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Abstract

Protein structure alignment methods are used for the detection of evolutionary and functionally 

related positions in proteins. A wide array of different methods are available, but the choice of the 

best method is often not apparent to the user. Several studies have assessed the alignment accuracy 

and consistency of structure alignment methods, but none of these explicitly considered membrane 

proteins, which are important targets for drug development and have distinct structural features. 

Here, we compared 13 widely-used pairwise structural alignment methods on a test set of 

homologous membrane protein structures (called HOMEP3). Each pair of structures was aligned 

and the corresponding sequence alignment was used to construct homology models. The model 

accuracy compared to the known structures was assessed using scoring functions not incorporated 

in the tested structural alignment methods. The analysis shows that fragment-based approaches 

such as FR-TM-align are the most useful for aligning structures of membrane proteins. Moreover, 

fragment-based approaches are more suitable for comparison of protein structures that have 

undergone large conformational changes. Nevertheless, no method was clearly superior to all 

other methods. Additionally, all methods lack a measure to rate the reliability of a position within 

a structure alignment. To solve both of these problems, we propose a consensus-type approach, 

combining alignments from four different methods, namely FR-TM-align, DaliLite, MATT and 

FATCAT. Agreement between the methods is used to assign confidence values to each position of 

the alignment. Overall, we conclude that there remains scope for the improvement of structural 

alignment methods for membrane proteins.
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Introduction

The alignment of two protein structures allows for the identification of evolutionarily related 

protein segments, and helps with the prediction of protein function and the classification and 

identification of folds. The correct detection and assignment of evolutionarily and 

functionally homologous residues or fragments is strongly correlated with the accuracy of 

the method being used, and dozens of methods have been developed in attempts to solve this 

problem1. A few studies2-5 have compared available structural alignment methods on large 

data sets of water-soluble protein structures, and these studies indicate that no single method 

outperforms all others. Moreover, none of these studies explicitly considered the classes of 

integral membrane proteins. Membrane proteins represent ~30 % of genes in a genome6-8 

and constitute the targets for over half of approved drugs9. Integral membrane proteins have 

a number of distinct evolutionary and structural properties from water-soluble proteins as a 

result of their interaction with the hydrophobic membrane bilayer (see e.g. Refs 10-12). On a 

global level, this environment limits membrane protein structures to two major folds: α-

helical and β-barrel13. Their folds are assigned by the Structural Classification of Proteins 

(SCOP) classification scheme14 into a distinct class from their water-soluble counterparts. 

Although it is generally assumed that structure alignment programs that perform well on 

general protein data sets will also be the most suitable for membrane proteins, to our 

knowledge no evidence exists to support that assumption. For example, membrane proteins 

have a higher propensity for secondary structure within the membrane region, which could 

be an advantage for structure alignment programs such as SKA15, which focus on aligning 

secondary structure elements. Some membrane proteins also have lower density packing, 

due to the intercalation of lipids between helices or due to the presence of pores and 

pathways16, which may be an advantage for programs that consider intra-structural 

distances, such as DALI17,18. In part, the lack of studies into alignments of membrane 

protein structures probably reflects the limited availability of structural data, which 

constitute only ~2% of the entire Protein Data Bank (PDB)19. However, recent increases in 

the rate of membrane protein structure determination20 (http://blanco.biomol.uci.edu/

mpstruc/) mean that available reference sets are now sufficient to make such comparisons 

possible.

Here, we update an earlier data set of homologous membrane protein structures21 

(HOMEP2) compiled in 2010, that includes both α-helical and β-barrel membrane proteins, 

neither of which has been addressed specifically in previous studies of structure 

alignments2-5. We use this dataset to compare the accuracy of 13 different structure 

alignment methods, focusing on the question of whether the methods find the optimal 

solution between two structures, rather than the related question of whether they can identify 

similar folds. For each protein pair, sequence alignments are extracted from the structure 

alignment outputs. Assuming that residues placed in the same column arise from an 

ancestral residue, we use these pairwise sequence alignments to build homology models; any 

two aligned residues will therefore be in the same position in space. The accuracy of the 

structural alignments is then assessed by calculating the similarity between the model and 

the known structure using both superposition-dependent and superposition-independent 
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(packing-based) scores. The assessment scores also differ from those optimized in the 

structural alignment methods.

We find that although no single method outperforms all others, several methods perform 

well on average. Based on these results, we propose a consensus-based approach for 

increasing the odds of identifying the most reasonable alignment, which simultaneously 

provides a confidence score for each position in the alignment.

