitment of transcriptional co-regulators.

Several transcription factors stimulate cyclin D1 transcription either in a tissue-specific 

manner or via specialized stimulation. Hepatocyte nuclear factor 6 (HNF6) binds to the 

cyclin D1 promoter in the mouse liver (Tan et al., 2006). In the presence of Cu(I), the 

transcription factor Atox1 translocates to the nucleus and stimulates cyclin D1 gene 

expression (Itoh et al., 2008). Under hypoxic conditions, STAT5b is phosphorylated by 

JAK2, and expression of cyclin D1 mRNA is upregulated (Joung et al., 2005). Additionally, 

a number of transcription factors have been identified that induce cyclin D1 gene 

expression; however, the upstream signaling molecules that activate these pathways remain 

unknown. These transcription factors include KLF5 (Du et al., 2007), brain-specific 

homeobox/POU domain protein 3b (Brn-3b) (Budhram-Mahadeo et al., 2007) and DbpA 

(also called ZONAB) (Sourisseau et al., 2006).

Misregulation of cyclin D1 gene expression and increased proliferation are hallmarks of a 

number of proliferative diseases, including cancer and atherosclerosis. Activating mutations 

in of any of these transcription factors or their upstream signaling pathways could 

conceivably cause constitutive cyclin D1 expression and contribute to disease progression. 

Additionally, several transcription factors have been reported to selectively stimulate cyclin 

D1 gene transcription in cancer. Bombesin is a 14-amino-acid peptide that has been used as 

a marker for gastric cancer and neuroblastoma. Treatment of prostate cells with bombesin 
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activates the Ras-MAPK pathway, which in this case leads to an early growth response 

protein 1 (Egr1)-dependent (rather than AP-1-dependent; see above) stimulation of cyclin 

D1 gene transcription (Xiao et al., 2005). Serine/threonine-protein kinase 11 (LKB1) 

normally functions as a tumor-suppressor by upregulating p21 in a p53-dependent manner, 

but LKB1 sporadically acquires a gain-of-function mutation in some cancers, which allows 

it to bind to the cyclin D1 promoter and stimulate gene transcription (Scott et al., 2007). 

Finally, the Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is an 

oncogene that regulates the nuclear translocation of epidermal growth factor receptor 

(EGFR). Nuclear EGFR binds the cyclin D1 promoter and promotes gene transcription (Tao 

et al., 2005).

The numerous transcription-factor binding sites in the cyclin D1 promoter, and the extensive 

list of signaling pathways that regulate these binding sites, allows for a wide variety of 

regulatory mechanisms that induce cyclin D1 gene expression under an array of cellular 

conditions. However, the regulation of cyclin D1 transcription is not limited to 

transcriptional activation – a number of repressor proteins bind to the cyclin D1 promoter to 

inhibit its transcription.

Repressors of cyclin D1 gene transcription

Repression of cyclin D1 is a hallmark of cell differentiation for certain cell lineages. Cell-

type-specific transcriptional repressors have been identified that inhibit the cyclin D1 

promoter. These include jumonji (Jmj; also known as JARID2), SMAD-interacting protein 1 

(SIP1) and POU domain, class 2, transcription factor 1 (Oct-1). Neurogenesis in the mouse 

hindbrain requires cyclin D1 repression by Jmj, as mice that lack this protein have abnormal 

mitotic clusters in the mantle zone (Takahashi et al., 2007). Cardiac myocyte proliferation is 

also repressed by Jmj, which suggests a role for this protein in controlling cardiac 

morphogenesis (Toyoda et al., 2003).

Epithelial cells can undergo an epithelial-mesenchymal transition (EMT) via the expression 

of a number of transcription factors, including SIP1. In A431 epidermoid cells, SIP1 induces 

an EMT that displays the characteristic invasive phenotype, while also downregulating 

cyclin D1 mRNA expression (Mejlvang et al., 2007). Inhibition of cyclin D1 mRNA 

expression blocks S-phase entry in these cells. Although the overexpression of cyclin D1 

rescues S-phase entry in SIP1-treated cells, it not does not reduce cellular invasiveness 

(Mejlvang et al., 2007).

