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Abstract: Cognitive control is a critical executive function. Many studies have combined general linear
modeling and the stop signal task (SST) to delineate the component processes of cognitive control. For
instance, by contrasting stop success (SS) and stop error (SE) trials in the SST, investigators examined
regional responses to stop signal inhibition. In contrast to this parameterized approach, independent
component analysis (ICA) elucidates brain networks subserving cognitive control. In our earlier work
of 59 adults performing the SST during fMRI, we characterized six independent components (ICs).
However, none of these ICs correlated with stop signal performance, raising questions about their
behavioral validity. Here, in a larger sample (n 5 100), we identified and explored 23 ICs for correla-
tion with the stop signal reaction time (SSRT), a measure of the efficiency of response inhibition. At a
corrected threshold (P< 0.0005), a paracentral lobule-midcingulate network and a left inferior parietal-
supplementary motor-somatomotor network showed a positive correlation between SE beta weight
and SSRT. In contrast, a midline cerebellum–thalamus–pallidum network showed a negative correla-
tion between SE beta weight and SSRT. These findings suggest that motor preparation and execution
prolongs the SSRT, likely via an interaction between the go and stop processes as suggested by the
race model. Behaviorally, consistent with this hypothesis, the difference in G and SE reaction times is
positively correlated with SSRT across subjects. These new results highlight the importance of cogni-
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tive motor regions in response inhibition and support the utility of ICA in uncovering functional net-
works for cognitive control in the SST. Hum Brain Mapp 36:3289–3302, 2015. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

The neural bases of cognitive control have long been a
focus of research in cognitive neuroscience. Many behav-
ioral tasks are used to examine regional brain activations
to the component processes of cognitive control [Egner,
2008]. For instance, in a stop signal task (SST), participants
override a prepotent motor response, monitor error, and
adjust the speed of response after encountering an error.
On the basis of linear models, our previous functional
magnetic resonance imaging (fMRI) studies of the SST
examined regional brain activations involved in these com-
ponent processes [Li et al., 2006, 2008a,b,c]. By contrasting
stop success (SS) and stop error (SE) trials, we observed
greater activation in the anterior pre-supplementary motor
area (SMA) in association with faster stop signal reaction
time (SSRT) and attributed these regional responses to
motor inhibition [Chao et al., 2009; Duann et al., 2009; Li
et al., 2006]. These studies complement a large body of
electrophysiological and imaging research that employed
event contrasts to identify the neural correlates of the com-
ponent processes of cognitive control [Huster et al., 2013;
Kok et al., 2004; Swann et al., 2012].

However, the approach of “cognitive subtraction” is
known to involve methodological issues [Friston et al.,
1996; Logothetis, 2008]. That is, by contrasting two b’s
from the generalized linear model (GLM) and labeling the
difference as specific to a psychological construct, one
would have to assume that all other constructs are equally
represented in the two b’s, an assumption that all too often
is not valid [Friston et al., 1996]. For instance, in an earlier
work, we examined how activations during errors and
post-error slowing (PES) may be related and were puzzled
by a lack of correlation between any regional error
responses and ventrolateral prefrontal cortical (vlPFC) acti-
vation during PES [Li et al., 2008a]. In a subsequent work,
we employed Granger causality mapping to identify vox-
els that Granger caused vlPFC during the SST [Ide and Li,
2011]. The analyses revealed a cortical thalamic cerebellar
circuit that precedes vlPFC activity. In particular, we
observed that, while the b’s of these regions during error
detection were correlated to vlPFC activity during PES, the
mean values were not substantially different from zero
and thus eluded the detection by GLM. This study exem-
plified the limitation of “cognitive subtraction” in identify-
ing the neural bases of a psychological construct.

Independent component analysis (ICA) represents an
alternative approach to identify networks of brain regions
in response to events of interest. As a data driven method,

ICA uncovers hidden factors from a set of measurements
such that the sources of the observed data are maximally
independent [Calhoun and Adali, 2006; Calhoun et al.,
2001a, 2002b, 2009; Lange et al., 1999; McKeown et al.,
2003, 1998a,b], and thus may help identify neural networks
that elude general linear modeling. Briefly, ICA assumes
that fMRI signal from each voxel represents a linear mix-
ture of source signals, separates this mixture into spatially
independent source signals using higher-order statistics,
and groups all brain regions showing synchronized source
signals into independent components (ICs) [Calhoun et al.,
2002a, 2009; McKeown et al., 1998a; McKeown and Sej-
nowski, 1998]. Therefore, all voxels/brain regions associ-
ated with an IC can be treated as an intrinsically coherent
functional network with a unique time course. Brain
regions generating more than one source signal may asso-
ciate with more than one IC with different time courses,
and thus two or more ICs may overlap in these brain
regions.

