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Abstract

Background: Classification algorithms for positron emission tomography (PET)
images support computational treatment planning in radiotherapy. Common clinical
practice is based on manual delineation and fixed or iterative threshold methods, the
latter of which requires regression curves dependent on many parameters.

Methods: An improved statistical approach using a Gaussian mixture model (GMM) is
proposed to obtain initial estimates of a target volume, followed by a correction step
based on a Markov random field (MRF) and a Gibbs distribution to account for
dependencies among neighboring voxels. In order to evaluate the proposed
algorithm, phantommeasurements of spherical and non-spherical objects with the
smallest diameter being 8mmwere performed at signal-to-background ratios (SBRs)
between 2.06 and 9.39. Additionally 68Ga-PET data from patients with lesions in the
liver and lymph nodes were evaluated.

Results: The proposed algorithm produces stable results for different reconstruction
algorithms and different lesion shapes. Furthermore, it outperforms all threshold
methods regarding detection rate, determines the spheres’ volumes more accurately
than fixed threshold methods, and produces similar values as iterative thresholding. In
a comparison with other statistical approaches, the algorithm performs equally well for
larger volumes and even shows improvements for small volumes and SBRs. The
comparison with experts’ manual delineations on the clinical data shows the same
qualitative behavior as for the phantommeasurements.

Conclusions: In conclusion, a generic probabilistic approach that does not require
data measured beforehand is presented whose performance, robustness, and swiftness
make it a feasible choice for PET segmentation.

Keywords: Expectation maximization; Markov random field; Positron emission
tomography; Radiotherapy; Tumor segmentation

Background
The determination of the tumor volume is one of the main causes for uncertainties in
dosimetry [1].When trying to assess the volume of a tumor for the sake of treatment plan-
ning in external beam radiation therapy (EBRT) or radionuclide therapy, a very common
practice is to have an expert manually draw a volume of interest (VOI) on the respective
positron emission tomography (PET) or single photon emission computed tomography
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(SPECT) image. The resulting and inevitable interobserver variations have been reported
well enough for different types of cancer [2-4].
Another prevalent approach is the application of a threshold. The simplest choice for

the threshold is a fixed percentage of the maximum activity concentration value [5,6].
This thresholding method has been shown to predict well for big volumes but yields
large errors in case of small volumes which is attributed to partial volume effects (PVE)
and moreover depends on the signal-to-background ratio (SBR). Despite its questionable
scientific meaningfulness, it is still a widespread method even recommended by an inter-
national experts’ report [7]. Extensions of this method are automatic [8,9] and iterative
threshold approaches [10-12]. However, the iterative thresholdingmethod (ITM) requires
a regression curve which has to be determined by phantom measurements for every spe-
cific imaging setting [13]. Considering the many dependencies of these regression curves
such as the (i) manufacturer and the detector of the scanner, (ii) reconstruction algorithm,
(iii) nuclide, (iv) SBR, and (v) volume of the lesion, ITM comes at a great expense in terms
of work and time. Likewise, the inclusion of physical models of PET images such as a
point spread function (PSF) is also dependent on some of the parameters listed above and
therefore would require a considerable amount of calibration measurements.
Alternative methods such as watershed and edge detection are also sensitive to noise

and different SBRs [14,15].
The aim of this work is to develop an automatic segmentation algorithm for PET images

which is as generic as possible, i.e., threshold independent and therefore does not require
system-specific regression curves or PSF. Additionally, the volume estimates for small
objects shall be improved. Therefore, in this paper, we propose an improved statistical
PET image segmentation scheme. Our scheme relies on soft class assignment instead of
hard class assignments and fuzzy levels. A Gaussian mixture model (GMM) is established
to obtain initial estimates of the volume of the spheres. Subsequently, a MRF is obtained
by declaring Markov properties for the unobserved label vector and using a Gibbs distri-
bution to describe neighborhood dependencies. The MRF is then used to obtain the final
labeling from the initial GMM labeling vector.