Oct-1 can function both as a cyclin D1 transcriptional repressor and inducer. Oct-1 is 

thought to repress cyclin D1 transcription because stimulation of mammary epithelial cells 

with prolactin induces cyclin D1 promoter activity by removing Oct-1 from the cyclin D1 

promoter (Brockman and Schuler, 2005). Conversely, Oct-1 can form a complex with CREB 

to activate CRE-mediated cyclin D1 gene transcription (Boulon et al., 2002). In this context, 

Oct-1 does not bind directly to the cyclin D1 promoter, but acts as a transcriptional co-

activator for CREB.

In addition to regulating cell differentiation, transcriptional repression of the cyclin D1 gene 

is crucial for maintaining cellular quiescence and preventing unwanted cell proliferation. 
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One mechanism of maintaining quiescence in mammary epithelial cells is through yin and 

yang 1 (YY-1; also known as TYY1), which represses cyclin D1 by recruiting histone 

deactylase 1 (HDAC1) to a TRE/Oct-1-binding site on the cyclin D1 promoter. Treatment of 

human breast cancer cells with estrogen causes a Jun-Fos-estrogen receptor complex to 

displace YY-1 and stimulate cyclin D1 gene transcription (Cicatiello et al., 2004).

A number of transcription factors have been characterized as tumor suppressors on the basis 

of their ability to inhibit cyclin D1 gene transcription and cell-cycle progression. These 

include CSL, ATF3, scaffold matrix-associated region-1 (SMAR1; also known as BANP), 

zona occludens 2 (ZO-2) and p53. In contrast to its role as a transcriptional activator, as 

described above, the expression of CSL downstream of Notch signaling also confers 

protection against cutaneous squamous-cell carcinoma in a mouse model of skin cancer 

(Proweller et al., 2006). ATF3 is a stress-inducible member of the AP-1 family. ATF3 binds 

to the cyclin D1 promoter and represses its transcription, whereas knocking out ATF3 

increases the growth rate and ability of mouse embryonic fibroblasts (MEFs) to form 

colonies in soft agar (Lu et al., 2006). SMAR1 inhibits cyclin D1 gene transcription by 

recruiting a repressor complex, containing the HDAC-complex component Sin3, HDAC1, 

and the pocket proteins p107 and p130, to the cyclin D1 promoter (Rampalli et al., 2005). 

The proto-oncogene myc can form a complex with the tight-junction protein ZO-2. This 

complex inhibits cyclin D1 transcription via the E-box of the promoter (Huerta et al., 2007). 

Finally, p19ARF represses cyclin D1 gene expression in human mammary epithelial cells by 

recruiting p53 to a cis-acting element in the cyclin D1 promoter (D’Amico et al., 2004).

Knowledge of the diverse set of regulatory elements that are described in this Cell Science at 

a Glance poster article was generated using a large number of cell lines from various cell 

lineages and species. As a consequence, it remains unclear which transcription factors are 

global regulators of proliferation and differentiation and which are species specific. The 

acquisition of whole-genome sequences from a number of mammalian species allows us to 

use bioinformatic analysis to study the conservation of consensus regulatory sites on the 

cyclin D1 promoter.

Multi-species bioinformatic analysis of the cyclin D1 promoter

Eto reported a multi-sequence analysis of the cyclin D1 promoter in 2000 (Eto, 2000). 

However, the recent accumulation of genomic sequence data combined with advances in 

bioinformatics tools for promoter analysis prompted us to update the multi-species 

alignment of the cyclin D1 promoter to identify conserved and species-specific regulatory 

elements. We performed an alignment of the human, chimp, mouse and zebrafish cyclin D1 

promoters (accession numbers NT_078088, NW_001222300, NT_039437 and 

NW_001879279, respectively) using 3.8 kb of sequence upstream and 200 bp downstream 

of the transcription start sites as annotated in GenBank. The sequences were aligned using 

Mulan software (mulan.dcode.org) and the results were submitted to MultiTF 

(multitf.dcode.org) to identify conserved transcription-factor consensus sequences.

Evolutionarily conserved regions (ECRs) were defined as regions that were at least 70 bp 

long with a minimum of 70% homology. Similar to Eto (Eto, 2000), we found that 
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mammalian promoters share a large number of ECRs. However, the zebrafish cyclin D1 

promoter contains only one ECR immediately upstream of the transcription start site. 