As described in detail in our earlier work, ICA may
identify networks of brain regions that, because of differ-
ent or opposite modulation of overlapping voxels, do not
manifest significant “activations” to the same events in a
GLM [Xu et al., 2015]. For example, we applied ICA to
fMRI data collected of a visual task with parametric loads
of attention and working memory [Xu et al., 2013]. ICA
identified a total of 14 functional networks, which showed
different extents of overlap in a majority of brain regions
exhibiting any functional activity. Importantly, overlap-
ping functional networks exhibited concurrent but
different task-related modulations of time courses. Such
task-related, concurrent, but opposite changes in time
courses in the same brain regions may not be detected by
analyses based on GLM. Thus, multiple cognitive proc-
esses may engage common brain regions and exhibit
simultaneous but different modulations in time courses
during cognitive tasks. These functional networks may be
revealed with ICA.

In our earlier work, we used ICA to identify networks
of brain regions and characterized how different events—
G, SS, and SE—partake in these functional networks
[Zhang and Li, 2012]. We characterized six independent
components (ICs), including a motor cortical network for
motor preparation and execution, a right fronto-parietal
network for attentional monitoring, a left fronto-parietal
network for response inhibition, a midline cortico-
subcortical network for error processing, a cuneus–precu-
neus network for behavioral engagement, and a “default”
network for self-referential processing. However, none of
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these ICs demonstrated a correlation with SSRT, which
represents the time it requires for the stop process to com-
plete—a key outcome measure of SST. This “negative”
finding may reflect a delicate relationship between the
activity of ICs and behavioral outcomes, which requires a
larger sample size to determine.

Here, we revisited this issue by expanding our sample
size to 100 healthy adults and exploring for correlation of
the individual beta weights of 23 ICs to SSRT. Our aims
are to establish the roles of the neural networks in motor
inhibition during cognitive control and to illustrate the
broader utility of this data driven method in imaging data
analyses.

MATERIALS AND METHODS

Subjects and Behavioral Tasks

One hundred adult healthy subjects (55 males, 27–67
years of age, all right-handed and using their right hand
to respond) participated in this study [Hu et al., 2014a].
All subjects were without medical, neurological, and psy-
chiatric illnesses and denied use of illicit substances. All
subjects signed a written consent after details of the study
were explained, in accordance to institute guidelines and
procedures approved by the Yale Human Investigation
Committee.

We employed a simple reaction time (RT) task in this
stop-signal paradigm, as described in details in our previ-
ous studies [Farr et al., 2012; Hendrick et al., 2010; Li et
al., 2005; Li et al., 2006; Zhang and Li, 2012]. Briefly, there
were two trial types: “go” and “stop,” randomly inter-
mixed in presentation. A small dot appeared on the screen
to engage attention at the beginning of a go trial. After a
randomized time interval (fore-period) anywhere between
1 and 5 s, the dot turned into a circle, prompting the sub-
jects to quickly press a button. The circle vanished at but-
ton press or after 1 s had elapsed, whichever came first,
and the trial terminated. A premature button press prior
to the appearance of the circle also terminated the trial.
Approximately three quarters of all trials were go trials. In
a stop trial, an additional “X,” the “stop” signal, appeared
after the go signal following a stop signal delay (SSD). The
subjects were told to withhold button press upon seeing
the stop signal. Likewise, a trial terminated at button press
or when 1 s had elapsed since the appearance of the stop
signal. The stop trials constituted approximately one quar-
ter of the trials. There was an inter-trial-interval of 2 s. The
SSD started at 200 ms and varied from one stop trial to
the next according to a staircase procedure, each increas-
ing and decreasing by 64 ms following a SS and SE trial
[De Jong et al., 1990; Levitt, 1971]. With the staircase pro-
cedure, a “critical” SSD could be computed that represents
the time delay required for the subject to succeed in with-
holding a response half of the stop trials [Levitt, 1971].
Subjects were instructed to respond to the go signal

quickly while keeping in mind that a stop signal could
come up in a small number of trials. Each subject com-
pleted four 10-min runs of the task. Depending on the
actual stimulus timing (e.g., trials varied in foreperiod
duration) and speed of response, the total number of trials
varied slightly across subjects in an experiment. With the
staircase procedure we anticipated that the subjects would
succeed in withholding their response in �50% of the stop
trials.