Materials and Methods

HOMEP3 reference data set

Since the construction of the HOMEP2 data set21, over 700 annotations have been added to 

the PDB_TM database22 of membrane protein structures. Similar to the procedure used to 

construct HOMEP2, individual membrane protein structure chains were taken from the 

PDB_TM database22,23, release date 01 Feb 2013, if their resolution was <3.5 Å. The 

protein chains were then separated according to their primary fold type (α or β) and the 

number of membrane spanning segments, according to the TMDET assignments24. Two fast 

structural alignment methods, SKA15 and TM-align25, were used to align all pairs of 

proteins within each group for the purpose of clustering their folds into families. Applying 

two structural alignment methods with distinct scoring schemes reduces the chances that the 

clustering of homologous structures is biased by the choice of quality measure or alignment 

procedure. We followed a relatively conservative strategy for identifying homologs, since 

we wished to assess the ability of the methods to generate the optimal alignment for proteins 

that are known to have the same fold, rather than to search for remote relationships. 

Therefore, all protein pairs with a protein structure distance (PSD) score <1.2 (according to 

SKA15) and a TM-score >0.6 (see below, computed using TM-align25) were assigned to a 

common structural family. When only one of these two criteria was met for a given pair, 

their alignment was assigned to a family after a manual assessment of the alignment quality. 

Using this clustering approach, we identified 159 α-helical protein chains in 37 families 

corresponding to 354 protein pairs (Table S1), plus 68 β-barrels in 8 families corresponding 

to 319 alignments (Table S2), for a total of 673 alignments. See Fig. 1 for an analysis of the 

composition of the HOMEP3 data set.

Generation of pairwise structural alignments

Thirteen structure alignment methods differing in their superimposition approaches, internal 

scoring schemes, and handling of flexible regions were tested (see overview in Table I): 

CE26, SAP27,28, DaliLite v3.3 17,18, SHEBA29, SKA15, MAMMOTH30, FATCAT31,32, 

TM-align25, LovoAlign33, SABERTOOTH34, FR-TM-align35, MATT36, and PPM37. These 

methods were all available for local installation, commonly used, and/or previously shown 

to out-perform other available methods. For each method, pairwise structure alignments 

were generated for all pairs of proteins within each family of HOMEP3. Because some 

methods produce different alignments depending on which protein is listed first, alignments 

were generated using both combinations of each pair of proteins.
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If a method provided a sequence alignment for a given pair then that alignment was used for 

the subsequent analysis. Otherwise, the underlying sequence alignment was constructed 

based on the reported assignment of matched residues, with any missing C- or N-terminal 

residues aligned to gaps. For FATCAT, alignments were generated either using the 

fragment-based mode, or not, by setting the “–flexible” flag to true or false, respectively.

Evaluation of alignment accuracy

The major challenge in assessing structural alignment accuracy is the lack of a standard 

score that ranks the quality of structural alignments. Although efforts have been made to 

address this issue recently38, those strategies are not yet publicly available. Here, we rely on 

the fact that a homology model built using the ideal alignment should provide sufficient 

information to reconstruct the structure of the other protein. Thus, for each pair of 

sequences, each sequence was modeled using the other as a template, and vice versa. Models 

were generated using five cycles of optimization in Modeller v9.10 39, and the best of these 

five models was selected for comparison based on the GDT_TS score of the model relative 

to the known structure (see below).

Structural Similarity Scores

Assessment of the structural similarity of two protein structures is necessary both for the 

optimization of structure alignments by the tested methods, as well as in our analysis of the 

accuracy of the homology models. Here, we describe two common structural similarity 

measures used in the tested structure alignment methods, namely the root mean squared 

deviation (RMSD) and TM-score. We then describe four related distance-based model 

accuracy scores (AL0, AL4, GDT_TS, and GDT_HA), and a packing-based model accuracy 

score (CAD), which we used for comparing two structures (or models) of the same protein 

sequence.

RMSD—The RMSD between Cα atom coordinates (νi and wi) of two superimposed 

structures (of alignment length Laln) is defined as40:

This score is used as the optimization value in two of the tested methods: CE and SAP. The 

squaring term makes the RMSD score very sensitive to large local deviations and to 

differences in the lengths of the template41,42. Therefore, the RMSD score is most useful for 

closely related protein structures, but less useful for more distantly related structures, 

especially if there are regions that have no equivalents, i.e., insertions and deletions. For the 

comparison in Table II, RMSD values were calculated after a least squares fit of all 

equivalent Cα atoms, computed using the LGA package43.