Interestingly, this highly conserved region contains the TCF, CRE and NF-κB consensus 

sequences. The conservation of these binding sites suggests that they have a crucial and 

fundamental role in cyclin D1 induction and cell proliferation.

Multi-species alignment also allowed us to determine which transcription factors might 

function in a species-specific manner. As shown in the accompanying poster, most promoter 

elements are conserved from mice to humans, yet there are notable exceptions. The human 

and chimp cyclin D1 promoters contain an E2F consensus site (TTTGGCGCCCG) at 

positions −95 and −94, respectively, and E2F1 can repress cyclin D1 gene expression in 

assays using human luciferase-promoter constructs (Watanabe et al., 1998). However, no 

homologous sequence exists in the mouse.

Multi-species promoter alignment can be a valuable tool for resolving mechanisms by which 

transcription factors affect promoter activity. For example, many studies have reported that 

AP-1 transcription factors regulate cyclin D1 gene expression, and the human and chimp 

cyclin D1 promoters contain a consensus AP-1 site (see above). However, our analysis of 

the human and mouse cyclin D1 promoters demonstrates that this site (TGAGTCA at 

position −903 in the human promoter) is not conserved in the mouse. In fact, the first 

conserved AP-1 site that we can identify (TGAGTCA) is very far upstream of the 

transcription start site (−24 kb in the mouse promoter and −53 kb in the human promoter). 

Eto used bioinformatics to identify a potential AP-1 site in the mouse promoter (position 

−795; TGTCTCA) on the basis of its similarity to the consensus AP-1 site (Eto, 2000). 

However, this sequence does not register as an AP-1 site when analyzed by JASPAR 

(Vlieghe et al., 2006) or Transfac (Wingender, 1994). Additionally, the third base in AP-1 

sites is almost always an adenine, but rarely a thymine (Pollock and Treisman, 1990).

As ERK and AP-1 stimulate cyclin D1 gene transcription in mouse as well as human cells 

(Brown et al., 1998; Burch et al., 2004; Shen et al., 2006; Villanueva et al., 2007), there may 

be alternative mechanisms by which ERK regulates cyclin D1 promoter activity. In addition 

to a possible distant AP-1 site, ERK regulates Ets-family transcription factors, and AP-1 

family members have the potential to activate cyclin D1 transcription at other consensus 

sites, such as the conserved CRE, which is known to bind Jun and ATF2 (Beier et al., 1999; 

Sabbah et al., 1999). It is important to emphasize, however, that the likelihood of alternative 

mechanisms for ERK-dependent cyclin D1 gene induction in the mouse does not lessen the 

probable importance of the −903 AP-1 site in the primate cyclin D1 promoters.

Perspectives

Research that spans 15 years has revealed the extremely complex regulation of cyclin D1 

transcription, presumably to maintain proper physiological quiescence and differentiation, 

and to allow for cellular proliferation upon appropriate extracellular stimulation. Modern 

molecular-biology tools combined with bioinformatic approaches using whole-genome 

sequences can help advance our understanding of the transcriptional regulation of the cyclin 

D1 gene in these physiological and pathological contexts. The high reliance of modern 
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biomedical research on the mouse emphasizes the importance of recognizing these 

interspecies promoter differences during data interpretation and the need to use species-

matched reagents (i.e. species-specific promoter constructs and cells) for studying non-

conserved elements.
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Abbreviations

ATF activating transcription factor

β-cat β-catenin

Brn-3b brain-specific homeobox/POU domain protein 3b

ChIP chromatin immunoprecipitation

CSL CBF-1/suppressor of hairless/LAG-1

CRE cyclic AMP-response element

CREB CRE-binding protein

ECM extracellular matrix

Egr1 early growth response protein 1

EMSA electrophoretic mobility shift assay

ERK extracellular signal-regulated kinase

FAK focal adhesion kinase

GF growth factor

JAK janus-activated kinase

Jmj jumonji

KLF Kruppel-like factor

LEF lymphoid enhancer-binding factor

MAR matrix attachment region

NF-κB nuclear factor-κB

PI3K phosphoinositol 3-kinase

SIP1 SMAD-interacting protein 1

SMAR1 scaffold matrix-associated region-1

STAT signal transducers and activators of transcription

TCF ternary complex factor

YY-1 yin and yang 1
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ZO-2 zona occludens-2
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