Analyses of Behavioral Data

We computed a critical SSD that represents the time
delay between go and stop signals that a subject would
need to succeed in 50% of the stop trials [Levitt, 1971].
Specifically, SSDs across trials were grouped into runs,
with each run defined as a monotonically increasing or
decreasing series. We derived a mid-run estimate by tak-
ing the middle SSD (or average of the two middle SSDs
when there was an even number of SSDs) of every second
run. The critical SSD was computed by taking the mean of
all mid-run SSDs. It was reported that, except for experi-
ments with a small number of trials (less than 30), the
mid-run estimate was close to the maximum likelihood
estimate of X50 (50% positive response; i.e., 50% SS in the
SST [Wetherill et al., 1966]. The SSRT was computed by
subtracting the critical SSD from the median go trial RT
[Logan, 1994].

Imaging Protocol

Conventional T1-weighted spin echo sagittal anatomical
images were acquired for slice localization using a 3 T scan-
ner (Siemens Trio). Anatomical images of the functional
slice locations were next obtained with spin echo imaging in
the axial plane parallel to the AC–PC line with TR (Repeti-
tion Time) 5 300 ms, TE (Echo Time) 5 2.5 ms,
bandwidth 5 300 Hz/pixel, flip angle 5 608, field of
view 5 220 mm 3 220 mm, matrix 5 256 3 256, 32 slices
with slice thickness 5 4 mm and no gap. Functional, blood
oxygenation-level dependent (BOLD) signals were then
acquired with a single-shot gradient echo-planar imaging
(EPI) sequence. Thirty-two axial slices parallel to the AC–
PC line covering the whole brain were acquired with
TR 5 2,000 ms, TE 5 25 ms, bandwidth 5 2004 Hz/pixel, flip
angle 5 858, field of view 5 220 mm 3 220 mm, matrix 5 64
3 64, 32 slices with slice thickness 5 4 mm and no gap.

Spatial Preprocessing

Data were analyzed with Statistical Parametric Mapping
(SPM8, Wellcome Department of Imaging Neuroscience,
University College London, UK). Images from the first five
TRs at the beginning of each trial were discarded to enable
the signal to achieve steady-state equilibrium between RF
pulsing and relaxation. Standard image preprocessing was
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performed. Images of each individual subject were first
realigned (motion corrected) and corrected for slice timing.
A mean functional image volume was constructed for each
subject per run from the realigned image volumes. These
mean images were co-registered with the high resolution
structural image and then segmented for normalization
with affine registration followed by nonlinear transforma-
tion [Ashburner and Friston, 1999; Friston et al., 1995a].
The normalization parameters determined for the structure
volume were then applied to the corresponding functional
image volumes for each subject. Finally, the images were
smoothed with a Gaussian kernel of 8 mm at full width at
half maximum.

We distinguished four trial outcomes: go success (G), go
error (F), SS, and SE trial [Li et al., 2006; Zhang et al.,
2014]. A statistical analytical design was constructed for
each individual subject, using the GLM with the onsets of
go signal in each of these trial types convolved with a
canonical hemodynamic response function (HRF) and with
its temporal derivative for entry as regressors in the model
[Friston et al., 1995b]. Realignment parameters in all six
dimensions were entered in the model. The data were
high-pass filtered (1/128 Hz cutoff) to remove low-
frequency signal drifts. Serial autocorrelation was cor-
rected by a first-degree autoregressive or AR(1) model.
The GLM estimated the component of variance that could
be explained by each of the regressors.

Independent Component Analysis and Beta

Weight Estimation

Preprocessed time series were analyzed with a group
ICA algorithm (GIFT, http://mialab.mrn.org/software/
gift, version 2.0e) to identify spatially independent and
temporally coherent networks [Calhoun and Adali, 2012;
Calhoun et al., 2001b, 2009]. ICA is a data-driven multivar-
iate method that identifies distinct groups of brain regions
with the same temporal pattern of hemodynamic signal
change. We used standard procedure in GIFT. Briefly, data
from all participants were concatenated into a single data-
set and reduced using two stages of principal component
analysis (PCA) [Calhoun, et al., 2001b] and separated into
30 maximally independent components with an infomax
algorithm [Bell and Sejnowski, 1995]. The dimensionality
was determined by the modified minimal description
length (MDL) criteria as implemented in GIFT [Li et al.,
2007]. A time course for each IC and its corresponding
spatial map, which represents a real contribution to this
component time course, was obtained. This analysis was
repeated 20 times using ICASSO to assess the repeatability
of ICs [Himberg et al., 2004] (Supporting Information Fig.
1). Finally, component time courses and spatial maps were
back reconstructed for each participant [Calhoun et al.,
2001b; Erhardt et al., 2011; Meda et al., 2009].