Methods
Phantommeasurements and clinical data

To evaluate the algorithm described below, a NEMA IEC Body Phantom was modified
(built in-house at the Medical University of Vienna). The modified phantom differs from
the original NEMA IEC Body Phantom only in the substitution of the largest sphere
(37mm) by a sphere of 8-mm diameter. Therefore, the phantom consists of a cylin-
drical outer body that simulates healthy tissue and six spherical inlays which represent
tumor lesions with high tracer uptake. The cylindrical body was homogeneously filled
with a water-18F-FDG solution of low activity concentration (background (BG)) and the
spherical inlays were homogeneously filled with a water-18F-FDG solution of high activ-
ity concentration (foreground (FG)). A cylindrical inlay that models the lung was filled
with air. The dimensions of all FG objects thus are (diameter [mm]/volume [ml]): 8/0.27,
10/0.52, 13/1.15, 17/2.57, 22/5.58, and 28/11.49. Measurements with different SBRs have
been performed and are summarized in Table 1.
The device in use was a Siemens Biograph 64 TruePoint PET/CT scanner (Siemens,

Erlangen, Germany). In accordance with the conditions for NEMA phantom quality
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Table 1Measurements of themodified NEMA sphere phantom

FG BG SBR

10.94 5.30 2.06

20.37 5.30 3.84

26.13 5.30 4.90

66.56 9.90 6.72

90.90 9.68 9.39

Activity concentration for the FG objects and for the BG object in kBq/ml and the resulting SBR.

assurance measurements in nuclear medicine [16], the average activity concentration
never exceeded 10 kBq/ml. This way, the linearity of the scanner’s noise equivalent
count rate (NECR) is preserved, and the measurements of different SBRs can be com-
pared. The acquisition was performed using emission scans of 10 min. The images were
reconstructed with an iterative OSEM2D algorithm (4 iterations on 21 subsets). A prepro-
cessing Gaussian filter of 5mm was applied. The dimension and volume of the voxels are
4mm×4mm×3mm and 0.048ml, respectively. The more advanced iterative reconstruc-
tion algorithm for the Siemens scanner, TrueX (PSF), was not taken into account since
recent studies recommended cautiousness with regard to its quantitative meaningfulness
[17,18]. The chosen settings correspond to the clinical routine settings at the Medical
University of Vienna.
In order to determine the algorithm’s performance also with regard to non-spherical

objects, measurements of another in-house built phantom containing cylindrical objects
have been performed. Cylinders with high activity concentration (FG) and dimensions
of (diameter [mm]/volume [ml]): 10/4.08, 15/12.23, 25/37.71, and 38/103.95 have been
scanned against a BG with low activity concentration and SBRs according to Table 2.
All other settings were identical to the measurements of the modified NEMA IEC Body
Phantom (see paragraphs above).
Finally, the algorithm was applied on 68Ga-PET data of patients suffering from dissem-

inated neuroendocrine carcinoma that was supplied by the European Neuroendocrine
Tumor Society (ENETS) Center of Excellence at the Zentralklinik Bad Berka. Lesions in
the liver and lymph nodes from eight patients were segmented, and the resulting volumes
were compared to the manual delineation of the experts from the ENETS Center. The
image-derived SBRs of the lesions in the lymph nodes are in the order of 15, whereas for
the liver they are ≤ 2.

Statistical model

With regard to the smallest object diameter under consideration, which is only twice
as large as the voxel size, PVE is a very dominating effect. It is therefore necessary to
formulate partial memberships of voxels, as provided by the probability theory.

Table 2Measurements of the cylinder phantom

FG BG SBR

34.20 17.40 2

42.70 10.80 4

53.20 8.90 6

75.30 9.40 8

Activity concentration for the FG objects and for the BG object in kBq/ml and the resulting SBR.
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PET voxel values correspond to the activity concentration. Therefore, a PET data set
comprising N voxels can be represented by an N × 1 vector x = (x1 . . . xN ) whose ele-
ments are real-valued and positive, xn ≥ 0, n = 1, . . . ,N . In order to describe the
membership of the PET voxels in K distinct objects, we introduce the K ×N label matrix:

Z =

⎛
⎜⎜⎝

z11 . . . z1N
...

. . .
...

zK1 . . . zKN

⎞
⎟⎟⎠ = (z1 . . . zN ). (1)

The elements znk are binary, znk ∈ {0, 1}, with znk = 1 indicating that voxel n belongs
object k (note that znl = 0 for l �= k, i.e., the row sums of Z equal 1).
PET image segmentation amounts to estimating the unknown label matrix Z given

the data x. The proposed algorithm consists of two consecutive steps: the coarse esti-
mation step fits a basic model, yielding fairly good initial estimates. These estimates are
then improved in the correction step. The coarse estimation is performed via a modi-
fied expectation-maximization algorithm for a Gaussianmixture model (EMGMM) using
information from the analysis of phantom data. The correction step compensates for
overestimation of small volumes by sampling from a Gaussian MRF, using Gibbs distri-
butions to obtain the final labeling. The Gibbs interaction parameters are chosen to act
only on voxels at the boundary of two objects, i.e., voxels whose neighbors are attributed
to different objects in the coarse estimation step.
For a voxel belonging to object k, we model xn as Gaussian with mean μk and standard

deviation σk , xn ∼ N (xn;μk , σk). Since the label specifying the object is not known, the
joint likelihood function of x and Z can be written as a GMM [19,20], which is used in the
coarse estimation step:

p(x,Z;�) =
K∏

k=1

N∏
n=1

[τk N (xn;μk , σk)]znk (2)

Here, τk denotes the prior probabilities (normalized suchlike that
∑K

k=1 τk = 1) and

� =
(

μ1 . . . μK
σ1 . . . σK

)
is a 2 × K matrix containing all the Gaussian means and standard

deviations.
Note that (2) does not model any statistical dependence (interaction) of different voxels.