TM-score—The TM-score44, used in the programs TM-align and FR-TM-align, accounts 

for large outliers by using a distance-dependent weighting scheme:
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where Ltarget is the number of residues in the target and di is the distance between the ith 

pair of residues. The d0 term normalizes the match difference to make the TM-score length-

independent:

The TM-score ranges between 0 (no relationship) and 1 (perfect match).

Distance threshold-based measures—The AL0 45, AL4 46, GDT_TS and GDT_HA 

scores are all designed to assess the correctness of a homology model, albeit at different 

levels of precision. None of the structure alignment methods uses these similarity measures 

for optimization and therefore these scores are not biased toward a particular method. These 

four scores apply the same assumptions in order to identify the most structurally similar 

regions between the model and template. Specifically, they assume that the two structures 

have identical sequences (which is not the case in the structural alignment exercise), and that 

the similarity between the structures is a function of the largest segments (i.e., the number of 

Cα atoms), G(c) that can be fitted within a given cut-off distance, c. The identification of 

those largest similar (and not necessarily continuous) segments involves an iterative 

superposition procedure carried out using the LGA43 or CAD-score47 programs. The 

iterative procedure starts with a diverse set of initial alternative alignments (i.e., every 3-

residue segment, plus the three longest continuously related segments within cut-off 

distances of 1, 2 and 5 Å), to improve the chances of finding the largest set of similar 

residues. The AL0 and AL4 scores identify the largest subset of Cα atoms of the model that 

can be superimposed with the reference structure below a cut-off distance of either 3.8 Å or 

10 Å, respectively:

The GDT_TS, or global distance test (total score)43, and GDT_HA (high-accuracy)45 scores 

also identify the number of structurally-equivalent pairs of atoms, but instead use an average 

over four different cutoff distances:

Packing-based score—The contact area difference (CAD) score47 relies on the 

computation of residue-residue contact surface areas using Voronoi tessellation, for both the 
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target model (M) and the template reference structure (T). Let G denote the set of pairs of 

residues (i,j) in the target structure with a non-zero contact surface area, T(i,j). For the same 

set of pairs, the contact surface areas are also computed for the model, M(i,j). The difference 

in the contact area between the model and the template for that residue pair CAD(i,j) is 

computed as:

and the CAD-score of the model is defined as:

A CAD-score of 1 indicates that all the residues in the model have the same orientation as in 

the reference structure, whereas a score of zero indicates that no contacts have been suitably 

reproduced. Here we use the surface area of all atoms (AA-CAD) based on the results of 

Olechnovic et al47. Note that this score can be computed without requiring a structural 

superposition.

Ranking of methods

For each of the tested structural similarity measures, each structure alignment method was 

assigned a mean score, Smean over the scores Sm of all models m in the set of M models, i.e., 

all aligned pairs of structures. Subsequently, each method was assigned a rank Rmean 

(similar to the AR score48) based on the value of Smean. The Rmean ranking therefore reflects 

the relative overall accuracy of a method.

An alternative ranking called Rreliability (also known as the RA score48) was used to identify 

whether a method produces significant outliers, both positive and negative, compared to the 

other methods, and therefore provides a measure of its self-consistency. First, for every 

model m (each alignment pair), the score Sm of the model produced by each method was 

compared, and each method was given a ranking Rrank based on those scores. These 

rankings were then averaged over all M models to obtain Rreliability for each method, 

reflecting the frequency that the method produces an outlier.

Model selection

As mentioned above, for each alignment pair, five models were generated using the 

Modeller optimization routine. To identify the most reasonable model, we considered the 

GDT_TS, AL4, and AA-CAD scores relative to the known structure, as well as the DOPE 

score, which is a statistical energy function. In each case, the selected models were used to 

compute the Rmean and Rreliability rankings for each method. Comparison of the four scoring 

schemes indicated that this choice has a minimal effect on the results; Rmean values were 

identical in 83.7% and 88.9% of cases for α-helical and β-barrel proteins, respectively, and 

the Rmean rankings for a given method never deviated by more than three positions. 

Similarly, the Rreliability values were identical in 70.7% and 77.4% of all cases for α-helical 
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and β-barrel proteins, respectively, and also never deviated more than three positions. We 

therefore selected the best out of the five models according to their GDT_TS scores relative 

to the known structure.

Consistency

Accurate structural alignment methods should match evolutionarily related positions. 

Consequently, an attribute of an accurate method is that the alignment denoted AB of a pair 

of homologs (protein A with protein B) can be deduced from alignments of the two proteins 

with a third homolog (AC and BC). Based on the alignments AC and BC, an alignment of 

AB’ can be derived using protein C as a reference sequence. Comparison of each amino acid 

pair in the derived alignment AB’ with those in the original alignment AB, provides a count 

of the number of consistent positions. The average self-consistency of the alignment 

between A and B is then defined as an average over the sum of LA and LB. This procedure is 

repeated for all combinations of A, B and C.