A systematic procedure was used to diagnose artifacts
and identify functional networks. We used the probabilis-

tic maps of white matter (WM), cerebrospinal fluid (CSF),
and gray matter (GM) in MNI space, as provided with
SPM8, as templates, and Multiple Linear Regression
(MLR) as implemented in the spatial sorting function of
GIFT to compare the spatial pattern of each IC with these
templates. This analysis generated three correlation coeffi-
cients (r2) for every IC, one for each template. Any ICs
showing a high correlation with CSF or WM and low cor-
relation with GM were labeled as artifacts. The threshold
was set at r2> 0.05 based on previous publications [Kim
et al., 2009a,b; Xu et al., 2013]. Six ICs (IC4, 8, 9, 10, 18, 20)
were diagnosed as artifacts. IC1 was also labeled as arti-
fact because it showed a very low correlation with GM
(r2< 0.001). These seven ICs were thus excluded from fur-
ther analysis.

In order to examine the task relevance of each compo-
nent, a multiple regression was applied between the com-
ponent time courses and the time course of each of the go
success (G), SS, and SE trials as embodied in the GLM,
with reference time course (event onsets convolved with
the canonical hemodynamic response). Thus, this associa-
tion estimate—beta weight—which represents the degree
of synchrony between the component and reference time
courses, indicates the extent of engagement of the network
during the task event [Meda et al., 2009]. Positive and neg-
ative beta weight each indicates positive and negative cor-
relation with the event. Note that the sign of the beta
weight reflects the direction in which each component is
temporally associated with the event of interest and
whether the brain regions within each component partake
in this association by activation or deactivation. However,
individual brain regions may be involved in multiple com-
ponents and contribute to the temporal correlation in
opposite directions according to their “owning” compo-
nents [Xu et al., 2013].

We also computed the event-related averages (Z scores)
over a window of 32 s of the component time course. Each
event-related average depicts the level of activation for
that particular component over the course of a typical
hemodynamic response.

Correlation of Component Beta Weight to SSRT

We examined the beta weights of these 23 ICs under
conditions of go success (G), SS, SE, and SS minus SE
(SS 2 SE) for correlation with the SSRT across all 100 sub-
jects. The results were evaluated with correction for multi-
ple comparison (P< 0.05/(23 3 4) or �0.0005).

RESULTS AND DISCUSSION

Stop Signal Performance

Subjects had a mean go trial success (RT< 1 s) rate of
93.6 6 6.4% (mean 6 SD, across subjects) with a median RT
of 618 6 110 ms. The averaged SS rate was 52.7 6 3.2%,
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suggesting that their performance was adequately tracked
by the staircase procedure. The averaged SSRT was
220 6 44 ms, in the range of the values reported in previ-
ous studies [Chang et al., 2015; Farr et al., 2014; Hu et al.,
2014a; Hu and Li, 2012; Li et al., 2006 ; Winkler et al.,
2013].

Brain Networks of Response Inhibition

After excluding seven artifact ICs, we identified 23 func-
tional networks, each depicting a distinct set of brain
regions that show the same pattern of hemodynamic
change over time (Supporting Information Figs. 2–4).

In the following, we report the results of correlation
across subjects of the beta weight of each of the 23 ICs to
SSRT during go success trials (G), SS trials, SE trials, and
the contrast SS> SE. Corrected for multiple comparisons
by setting an alpha at 0.05/(23 3 4) 5�0.0005 to guard
against type I error, three ICs showed a correlation
between SE beta weight and SSRT.

IC07—Paracentral–midcingulate network

The activity (beta weight) of a bilateral (but predomi-
nantly right-hemispheric) paracentral–midcingulate corti-
cal network (IC07, Fig. 1) correlated positively with SSRT
during SE trials (P 5 0.000016, r 5 0.42, Fig. 4a) and nega-
tively with SSRT during SS as compared to SE trials
(P 5 0.000031, r 5 20.40, Fig. 4d). The beta weight of IC07
did not correlate significantly with SSRT during SS
(P 5 0.07) or G (P 5 0.17) trial, suggesting that its associa-
tion with SSRT is mainly driven by activities during SE.