Such an interaction will be modeled only in the correction step with a Gibbs distribution
[21-29] that imposes specific Markov properties on the label matrix Z, thus resulting in a
Gaussian Markov random field (GMRF). More specifically, we use the model:

p(x,Z;�,�) =
N∏

n=1
p(xn|zn) p(Z;�) (3)

where p(xn|zn) = N (xn;�zn) is Gaussian and models the voxel activity via the mean and
standard deviation (μk , σk) = �zn associated to the kth object. Furthermore, p(Z;�) is a
Gibbs distribution [27,28] describing the interaction of the labels znk :

p(Z;�) = 1
Z

N∏
n=1

exp

⎛
⎝−

∑
m∈Mn

zTn �zm

⎞
⎠ . (4)
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Here, Mn denotes the (first-order) neighborhood of the nth voxel, i.e., all voxels that
share a surface with the nth voxel, hence |Mn| = 6. Furthermore, the coupling matrix is

given by � =
(
0 γ

γ 0

)
.

This implies that statistical interaction is modeled only for the voxels with different
labels, i.e., belonging to different objects. Finally, Z is the partition function [27,28]:

Z =
∑
Z

N∏
n=1

exp

⎛
⎝−

∑
m∈Mn

zTn �zm

⎞
⎠ . (5)

The specific choice of the coupling matrix � involves only voxels on the boundary
between two objects. Since the voxels at the boundary of a FG object predominantly are
part of the BG, the probability of labeling a boundary voxel as FG is decreased.

Coarse estimation step

The FG objects of the phantom are analyzed by defining VOIs. Within the VOI, only the
FG (k = 1) and the BG (k = 2) need to be distinguished (hence, K = 2, cf. (1)). The
problem of simultaneously estimating the labeling matrix Z and the parameter matrix
� can be formulated in terms of the expectation-maximization (EM) algorithm (see
[19-21,30-37] for further details and application):

�̂
(i+1) = argmax

�

E
Z|X;�̂(i)

{
log p(x,Z;�)

}
, (6)

where p(x,Z;�) is defined in (2).
Unfortunately, small FG objects consist only of a few voxels and hence represent poor

statistical ensembles for the EM algorithm, resulting in inaccurate parameter estimates.
Furthermore, in an FG object, the number of PVE voxels tends to be equal to or even
larger than the number of pure FG voxels, causing the PVE voxels to be classified as FG
(note that the statistical ensemble for the BG is rather large and therefore reliable). Conse-
quently, we observe an SBR-dependent overestimation of the FG volumes which in many
cases are not even morphologically connected objects. For the BG, the normalized stan-
dard deviation σ̃2 = σ2

μ2
amounts to 10% uniformly over all object sizes and SBRs. In

contrast for the FG, σ̃1 depends significantly on the object size and SBR as can be seen in
Figure 1.
In order to avoid the problem with the increased FG standard deviation, we use a mod-

ified EM algorithm in which σ1 is set equal to σ2. The resulting EM starts with an initial,
reasonable guess for the means and standard deviations of FG as well as BG and iterates
Bayesian estimation and maximization as follows:

• The conditional expectation z̄(i)nk = Eznk |xn;θ(i)
k

{znk} is updated as:

z̄(i)nk =
τ

(i)
k N

(
xn;μ(i)

k , σ (i)
k

)
∑2

k=1 τ
(i)
k N

(
xn;μ(i)

k , σ (i)
k

) . (7)
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Figure 1 Normalized standard deviation versus object diameter. Plot of normalized standard deviation
σ̃2 for BG (estimated using the conventional EM algorithm) versus object diameter at several SBRs with the
remodeled NEMA phantom (including morphologically not connected objects).