Another potentially interesting metric is the “average shift error” of the inconsistent 

positions, which is zero for a perfectly consistent set of alignments. In inconsistent positions 

(i.e., Bi aligned to Cj with j differing between the derived and original alignments: jderived != 

joriginal), the difference between the aligned positions is calculated: |jderived - joriginal|. Here, 

we considered only ungapped positions. To obtain the average shift error E(AB∣C) for the 

alignment AB, relative to AC and BC, the shift error is summed over all inconsistent 

positions, and divided by the sum of LA and LB.

Consensus alignments and confidence scores

Results from four different structure alignment methods were collected and merged using an 

in-house script. The confidence of each column was computed with the same script 

according to the degree of consensus between the methods. This script is available from 

www.bioinfo.mpg.de/AlignMe/download/ConsensusAlignment.zip.

Statistical analysis

Due to the diversity of the HOMEP3 data set21, the structural similarity scores of the 

homology models are not normally distributed. Therefore, we cannot use, for example, a 

paired Student’s t-test or ANOVA for statistical analysis. Instead, to test whether a given 

method was statistical significantly better than any of the other methods, we used the non-

parametric Wilcoxon signed ranked test49; differences were deemed to be significant when 

p<0.05.

Results

Modeling scores

To facilitate an efficient and effective comparison of the different structure alignment 

methods, we first analyzed the available approaches for scoring the accuracy of a structural 

alignment. In our case, that meant comparing the methods for scoring the structural 

similarity of the alignment-based models to the native structures, namely GDT_HA, 

GDT_TS, AL0, AL4, and CAD. Specifically, we identified which of these scores contained 
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complementary information, by calculating the Pearson’s correlation coefficient (PCC) 

between each pair of scores for a test set of models. We also compared those scores with 

RMSD and TM-score values; however, since RMSD and TM-score are optimized by several 

of the structural alignment programs, these two scores were not used for assessing accuracy.

The distance-threshold based scores GDT_TS, GDT_HA, AL0 are strongly correlated with 

one another for both α-helical and β-barrel proteins (Table II, 0.90 < PCC < 0.98), reflecting 

the fact that all three scores consider short-range similarity, in a length-independent manner. 

The AL4 score is less well correlated with the other three threshold-dependent scores (0.68 

< PCC < 0.90), because the AL4 score also considers long-range differences up to a 10 Å 

cut-off.

All four threshold-based GDT and AL scores are strongly correlated with the TM-score 

measure (0.85 < PCC < 0.96), which also uses a threshold, but they are poorly correlated 

with the RMSD (-0.37 < PCC < -0.67), which does not involve a distance threshold. 

Therefore, rankings based on GDT or AL scores could potentially be biased toward methods 

that optimize structure alignments using the TM-score.

The packing-based CAD score is computed without any structural superposition or distance-

threshold component (aside from atom contact), and only relies on the consistency between 

local packing interactions in the two structures. Therefore, any strong correlation between 

the CAD score and the threshold-based scores should indicate that the latter are good 

measures of the local similarity of two structures. Interestingly, the CAD scores are better 

correlated with the threshold-based modeling scores GDT_TS and GDT_HA that focus on 

highly-accurate positions (< 2Å; 0.90 < PCC < 0.97) than with the AL0 (cut-off of 4 Å) or 

AL4 score (cut-off of 10 Å), both of which consider longer-range differences (0.71 < PCC < 

0.93). Notably, the CAD score is very poorly correlated with the RMSD (PCC ~-0.5), and 

less well correlated with the TM-score than all other measures tested except the AL4 score 

(Table II).

Based on these results, we opted to assess the structure alignment methods using only the 

three least mutually-correlated scores, i.e. GDT_TS, AL4 and CAD, although there may be 

some overlap between the conclusions according to the CAD and GDT_TS scores.

Fragment-based approaches gave the best overall performance

The top-ranking methods for α-helical membrane proteins were fragment based methods 

(FR-TM-align, FATCAT, MATT; Table III). Comparison of the results obtained for α-

helical proteins using the TM-align and FR-TM-align methods (Table III) clearly 

demonstrates the increased accuracy obtained by fragmenting the structure, since all other 

aspects of these methods, including the scoring function, are the same.

Similar results as for the α-helical membrane proteins were obtained for the β-barrels (Table 

IV). Again, fragment-based approaches (FR-TM-align, FATCAT, DaliLite) were generally 

ranked higher than methods that apply a rigid superimposition, with FR-TM-align again the 

best choice among all methods.