IC07 involves positive modulation of the bilateral and
predominantly right-hemispheric paracentral lobules and
mid-cingulate cortex, and negative modulation of bilateral
(predominantly left-hemispheric) somatomotor cortex and
caudate head as well as the right cerebellum. SS showed a
significant negative beta weight on IC07 (t 5 27.12,
P< 0.0001, one-sample t test). The beta weight on IC07 dif-
fers significantly between SS and G (t 5 26.61, P< 0.0001,
paired t test) and between SS and SE (t 5 24.38,
P< 0.0001, paired t test).

Figure 1.

(a) Paracentral-midcingulate network (IC07); regions with positive

and negative signal are identified each by warm and cool colors.

(b,c) Show the beta weights and event averages of G, SS, and SE

trials with significant beta weights highlighted: *P< 0.01 and

***P< 0.0001, uncorrected. CBL: cerebellum; CAU: caudate;

SMC: sensorimotor cortex; ParaCL/mCG: paracentral lobule/mid-

cingulate gyrus. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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Thus, activation of bilateral paracentral lobules and mid-
cingulate cortex and deactivation of bilateral somatomotor
cortices and caudate head as well as the right cerebellum
during SE is associated with prolonged SSRT. Both para-
central lobules and mid-cingulate cortex are known to pro-
ject to downstream motor nuclei, including those in the
spinal cord, and respond to movements [Havel et al., 2006;
Kishi et al., 2009; Lim et al., 1994; Picard and Strick, 1996;
White et al., 1997]. In particular, activation of the mid-
cingulate cortex has been associated with the urge to act
[Athwal et al., 2001; Farrell et al., 2012; Jackson et al.,
2011]. Thus, individuals showing enhanced activity of the
paracentral lobules and mid-cingulate cortex are more
readily engaged in motor action during SE and prolonged
in SSRT. Within IC07, deactivation of bilateral somatomo-
tor cortices during SE is also associated with prolonged
SSRT. While contralateral somatomotor cortical activation
subserves movement execution, ipsilateral activation is
associated with movement suppression as a result of trans-
cortical inhibition [Liang et al., 2014; McGregor et al., in

press; Perez et al., 2014; Vidal et al., 2014; Yamanaka et al.,
2013]; see also [Cincotta and Ziemann, 2008] for a review.
This transcortical inhibition is seen to diminish during
aging and certain neurological conditions [Bradnam et al.,
2013; Coppi et al., 2014; Rossiter et al., 2014; Sharples
et al., 2014; Takechi et al., 2014; Thomalla et al., 2014]
known to compromise response inhibition [Hu et al., 2012;
Jahanshahi, 2013]. Thus, decreased activation of bilateral
somatomotor cortices is consistent with lack of inhibition
and prolonged SSRT. The finding of deactivation of the
caudate head in link with prolonged SSRT accords with a
role of the caudate head in inhibitory control [Boehler
et al., 2010; Burke and Barnes, 2011; Hu et al., 2014b; Li
et al., 2008c; Padmala and Pessoa, 2010].

IC17—Left inferior parietal–somatomotor–supple-
mentary motor network

Activity of a left inferior parietal–somatomotor–supple-
mentary motor network (IC17, Fig. 2) positively correlated

Figure 2.

(a) Left inferior parietal-somatomotor-supplementary motor net-

work (IC17), (b) beta weight, and (c) event average shown in an

identical format. CBL: cerebellum; INS: insula; IFC/OFC: inferior

frontal cortex/orbitofrontal cortex; vPutamen: ventral putamen;

SPL/mOG: superior parietal lobule/middle occipital gyrus;

IPC/SMC: inferior parietal cortex/sensorimotor cortex; dACC/

SMA: dorsal anterior cingulate cortex/SMA. [Color figure can be

viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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with SSRT during SE trials (P 5 0.0003, r 5 0.35, Fig. 4b)
and negatively correlated with SSRT during SS as com-
pared to SE trials (P 5 0.00001, r 5 20.43, Fig. 4e). Activity
of IC17 did not correlate to SSRT during G (P 5 0.11) or SS
(P 5 0.004) trial.

IC17 involves positive modulation of the left inferior
parietal and somatomotor cortices, SMA, and right cerebel-
lar cortex and negative modulation of the right superior
parietal lobule and middle occipital gyrus (SPL/mOG),
bilateral but predominantly left inferior frontal cortex and
orbitofrontal cortex (IFC/OFC), and right ventral putamen.
Both G (t 5 9.52, P< 0.0001, one-sample t test) and SE
(t 5 6.89, P< 0.0001, one-sample t test) showed a signifi-
cantly positive beta weight, while SS (t 5 28.86, P< 0.0001,
one-sample t test) showed a significantly negative beta
weight, on IC17. The beta weight differed significantly
between G and SS as well as between SE and SS (t 5 13.01
and 11.07; both P’s< 0.0001, paired t test).