• The parameter updates read:

τ
(i+1)
k =

N∑
n=1

z̄(i)nk
N

,

μ
(i+1)
k =

N∑
n=1

xnz̄(i)nk
N∑

n=1
z̄(i)nk

,

σ
(i+1)
2 =

√√√√√√√√
N∑

n=1
(xn − μ

(i+1)
2 )2z̄(i)n2

N∑
n=1

z̄(i)n2

,

σ
(i+1)
1 = σ

(i+1)
2 .

(8)

• A soft labeling is achieved by using the conditional probabilities z̄(i)nk :

ẑ(i)nk = z̄(i)nk . (9)

Due to the usage of a prior probability for Z, the resulting parameter estimations are
done according to weighted averages.

Correction step

To improve the coarse estimates obtained via the modified EM algorithm operating on
the Gaussian mixture model, a second labeling problem for Z is formulated on the GMRF
(3) via a maximum a posteriori (xMAP) estimate:

Ẑ = argmax
Z

{
p(x,Z;�, γ )

}
. (10)



Layer et al. EJNMMI Physics  (2015) 2:9 Page 7 of 15

We solve (10) numerically byMetropolis sampling according to the procedure described
below using the labeling obtained in the first coarse estimation step as initialization with
its parameters held fixed to obtain a refined segmentation.
New labeling proposals are generated by changing local values of Z (i.e., changing a FG

voxel to BG or vice versa). Assume z(i+1)
n is the voxel label that has been changed and let

(μk , σk) = �z(i+1)
n ; furthermore,

P(i+1)
n ∝ exp

⎛
⎝−

∑
m∈Mn

zn�zm − (xn − μk)
2

2σ 2
k

⎞
⎠ (11)

denotes the local conditional probability of the labeling proposal. If Pi+1
n ≥ Pin, the new

label is accepted. If Pi+1
n < Pin, the proposal labeling is accepted with probability Pi+1

n /Pin
and rejected with probability 1 − Pi+1

n /Pin.
After a predefined number L of full samples (labeling configurations where each voxel

is processed once) have been obtained in this manner, the final labeling is computed by
forming the arithmetic mean of all accepted full proposal labeling, i.e.,

Ẑ = 1
L

∑
l=1

Z(l). (12)

Threshold methods

For clinical applications of volume determination in PET, values of 36% to 42% of the
maximum value have been proposed as local threshold [5]. In this context ‘local’ means
that the threshold is calculated using the VOI and not the whole image.
With ITM, regression curves are needed, i.e. measurements of a phantom at differ-

ent SBRs. The percentage threshold yielding the true volume is calculated as function of
the volume and the SBR. Using ITM for automatic segmentation, an initial threshold is
applied to a VOI followed by the determination of the resulting volume (V ) and SBR.With
those values, the corresponding threshold from the regress function %Thr = f (V , SBR) is
further applied to the VOI, resulting in an iterative update scheme. The algorithm stops
when the deviation between two iterations is ≤ 0.1%.
For purposes of evaluation and comparison, we applied the EMGMM, the proposed

GMRF algorithm, and the aforementioned thresholding methods to the phantom mea-
surements as well as the clinical data discussed in the ‘Phantom measurements and
clinical data’ section. A graphical user interface was built by the object-oriented pro-
gramming language IDL to visualize and process the data and to draw VOIs around each
FG object. To investigate whether the results depend on the VOI size, we used VOIs
consisting of 14 × 14 × 20, 14 × 14 × 40, 22 × 14 × 20, and 22 × 14 × 40 voxels.

Results
Figures 2a,b,c,d,e,f, 3a,b, and 4a,b,c in this section show the relative volume error (in per-
cent) for the FG objects versus their diameter. For each diameter, several bars are drawn
to account for the different SBRs. FG objects are considered as detected if the segmen-
tation yields two morphological connected objects, i.e., a FG object surrounded by BG
volume. If a FG objects is not detected according to this definition, this is indicated graph-
ically by a volume error of −5%. Furthermore, the dice similarity coefficient (DSC) is
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Figure 2 Volume error achieved by various methods for different NEMA sphere diameters, and SBRs.
(a) 42% thresholding, (b) EMGMM, (c) GMRF, (d) statistical approach acting on MIP [40], (e) fuzzy locally
adaptive Bayesian approach [38], and (f)maximum a posteriori GMRF approach with subsequent
deconvolution [39]. (a), (b), and (c) use VOIs of 14× 14× 20 voxels; (d), (e), and (f)were copied visually from
[38,40] and [39]. Note that the diameter ranges vary in (a-f).

presented for the comparison of GMRF vs. ground truth of the CT as well as for the clin-
ical Query: Please shorten the title for Figure 4 up to 15 words only to comply with the
journal instruction. data.
Furthermore, Tables 3 and 4 give an overview of the number of detected FG objects

with regard to each segmentation strategy and SBR.