Stamm and Forrest Page 8

Proteins. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Length-independent scoring schemes result in better alignments

Aside from the choice of rigid-body or fragment-based fitting, the next most significant 

characteristic of a structure alignment method is the internal scoring scheme used for 

selecting the optimal superimposition of the structures. Broadly speaking, the incorporation 

of scores that down-weight the contribution of incorrectly modeled fragments (e.g., TM-

score in TM-align, Dali score in DaliLite) resulted in methods that were more accurate and 

higher ranking than methods that use a score that squares the differences between the two 

superimposed structures (e.g., URMS in MAMMOTH, RMSD in CE and SAP; Tables III 

and IV). The influence of length-dependent scoring on the alignment quality is exemplified 

by CE, which applies simultaneously a fragment-based approach, that we found to be 

advantageous, as well as an RMSD score. This results in the least accurate and worst ranked 

(11th place) alignments of the fragment-based approaches for both α-helical (Table III) and 

β-barrel proteins (Table IV).

Interestingly, the Template Modeling score (TM-score) seems to be most useful for aligning 

α-helical membrane proteins, since both methods that use the TM-score (FR-TM-align and 

TM-align) were the highest-ranking and most accurate methods for α-helical proteins in 

general (Table III). This result could in principle reflect a bias because two of the scoring 

schemes (GDT_TS and AL4) use related threshold-based distance measures. Nevertheless, 

even when assessed using the CAD score, FR-TM-align and TM-align are ranked among the 

top four methods for both accuracy and reliability (Tables III and IV).

Finally, the Dali score used in DaliLite appears to be better suited to β-barrel proteins than to 

α-helical proteins, since its ranking jumps from 8th to 3rd position (Tables III and IV). We 

speculate that this is because the Dali score compares the intra-structural Cα distance 

matrices of two proteins: the distance matrices of β-barrel proteins are likely to be a 

distinctive mixture of small and large distances, unlike the matrix of many short distances 

that would be characteristic of α-helical proteins.

Fragment-based methods are suitable for alternate conformational states of membrane 
proteins

Some membrane proteins are extremely dynamic, and adopt distinct conformations during 

their function, for example, during transmembrane transport or signaling. One example in 

the HOMEP3 data set is the Major Facilitator Superfamily (MFS) of solute transporters, 

including two structures (PDB codes 1PW4 and 2CFQ) of inward-facing states, and two 

structures (PDB codes 3OYQ and 4GC0) of outward-facing states. The differences in these 

states mainly arise from the repositioning of two six-transmembrane-helix domains relative 

to one another, so as to open a pathway into the membrane from one or other side of the 

membrane (Fig. 2).

The results obtained when aligning these MFS protein structures indicate that the 

effectiveness of a method depends on the question being asked. We demonstrate this by 

comparing the results obtained using FATCAT with the rigid-body fitting option with those 

obtained when using its ‘flexible’ (fragment-based) mode. For comparison of structures in 

the same conformation, using FATCAT with the rigid-body fitting option resulted in more 
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accurate models (46.4% < GDT_TS < 56.0%) than using FATCAT in ‘flexible’ mode 

(42.3% < GDT_TS < 51.0%; Table V(a)). For those cases, we also found that the distance-

threshold based GDT_TS scores and the packing-based CAD score both described the 

results well, and were consistent with one another (Table V(a)).

For comparison of structures in different conformations, however, the distance-dependent 

measures may be misleading, whereas the CAD score might be expected to better capture 

the changes inherent in repositioning large domains relative to one another. Consistent with 

this expectation, the models are ranked differently when using the GDT_TS and CAD scores 

(Table V(b)). According to the CAD scores, the flexible mode of FATCAT results in more 

accurate alignments of structures in different conformations than the mode of FATCAT that 

relies on rigid-body fitting.

This example illustrates that fragmentation is a useful feature of structure alignment tools for 

aligning protein structures in different conformations, whereas rigid-based superimposition 

is more suitable for comparing structures in a similar state. Unfortunately, to date, none of 

the programs includes an option for identifying which of the two approaches may be more 

useful for a given pair of structures, and this decision must currently be made ad hoc.