SE and SS are associated with IC17 each with a positive
and negative beta weight, indicating that activation of the
left inferior parietal and somatomotor cortex, SMA, and

right cerebellar cortex along with deactivation of the left
IFC/OFC as well as the right ventral putamen and SPL/
mOG expedites motor responses during stop trials.

The contralateral somatomotor cortex and ipsilateral cer-
ebellar cortex responds to the execution of movement
[Boscolo Galazzo et al., 2014; Vingerhoets, 2014; Wiese
et al., 2004]. Thus, both G and SE load positively on IC17.
Deactivation of the right-hemispheric SPL/mOG suggests
decreased attentional monitoring for the stop signal
[Bartes-Serrallonga et al., 2014; Busan et al., 2009; Capo-
tosto et al., 2013; Coombes et al., 2011; Hillen et al., 2013;
Inoue et al., 2000; Li et al., 2006; Lobier et al., 2014; Sche-
perjans et al., 2005; Vandenberghe and Gillebert 2013;
Walz et al., 2014], and SEs result as a consequence. The
current finding is also in accord with earlier studies
reporting left IFC activation to response inhibition [Gog-
hari and MacDonald, 2009; Rodrigo et al., 2014; Schel
et al., 2014; Warren et al., 2013] and deficits in response
inhibition as a result of left IFC/OFC damage [Swick
et al., 2008]. Activity of right putamen has been associated
with short SSRT [Chao et al., 2009; Zandbelt et al., 2013;

Figure 3.

(a) Pallidal-thalamic/subthalamic-midbrain-midline cerebellar network (IC16), (b) beta weight,

and (c) event average shown in an identical format. TP/STG/LOG: temporal pole/superior tem-

poral gyrus/lateral orbital gyrus; CBL: cerebellum; AMG: amygdala; PHG/pINS: parahippocampal

gyrus/posterior insula. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Zandbelt and Vink, 2010], anti-saccade [Neggers et al.,
2012], and proactive inhibition [Vink et al., 2014]. Thus,
deactivation of the right putamen relates to SE.

IC16—Pallidal–thalamic/subthalamic–midbrain–mid-

line cerebellar network

Activations of a pallidal–thalamic/subthalamic–mid-
brain–midline cerebellar network (IC16, Fig. 3) correlated
negatively with SSRT during SE (P 5 0.0004, r 5 20.34, Fig.
4c) and correlated positively with SSRT during SS> SE
(P 5 0.0001, r 5 0.38, Fig. 4f). IC16 involves positive
modulation of bilateral temporal pole/superior temporal
sulcus/lateral orbitofrontal cortex, amygdala, parahippo-
campal gyrus, and posterior insula, along with negative
modulation of the midline cerebellum, pallidum, thalamus,
and midbrain. Both G (t 5 27.64, P< 0.0001, one-sample t
test) and SE (t 5 22.62, P< 0.01, one-sample t test) are sig-
nificantly associated with IC16 with a negative beta
weight, but not SS (t 5 1.39, P 5 0.17, one-sample t test).
The beta weight on IC16 also differed significantly

between G and SS (t 5 25.97, P< 0.0001, paired sample t
test) as well as between SE and SS (t 5 22.95, P< 0.01,
paired sample t test).

Thus, deactivation of bilateral temporal pole/superior
temporal sulcus/lateral orbitofrontal cortex, amygdala,
parahippocampal gyrus, and posterior insula, along with
activation of the pallidum, thalamus/subthalamus, mid-
brain, and midline cerebellum supports movement execu-
tion. And the between-subject variation of this activity
during SE is positively associated with SSRT. This particu-
lar finding is less straightforward to interpret because,
firstly, the subnuclei in the pallidum and the subthalamic
nucleus appear to play distinct and, in some cases, oppos-
ing roles in response execution and inhibition [Isoda and
Hikosaka, 2011; Li, 2015]. Secondly, the temporal pole,
superior temporal sulcus, lateral orbitofrontal cortex,
amygdala, parahippocampal gyrus, or posterior insula are
not known for movement control. Rather, the activity of
these limbic and paralimbic structures may reflect saliency
of the motor response [Litt et al., 2011; Menon and Uddin,
2010; Smith et al., 2011]. For instance, the superior

Figure 4.