Threshold methods

Figure 2a shows the results for local thresholding with a threshold of 42%. Clearly, for
small FG objects, the activity concentration is underestimated due to PVE which leads to
large volume errors. It is seen that for all FG objects the error increases with decreasing
SBR. This also applies to ITM whose results are depicted in Figure 3a,b. Here, the volume
error is averaged over the SBR in order to keep the amount of results readily comprehen-
sible. No threshold method can detect FG objects at an SBR of 2.06. Furthermore only
the ITM is able to detect the smallest FG object of 8-mm diameter and only at the biggest
SBR of 9.39.

Figure 3 Volume error achieved by GMRF versus ITM averaged over different SBRs. (a) NEMA sphere
OSEM reconstructions. (b) Cylinder phantom OSEM reconstructions. (c) DSC between GMRF and ground
truth from CT scan for spherical objects.
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Figure 4 Volume error for different NEMA sphere diameters and SBRs obtained with GMRF on VOIs of
size (a) 14 × 14 × 40, (b) 22 × 14 × 20, and (c) 22 × 14 × 40 voxels.

EMGMM and GMRF

The correction step is performed with γ = 1, 000 since the GMRF algorithm produces
stable results in this region (see Figure 5a). Since the coarse estimation step provides initial
values that are already close to the energetic minimum, the label configurations attain
equilibrium after the first ten samples which get discarded. For L > 70, no change in
results is observed. Figure 5b shows the GMRF segmentation result of the 28-mm sphere
at SBR = 9.39 as compared to the ground truth derived from the CT. For this, the center
of the sphere was identified in the high-resolution CT and the known radius of the real
phantom was plotted.
The results of the proposed GMRF method and its EMGMM initialization are shown

in Figure 2c,b, respectively, for VOIs comprising 14× 14× 20 voxels. With regard to both
spheres and cylinders, EMGMM as well as GMRF achieve a much better detection rate of
FG objects than the threshold methods (see Tables 3 and 4). In particular, GMRF detects
all six spherical FG objects at SBRs above 4.90 as well as the three larger spheres at SBR
2.03. The total detection rate score of the GMRF with 26/30 and 10/16 for spheres and
cylinders, respectively, clearly supersedes the ITM with 19/30 and 9/16.
Concerning volume segmentation, GMRF achieves lower errors than the fixed thresh-

old approaches for almost all combinations of SBR and diameter. In a direct comparison of
GMRF and ITM (see Figure 3a,b), ITM performs better on smaller spheres while GRMF
is better on larger ones. For cylindrical objects, ITM shows slightly smaller errors for
diameters ≥15 mm. Figure 3c shows the DSC which was calculated for the phantom with
spherical objects as a comparison of GMRF segmentation vs. ground truth from the CT.
For objects with diameters ≥13 mm and SBR ≥3.84, the DSC ≥0.8.

Comparison to threshold-independent algorithms

Figure 2e,f shows the results obtained by Hatt and co-workers using a fuzzy locally adap-
tive Bayesian (FLAB) algorithm [38] and by the maximum a posteriori estimation for a

Table 3 Number of FG objects detected by 36% and 42% thresholding, ITM, EMGMM and
GMRF

SBR 36% 42% ITM EMGMM GMRF

2.06 0 0 0 4 3

3.84 0 2 4 5 5

4.90 3 4 4 5 6

6.72 4 4 5 5 6

9.39 5 5 6 6 6

The maximum amount of detectable FG objects is 6.
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Table 4 Number of FG objects (cylinder phantom) detected at different SBRs by the ITM
and the GMRF

SBR ITM GMRF

2 0 0

4 2 3

6 3 3

8 4 4

GMRF with deconvolution (MAP-MRF-DECON) designed by Gribben et al. [39], respec-
tively (the data has been manually copied from the above cited publications). For further
comparison, a statistical approach by Dewalle-Vignion and co-workers acting on max-
imum intensity projections (PROP MIP) [40] including the fuzzy c-means technique is
shown in Figure 2d. While those papers also performed NEMA phantom measurements,
FG objects with different diameter ranges were used. In particular, none of the previous
works used a FG object as small as 8mm of diameter or an SBR as low as 2.06.
Comparing GMRF with theMAP-MRF-DECON algorithm, the former performs better

for some diameters and worse on others. However, a systematic comparison is not pos-
sible since [39] provides results only for the rather large SBR of 9. PROP MIP and FLAB
yield quite accurate volumes for spheres greater than 10mm but performs poorly when it
comes to spheres smaller than 13-mm diameter (the smallest sphere used in [40] and [38]
is 10mm). At such diameters, GMRF approaches have to be preferred due to their better
performance.