Poor performance is reflected in over- or under-alignment

The accuracy of structural alignment methods is directly related to their ability to correctly 

insert gaps at evolutionarily unrelated positions, i.e., to identify insertions or deletions. Thus, 

structural alignment methods that are not able to identify the correct relationships may align 

too many residues that are evolutionarily unrelated (overalign) and thereby produce an 

unrealistically short alignment, or they might fail to identify relationships between positions 

and instead insert too many gaps (underalign). To test whether the different methods tend to 

over- or underalign, we computed the coverage, and the percentage of the two structure 

lengths that are aligned for each method. We then assessed these values relative to the most 

accurate method, which in this case is FR-TM-align. For both α-helical and β-barrel 

proteins, SAP and PPM tended to significantly underalign membrane protein structures, 

whereas MAMMOTH and SHEBA tended to overalign them (Table VI), which explains 

their overall poor to average performance in terms of model accuracy (see Tables III and 

IV).

Self-consistency

To assess whether self-consistency would be a useful measure of a structure alignment 

program, we first asked whether a method that produces accurate alignments also produces 

self-consistent alignments, or not. Specifically, we tested whether consistency was 

correlated with model quality. This correlation was assessed using either the CAD, AL4 or 

GDT_TS scores for a triplet of proteins; the consistency of their alignments was measured 

as the percentage of positions that are consistent, and the correlation was moderately high, 

both for α-helical proteins (PCC of 0.80, 0.66, and 0.78, for the three scores, respectively) 

and for β-barrels (PCC of 0.79, 0.67, and 0.78, respectively).
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Given this moderate correlation between accuracy and consistency, we therefore proceeded 

to analyze the self-consistency of the structure alignments generated for the membrane 

proteins in the HOMEP3 set. For the α-helical membrane proteins, interestingly, alignments 

generated using DALILITE contained the highest proportion of self-consistent positions 

(88.7%; Table VII) even though these alignments scored poorly in terms of absolute 

accuracy (Rmean ranking >8; see Table III). This discrepancy can be explained by the 

observation that in the rare cases that there are inconsistencies, the error in their position 

tends to be large, with a mean shift error, E = 1.05 (Table VII), which is relatively high for 

the α-helical proteins. Interestingly, several methods that produced the most accurate 

alignments according to the model scores (e.g., FR-TM-align and FATCAT rigid, which 

ranked among the top five methods; Tables III and IV) also exhibited low shift errors (E 

<0.6) compared to, e.g., MAMMOTH, SKA and CE (E >1.3; Table VII). This analysis 

suggests that even though there are inconsistencies between the alignments by the top-

ranking methods, these errors are relatively small, with the correct residue only 1-4 positions 

away. In α-helical proteins, such errors may reflect a subtle shift in the pitch of individual 

helices, since the repetitive nature of a helix may lead to multiple similar solutions with the 

helix shifted up and down by a turn.

For the β-barrel proteins, the overall rankings were similar, although interestingly, DaliLite 

gives the most consistent alignments of all methods, with 74.2% of positions correctly 

aligned, and with the smallest shift error (E = 2.84).

Comparing the two fold types, it is clear that the set of β-barrel proteins were harder to align 

consistently than the α-helical proteins, and the average shift error was significantly higher 

(Table VII). These differences between the two folds may be explained by the higher 

number of loosely-packed residues in β-barrels, because the reduced number of constraints 

on their positions means that they tend to be less consistently aligned than those that are 

well-packed or buried, as noted previously4. Moreover, the internal pseudo-symmetry of a β-

barrel could lead to many possible solutions that are shifted by one or two β-strands, 

resulting in large shift errors.

Combining results from four structure alignment methods

Structural alignments of membrane proteins have been used as reference data sets for 

assessing various computational approaches, such as sequence alignment methods21,46,50. In 

all these studies, a single structural alignment method was used to generate the reference 

data set. However, our comparisons indicate that none of the structure alignment methods 

performs significantly better than all others (Tables III and IV), consistent with observations 

for water-soluble proteins4. Selecting a single method to generate a reference set may 

therefore skew the results for such assessments. Specifically, incorrectly assigned positions 

would be treated as correct (false positives) and correctly-aligned positions would be treated 

as incorrect (false negatives).

To overcome such errors, we propose a consensus-type approach, similar to that used for 

transmembrane helix prediction in, e.g. TOPCONS 51, in which we collect the results from 

four structural alignment methods that produced some of the most accurate alignments. We 

selected the structural alignment methods that performed best according to the GDT_TS and 
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CAD-score, namely FR-TM-align, FATCAT (rigid-body mode), MATT and DaliLite. TM-

align was excluded because the underlying algorithm and score is similar to that of FR-TM-

align, and because the models obtained from FR-TM-align and TM-align alignments are not 

significantly different (p >0.5). TM-align therefore does not introduce any significant 

additional information to the alignment that is already contained within FR-TM-align. 

Similarly, for FATCAT, the rigid-body mode was chosen instead of the flexible mode, 

because the former produced slightly more accurate alignments overall.