Simple regression (n 5 100) showed that activity of the (a)

paracentral-midcingulate network (IC07) and (b) left inferior

parietal-somatomotor-supplementary motor network (IC17)

correlated positively while activity of the (c) pallidal-thalamic/

subthalamic-midbrain-midline cerebellar network (IC16) corre-

lated negatively with SSRT during SE trials, and activity of the

(d) IC07 and (e) IC17 correlated negatively while activity of the

(f) IC16 correlated positively with SSRT during SS as compared

to SE trials. Each asterisk represents one subject. These correla-

tions were also confirmed by Spearman regression: there is a

positive correlation between SSRT and beta weight of SE for

IC07 (P 5 0.0017, r 5 0.31) and for IC17 (P 5 0.0016, r 5 0.31)

as well as between SSRT and beta weight of SS-SE for IC16

(P 5 0.0011, r 5 0.32); and a negative correlation between SSRT

and beta weight of SE for IC16 (P 5 0.0018, r 5 20.31) and beta

weight of SS-SE for IC07 (P 5 0.0007, r 5 20.33) and for IC17

(P 5 0.0004, r 5 20.35).
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temporal cortex and amygdala increased activation to risk
taking decisions [Li et al., 2009; Rodrigo et al., 2014]; the
lateral orbitofrontal cortex processes implicit motivational
value and stimulus saliency [Rothkirch et al., 2012]. Thus,
one is tempted to speculate that deactivation of the limbic
and paralimbic components of IC16 during SE renders the
motor response and error less salient and represents a cor-
relate of prolonged SSRT.

Cross correlation of event beta weights for IC07,

IC16, and IC17

We cross-correlated beta weights of IC07, IC16, and
IC17 for the same events and between different events for
the same component network with pairwise linear regres-
sions. Figure 5 shows those correlations that were signifi-
cant at an arbitrary threshold of P< 0.01, uncorrected,
with those significant at P< 0.0001 highlighted. A few
findings are noteworthy. Examined across the same events,
IC17 correlated positively with IC07 (r 5 0.52, P< 0.0001)
but negatively with IC16 for G trials (r 5 20.44,
P< 0.0001). In addition, IC17 and IC07 but not IC16 corre-
lated also positively for SS (r 5 0.49, P< 0.0001) and SE
(r 5 0.54, P< 0.0001) trials. These findings suggest that,
while identified as independent networks, both IC07 and
IC17 correlated across subjects in beta weights and might
serve similar functional roles during the same trial events.
In contrast, IC16 correlated negatively with IC17 only dur-

ing G trials, suggesting that the two networks support
opposing patterns of a “default” state of visuomotor
response, as go trials dominate the SST.

When examined within the same IC, only IC17 showed
a positive correlation in beta weight between G and SE tri-
als, suggesting that IC17 facilitates motor responses;
greater activity of IC17 is associated with a decision to
respond and minimal attention to the stop signal.

A prediction: Motor urgency and SSRT

Because the correlations we observed with SSRT draw on
the SE but not SS trials, it is likely that SSRT is determined
primarily by the go process as conceptualized by the inter-
active race model [Boucher et al., 2007]. That is, an urgency
to respond or the extent to which a movement plan is exe-
cuted interferes with the stop process and prolongs SSRT. In
the SST, the reaction time (RT) is shorter in SE than G trials.
We posited that the inter-subject variation in how much
faster SE trials are, compared to G trials, may reflect motor
urgency. To test this hypothesis, we examined whether the
RT difference between G and SE, as an index of the extent of
movement preparation and execution, is related to the
SSRT. Across subjects, both mean RT difference (G – SE)
and the effect size of the difference (two-sample t test)
showed significant positive correlations with SSRT (P< 1 3

1026, r 5 0.49 and P< 1 3 1026, r 5 0.47; Fig. 6). Addition-
ally, both mean RT difference and effect size of the differ-
ence correlated positively with the activations of IC17
during G (P 5 0.01, r 5 0.24 and P< 0.05, r 5 0.2). The mean
RT difference also positively correlated with the activation
of IC17 during SE (P 5 0.003, r 5 0.29). No such correlation
was observed for activities in relation to IC07 or IC16.
Together, these results support the hypothesis that motor
urgency may undermine the stop process and suggest that,
of the three components, IC17 perhaps plays the most direct
role in determining the SSRT.

GENERAL DISCUSSION

Neural Processes Underlying Stop Errors and

SSRT

A most interesting finding concerns the correlation of SE
activations with SSRT—activity of IC07 and IC17 are posi-
tively correlated, while activity of IC16 is negatively corre-
lated, with SSRT. There are no components with a SS beta
weight in correlation with SSRT. This result suggests that
regional activations during SEs carry a most significant
role in determining the SSRT of individual participants. In
contrast, the neural processes of SS do not appear to con-
tribute specifically to SSRT.