VOI dependencies of GMRF

Finally, Figure 4 shows the results obtained with GMRF for different VOI sizes. As can
be seen for all spheres with diameter ≥10mm, the volume errors are constant over the
chosen VOI range with regard to all SBRs. Concerning the 8-mm sphere, no correlation
can be found between the detection rate and VOI size. However, if detected, the volume
error is also constant over the VOI range.

Figure 5 Volume error and segmentation result. (a) Volume error achieved by GMRF for different NEMA
sphere diameters at SBR = 9.39 drawn over the parameter γ . (b) Segmentation result of the 28-mm sphere
at SBR = 9.39 after application of the GMRF (dashed lines) and ground truth from CT (black circle).
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Clinical data

With regard to the clinical data, GMRF’s segmentation of the metastases in the lymph
nodes yields volumes which are 15% to 20% bigger than themanual delineation. This value
is constant over a volume range down to 3 ml wherefrom the overestimation gets bigger.
Taking into account that the SBR for the lesions in the lymph nodes is 15, this behav-
ior is very similar to the measurements of the NEMA spheres at higher SBRs. Likewise,
the GMRF’s segmentation of lesions in the liver with very small SBRs (≤2) shows a vol-
ume which is constantly smaller by 30% and therefore reflects very well the behavior of
phantom measurements at very low SBRs.
Figure 6 shows the DSC between the manual experts’ delineation and the resulting vol-

umes when GMRF is applied to the clinical data. For metastases in the lymph nodes, the
mean DSC is 0.89 and for the liver 0.80.

Discussion
Forcing equal standard deviations for BG and FG as discussed in the ‘Coarse estima-
tion step’ section helped to reduce the segmentation error. While this approach appears
somehow arbitrary, it can be qualitatively understood as follows: Figure 1 shows the SBR
diversification for the normalized standard deviation σ̃1 of FG. For higher SBR, σ̃1 and
therewith the volume estimates increase because the PVE voxels get encompassed by the
FG object. By setting σ1 = σ2, the PVE voxels are interpreted as BG such that in the
subsequent estimate σ2 increases. As a result, also σ1 increases and parts of the PVE voxels
are re-assigned to FG, in turn lowering σ1. This interplay causes a conversion towards the
solutions shown in the ‘Results’ section.
Likewise, the value γ = 1, 000 was introduced without further explanation. Numerical

calculations have shown that values for γ between 500 and 1,500 yield stable non-zero
volume estimates for the FG objects instead of downgrading the volumes until they van-
ish (increasing the amount of neighborhood voxels |Mn| leads to zero volume solutions).

Figure 6 DSC betweenmanual delineation and GMRF for 68Ga-PET of neuroendocrine metastases in
the liver and lymph node.
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Since the coarse estimation step already yields good initial label estimates with a large
value of γ as defined above, the system reaches equilibrium after the first three full sam-
ples have been obtained. Storing more than 70 subsequent configurations at equilibrium
according to (12) does not change the solutions presented here.
When comparing the proposed GMRF method and its initializing EMGMM (see

Figure 2c,b), it becomes apparent that the proposed correction step enforced in the GMRF
decreases the volume error for small FG objects as intended by the choices described in
the ‘Correction step’ section. This emphasizes the usefulness of MRFs as a powerful tool
regarding PET image segmentation, especially in the case of small objects. In this sense,
the findings presented here confirm the work of Gribben et al. [39] that also uses MRFs.
Nonetheless, it can be seen in Figure 2 that the initialization step is not fully corrected for
SBR diversification, especially for small FG objects. Acting with Gibbs distributions on
this solution as described above is not sensible to different SBRs. Therefore, future work
should aim for compensating SBR dependencies in the correction step.
The results of the GMRF also show that for spheres with diameter ≥13mm, the cold-

wall effect can be accounted for. For smaller spheres, the cold-wall effect gets noticeable
as for all segmentation approaches in the literature [8-40].
The choice of the comparison methods shall be briefly outlined. Despite the exis-