Unlike the transmembrane prediction consensus approach, we do not propose that the 

information from the four alignments be flattened into a single ‘consensus’ alignment. 

Rather by collecting the results of four different methods together we increase the odds that 

the correct alignment is identified.

Confidence scores provide a measure of reliability of aligned positions

The use of four different methods as described above also allows the assignment of a 

confidence value to each alignment position (Fig. 3). We assume that the more methods that 

place two residues in the same column, the more reliable the position. Therefore we assign 

the confidence score to be 1 when only one method predicts that alignment; 3, when two 

methods agree; 6 when three methods agree; and 9 when all four methods agree.

We note that agreement between methods is not necessarily a good reflection of the 

accuracy of a position, since all four methods could be incorrect. However, correlating the 

different confidence levels with the position-specific model accuracy of the corresponding 

positions shows that alignment positions with the highest agreement between the four 

methods typically correspond to accurately modeled positions, with an error in position <4 

Å (Fig. 4). Moreover, as the confidence level decreases, so does the model accuracy (Fig. 4). 

Thus, positions with a high confidence level are indeed the most reliable. Alignment 

positions with low confidence values, by contrast, should be treated with caution and 

potentially checked manually for their correctness.

Discussion

In this study we attempted to identify a method for reliably aligning structures of membrane 

proteins, which should be useful for many studies of membrane protein structure prediction 

or analysis. Overall, and in agreement with studies on more general data sets, no single 

method produced more accurate alignments than all other methods.

In comparing the different methods, however, several trends became clear. First, the 

methods that use length-independent scores such as TM-score for optimizing their 

superpositions produced the most accurate alignments of membrane proteins. We note that 

this observation could be biased by the use of GDT_TS and AL4 scores for assigning the 

accuracy of the different methods, because these two scores use threshold-dependent 

distance metrics and are quite strongly correlated with the TM-score (Table II). However, 

the TM-score based methods are also highly ranked when assessed using the CAD score, 

which is independent of any fitting procedure and therefore unbiased.
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A second striking observation is that the fragment-based approaches typically resulted in 

overall more accurate alignments than the rigid-body fitting methods. This was particularly 

clear when comparing FR-TM-align with TM-align. FATCAT, in contrast, typically gave 

slightly more accurate alignments when used in “rigid” mode, rather than “flexible mode”. 

Importantly, the fragment-based flexible mode of FATCAT was most useful for comparing 

structures with very large conformational differences, such as the inward- versus outward-

facing conformations of the major facilitator superfamily transporters, whereas the rigid-

body mode resulted in more accurate alignments when comparing structures of similar 

conformational states.

We conclude that, as discussed previously for globular proteins38, there is room for 

improvement in structure alignment programs, both in terms of alignment accuracy and 

alignment consistency4. Introducing membrane information within the superimposition 

procedure of membrane proteins might be one approach to improving the alignment quality. 

For example, for each structure, the membrane-spanning segments could be identified (e.g. 

using OPM52 or TMDET24), and used as an additional criterion in the fitting.

In the meantime, we designed a consensus-type approach that collects the results from four 

diverse methods: FR-TM-align, FATCAT, MATT, and DaliLite, to identify the most 

accurate possible alignments of membrane protein structures. This approach simultaneously 

allows the assignment of a confidence score for each position. The collected alignments and 

confidence scores could be useful in a number of ways. For example, when used as “gold 

standard” reference alignments for evaluations of other bioinformatic methods, one could 

compare the test alignments only against the most confident regions of the reference set.

Another interesting application of the collected alignments and confidence scores is as input 

for homology modeling. Although typically the structure of the target protein is not known 

when building a homology model, there is at least one exception, namely when modeling 

alternate protein conformations53. One such method relies on the observation that internal 

repeats in membrane transport proteins adopt distinct conformations, lending that structure 

functionally relevant features (e.g., opening a pathway to one side of the membrane; see Fig. 

2). It has been shown that alternate conformations of a protein can be modeled by using each 

repeat as a template for the other54,55. In such cases, confidence values would be useful 

primarily for the low-scoring, least reliable regions, and could be used in different ways, as 

follows.

First, consider regions with two alternative alignments of the same two sequences, e.g., 

where two of the four methods suggest one alignment, and the other two methods suggest 

another alignment. Two different models could be built, one for each of the alternate 

alignments, and the best model could be selected based on some independent score of the 

models (such as ProQM56). Note that this strategy would become combinatorially expensive 

if there are many regions of uncertainty in the alignments. Alternatively, the same template 

could be used twice but with different alignments; with Modeller, for example, restraints 

could be derived automatically that consider both alignments simultaneously, and the 

optimization routine would attempt to find the model that best fits the two alternative 

alignments. Finally, the least confident regions, e.g., where all four structure alignment 
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methods disagree, could be modeled without any template if only a few residues in length, 

such as a short loop, or omitted from the model if longer than a few residues, as in a terminal 

segment.