It helps explaining this finding by referring to the horse
race model of stop signal inhibition, where go and stop
processes interact to determine the outcome [Boucher
et al., 2007]. Recent studies showed that participants antici-
pate the stop signal and proactive control determines the

Figure 5.

Pairwise linear regressions across all 100 subjects between beta

weights of different components and different trial types. Corre-

lations significant at P< 0.01 uncorrected were indicated with

lines with bold lines showing those significant at P< 0.0001. Red

and blue line each indicates a positive and negative correlation.

The numbers on the lines are the R values of linear regression.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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stop trial outcome [Jaffard et al., 2008; Lo et al., 2009; Stup-
horn and Emeric, 2012; Vink et al., 2014]. Preparation for
motor execution favors a go process and results in SEs.
The current findings thus support this thesis by demon-
strating that a dominant process of motor execution may
impede stop signal inhibition and prolong the SSRT.

In contrast, the lack of significant correlation of any
component SS beta weight with SSRT suggests that what-
ever that takes place during a successful stop trial is not
sufficient to determine SSRT. Brain regions such as the
inferior frontal and posterior parietal cortex (IC17) contrib-
ute to attentional monitoring for the stop signal and suc-
cessful inhibition but do not influence the SSRT, in accord
with our earlier work [Chao et al., 2009; Duann et al.,
2009; Li et al., 2006]. It is also worth noting that the com-
ponents (IC29 and IC30; Supporting Information Fig. 4)
comprising the anterior pre-SMA, a structure that has
been widely implicated in inhibitory control, does not load
on SS with beta weights in correlation with SSRT (both
P’s> 0.05). This negative finding questions a network role
of the pre-SMA in response inhibition, an issue that needs
to be further investigated. Together, the current findings
emphasize the role of motor activities in determining
SSRT, in contrast to a large body of previous work that
focused on the “inhibitory” process [Aron, 2007; Band and
van Boxtel, 1999; Falkenstein et al., 1999; Huster et al.,
2013; Swann et al., 2009; Verbruggen and Logan, 2008].

ICA Versus GLM

We provided the results of linear regression of go and
stop events against the SSRT (Supporting Information
Methods and Supporting Information Fig. 5). At a thresh-
old of peak voxel P< 0.001, uncorrected, there is cluster in
the paracentral lobule and posterior/mid-cingulate cortex
where activity during SE is positively correlated to SSRT.
There were no remarkable findings in the contrast of G or
SS events against SSRT. As expected, the regression of
SS> SE against SSRT showed that the activity of a similar

cluster comprising the paracentral lobule, mid-cingulate
gyrus, and left postcentral gyrus in negative correlation
with SSRT. Therefore, GLM did reveal cerebral activities
that appear to be related to SSRT but not identical to those
as described by the ICA. We believe that this discrepancy
speaks to the core methodological differences between
GLM and ICA and the utility of the ICA in identifying
networks of functional significance.

The Relationship Between Contralateral

Somatomotor Activity and SSRT Is Component

Dependent

The contralateral somatomotor cortex (SMC) showed a
pattern of activation that varies with co-occurring activities
in its association with SSRT. When contralateral SMC
deactivates concurrently with ipsilateral SMC along with
activation of the paracentral lobule and the midcingulate
cortex, it prolongs SSRT. It also prolongs SSRT when con-
tralateral SMC activates concurrently with the SMA and
left inferior parietal cortex along with deactivation of
bilateral inferior/orbital frontal cortices and right-
hemispheric superior parietal/middle occipital cortices.
This component-dependent pattern of activation in a brain
region has previously been illustrated in other behavioral
tasks and by a direct comparison of findings obtained
from GLM and ICA [Domagalik et al., 2012; Kim et al.,
2011; Malinen et al., 2007; Tie et al., 2008; Xu et al., 2013].
This finding suggests the complexity of regional cortical
activation and cautions the practice of “stand-alone” label-
ing a brain region in relation to a psychological construct
or behavioral performance without considering its interac-
tion with other structures.

CONCLUSIONS

We identified network activities in correlation with
SSRT. These findings suggest the utility of ICA in

Figure 6.

Across-subject correlation of SSRT and (a) the reaction time (RT) difference between G and SE

trials; and (b) the effect size of RT difference between G and SE trials.
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elucidating a broader network of cerebral activities that
synergistically contributes to the efficiency of response
inhibition in the SST. The neural mechanisms of motor
planning and execution may undercut the stop process
and prolongs SSRT.
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