tence of iterative threshold approaches (see the ‘Background’ section), fixed thresholds
are very common in clinical practice. As we can see in the ‘Results’ section, GMRF
clearly outreaches the fixed threshold approaches both in the detection rate and vol-
ume error, a result not very surprising. However, the fact that GMRF also outperforms
ITM on detection rate and produces similar results with regard to the volume error
and DSC is remarkable all the more, as GMRF uses no a priori knowledge what-
soever whereas ITM has a the luxury of a validated calibration curve. Taking into
account the dependencies of these regression curves (see the ‘Background’ section)
and as a consequence thereof the need of not only one but many phantom calibra-
tion measurements, GMRF seems a much more practical approach for clinics since
it is equally reliable but can be directly applied for different systems, nuclide, recon-
structions, etc. Furthermore, an ITM only can realize a segmentation of whole voxels
whereas the inclusion of probability theory as in our approach can assign partial classifi-
cations to voxels which is inevitable in the case of small volumes. The comparison with
the threshold-independent algorithms also shows that the algorithm in this work per-
forms equally well for larger volumes and even shows improvements for small volumes
and SBRs.
When discussing the segmentation of the clinical data, one has always to recall that

unlike the real volume of the phantoms the manual delineation does not represent the
ground truth, i.e., it can only be a comparative analysis. Systematic overestimation as
well as underestimation of the tumor volume has an extensive impact on radiation treat-
ment planning. In practice, the so-called planning target volume (PTV) is an extension
of the visible tumor taking into account microscopic spread as well as uncertainties in
dose delivery and patient positioning. Therefore, a systematic overestimation will par-
tially coincide with the PTV and be of no severe consequences as long as the overlap is
not too big and thus causes widespread damage to the surrounding healthy tissue. In con-
trast, a systematic underestimation involves the danger of not irradiating the entire tumor
and thus enhances the chances for relapse.
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A mean DSC of 0.9 for high SBRs, the robustness of the results over a large volume
range, and the resemblance to the results of the phantom measurements concern-
ing the SBR dependency make the GMRF a suitable candidate for future studies that
encompass patient data of higher quantity and larger diversity. Moreover, to study real-
istic images with inhomogeneous activity distributions and be in possession of the
ground truth, simulated images have to be included as also done by various authors
[11,40-43].
The proposed GMRF produces stable results for different lesion shapes (see Figure 3)

and therefore underlines its potential for future clinical use. Another benefit of the
proposed algorithm is its fast convergence. With the termination condition:

|μ(i+1)
k − μ

(i)
k | < 0.01, k = 1, 2, (13)

the number of EMGMM iterations in the case of detection did not exceed 50. Given a
standard laptop (dual core 2 × 1.8 GHz), the overall processing time stays well below 1 s
even for the case of large VOI. In this time frame, it is even feasible to use the algorithm
several times to repeat the processing with subVOIs to improve the detection rate for
small objects.

Conclusions
Segmentation of PET data remains a very challenging issue since pertinent algorithms
are very sensitive to a variety of parameters. The aim of this work was to investigate the
aspects that were not sufficiently covered in the literature so far, namely the impact of
the SBR, the segmentation of objects with a diameter smaller than 10mm, and the waiver
of any a priori knowledge such as a regression curve. Therefore, phantom measurements
with spherical as well as non-spherical objects with SBRs ranging from 2 to 9.36 have
been evaluated, including a FG sphere with a diameter of 8mm. Additionally, lesions from
clinical data have been segmented.
Combining an EMGMM with MRFs, taking advantage of Gibbs distributions to

describe neighbor dependencies, results in a significant decrease of the overestimation
of small volumes on the one hand and on the other hand yields vanishing volume errors
in the case of bigger objects and high SBRs. The proposed algorithm has advantages
over threshold methods and can be applied to any PET data, not requiring any system-
specific regression curves in order to account for the given nuclide, manufacturer, or
reconstruction algorithm. The comparison with experts’ manual delineations on clinical
images shows the same qualitative behavior as for the phantommeasurements. In connec-
tion with its rapidness and the insensitivity towards reconstruction algorithm and lesion
shape, the proposed algorithm is a suitable choice for PET segmentation, even though
there is still room for improvement in future work.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
TL is the main author. MB, BK, DG, JN, RPB, CS, SW, and GM contributed equally to this work. All authors read and
approved the final manuscript.

Acknowledgements
This work was co-funded by the Austrian Federal Ministry for Transport, Innovation and Technology within the program
ModSim Computational Mathematics which is part of the program Research, Innovation, Technology and Information
Technology.



Layer et al. EJNMMI Physics  (2015) 2:9 Page 14 of 15

Author details
1Institute of Telecommunications, Vienna University of Technology, Karlsplatz 13, 1040 Wien Vienna, Austria. 2Health &
Environment Department, Austrian Institute of Technology, Donau-City-Strasse 1/2, 1220 Wien Vienna, Austria.
3Department of Radiation Oncology, Division of Medical Radiation Physics, Christian Doppler Laboratory for Medical
Radiation Research for Radiation Oncology, Medical University of Vienna/AKH Vienna, Währinger Gürtel 18-20, 1090 Wien
Vienna, Austria. 4Radiation Safety and Applications, Seibersdorf Labor GmbH, 2444 Seibersdorf, Seibersdorf, Austria.
5THERANOSTICS Center for Molecular Radiotherapy and Molecular Imaging (PET/CT) ENETS Center of Excellence,
Zentralklinik Bad Berka, Robert-Koch-Allee 9, 99437 Bad Berka, Bad Berka, Germany.