Interestingly, a couple of structural alignment methods (SymD57 and CE-symm58) have 

been designed to detect internal repeats such as those described above, and analyses with 

those programs suggest that internal repeats are more common in membrane proteins than in 

water-soluble proteins58,59. In future, therefore, it will be interesting to compare the ability 

of different structural alignment methods to detect repeats in membrane proteins, as well as 

to detect distant relationships between known membrane protein structures.

In conclusion, we present a novel approach to the use of structural alignments, which 

leverages the available technology to the greatest degree possible, compensating for the fact 

that no single method outperforms all others, while also providing important information 

about alignment reliability.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Composition of the HOMEP3 data set of homologous membrane protein structures
A. Distribution of family size for a given number of membrane-spanning segments for α-

helical (blue) and β-barrel proteins (green). B. Distribution of families with different 

numbers of proteins. Most families of α-helical proteins (blue) contain 2-4 known protein 

structures, whereas the β-barrel families (green) contain more proteins per family.
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Figure 2. Alternate conformations in the family of major facilitator superfamily transporters
Two structures reflect inward-facing conformations (GlpT and LacY; PDB codes: 1PW4 

and 2CFQ) and two reflect outward-facing conformations (FucP and XylE; PDB codes: 

3O7Q and 4GC0). The proteins are shown as cartoon helices, viewed from along the plane 

of the membrane with the outside of the cell toward the top, and colored according to a 

rainbow, from blue (N-terminal) to red (C-terminal).
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Figure 3. A consensus-type structure-based alignment fragment with confidence values
Two protein structures were aligned with four different structural alignment methods, FR-

TM-align, FATCAT, MATT and DaliLite. The resulting alignments were then fused using 

the sequence of one of the protein structures as a reference. Depending on the agreement 

between the four methods, confidence values were assigned as very strong (i.e., all methods 

concur, confidence value of 9, dark green), strong (three methods agree, confidence value of 

6, pale green), moderate (two methods agree, confidence value of 3, orange), and weak 

(only one method found this solution, confidence value of 1, red).
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Figure 4. Correlation of residue accuracy with confidence values based on the consensus between 
FR-TM-align, FATCAT, MATT and DaliLite alignments
From all consensus alignments of the α-helical subset of HOMEP3, the position-specific 

confidence level was extracted for positions in which amino acids were aligned, i.e., 

excluding gapped positions. For each considered position, the distance (in Å) of the 

corresponding Cα-atom in the homology model to that in the native X-ray structure was 

calculated. This value then was averaged over the models built based on each of the 

alignments from the four structural alignment methods. The plot contains the normalized 

distribution of averaged Cα distances for each of the confidence levels (see Fig. 3).
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Table I

Overview of pairwise structural alignment methods

Method aFragments Score Alignment

CE 8-residue RMSD Combinatorial extension of locally aligned fragment pairs using intra-structural 
distances

DaliLite 6-residue Dali Joins optimally-matched fragments based on Monte Carlo search

FATCAT 8-residue Σ Flexible chaining of aligned fragment pairs allowing for twists

FR-TM-align Y TM-score Matching aligned fragment pairs

LovoAlign STRUCTAL & RMSD “Low Order Value Optimization” using dynamic programming

MAMMOTH RMSD Matching molecular models obtained from theory

Matt 5-8 residue RMSD Aligning fragment pairs allowing temporarily for twists and translations

PPM PPM Phenotypic plasticity applied to measure the cost of morphing structures

SABERTOOTH Matching profiles of vectorial representations of two protein structures

SAP Intra RMSD Iterated double dynamic programming of matrix of intra-structure residue-
residue distance differences

SHEBA Comparing a list of primary, secondary and tertiary structural profiles

SKA PSD Double dynamic programming to align secondary structure alignments

TM-align TM-score Optimize intra-structure residue-residue distance matrix using dynamic 
programming

Methods are listed in alphabetical order. TM-score: template modeling score.

a
For methods that use fragments in the optimization phase, the fragment length is provided. The DALI score measures the difference between 

intra-structure residue-residue distances. Methods also differ in the construction of initial alignments, which are then refined to identify better-
scoring alignments. Flexible aligners typically use a sum of the similarities of all aligned fragment pairs, to which a penalty is added for each 
breakage between fragments.
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