Received: 25 April 2014 Accepted: 8 September 2014

References
1. Hamilton CS, Ebert MA. Volumetric uncertainty in radiotherapy. Clin Oncol. 2005;17:456–64.
2. Greco C, Rosenzweig K, Cascini GL, Tamburrini O. Current status of PET/CT for tumour volume definition in

radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer. 2007;57:125–34.
3. Breen SL, Publicover J, De Silva S, Pond G, Brock K, O’Sullivan B, et al. Intraobserver and interobserver variability in

GTV delineation on FDG-PET-CT images of head and neck cancers. Int J Radiat Oncol Biol Phys. 2007;68:763–70.
4. Morarji K, Fowler A, Vinod SK, Ho Shon I, Laurence JM. Impact of FDG-PET on lung cancer delineation for

radiotherapy. J Med Imaging Radiat Oncol. 2012;56:195–203.
5. Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by

adaptive positron emission tomography image thresholding. Cancer. 1997;80:2505–9.
6. Erdi YE, Rosenzweig K, Erdi AK, Macapinlac HA, Hu YC, Braban LE, et al. Radiotherapy treatment planning for

patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol. 2002;62:51–60.
7. MacManus M, Nestle U, Rosenzweig KE, Carrio I, Messa C, Belohlavek O, et al. Use of PET and PET/CT for radiation

therapy planning: IAEA expert report 2006-2007. Radiother Oncol. 2009;91:85–94.
8. Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Grégoire V. Tri-dimensional automatic segmentation of

PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother
Oncol. 2003;69:247–50.

9. Brambilla M, Matheoud R, Secco C, Loi G, Krengli M, Inglese E. Threshold segmentation for PET target volume
delineation in radiation treatment planning: the role of target-to-background ratio and target size. Med Phys.
2008;35:1207–13.

10. Jentzen W, Freudenberg L, Eising EG, Heinze M, Brandau W, Bockisch A. Segmentation of PET volumes by iterative
image thresholding. J Nucl Med. 2007;48:108–14.

11. Tylski P, Stute S, Grotus N, Doyeux K, Hapdey S, Gardin I, et al. Comparative assessment of methods for estimating
tumor volume and standardized uptake value in (18)F-FDG PET. J Nucl Med. 2010;51:268–76.

12. Vauclin S, Doyeux K, Hapdey S, Edet-Sanson A, Vera P, Gardin I. Development of a generic thresholding algorithm
for the delineation of 18FDG-PET-positive tissue: application to the comparison of three thresholding models. Phys
Med Biol. 2009;54:6901–16.

13. Lee JA. Segmentation of positron emission tomography images: some recommendations for target delineation in
radiation oncology. Radiother Oncol. 2010;96:302–7.

14. Riddell C, Brigger P, Carson RE, Bacharach SL. The watershed algorithm: a method to segment noisy PET
transmission images. IEEE Trans Nucl Sci. 1999;46:713–9.

15. Reutter B, Klein GJ, Huesman RH. Automated 3-D segmentation of respiratory-gated pet transmission images. IEEE
Trans Nucl Sci. 1997;44:2473–6.

16. Herzog H, Tellmann L, Hocke C, Pietrzyk U, Casey ME, Kuwert T. NEMA NU2-2001 guided performance evaluation
of four Siemens ECAT PET-scanners. IEEE Trans Nucl Sci. 2004;51:2662–9.

17. Knäusl B, Hirtl A, Dobrozemsky G, Bergmann H, Kletter K, Dudczak R, et al. PET based volume segmentation with
emphasis on the iterative TrueX algorithm. Zeitschrift für medizinische Physik. 2011;22:29–39.

18. Knäusl B, Rausch IF, Bergmann H, Dudczak R, Hirtl A, Georg D. Influence of PET reconstruction parameters on the
TrueX algorithm. a combined phantom and patient study. Nuklearmedizin. 2013;52:28–35.

19. Bishop CM. Mixture models and EM In: Jordan M, Kleinberg J, Schölkopf B, editors. Pattern recognition and
machine learning. 1st ed. New York: Springer; 2006. p. 423–59.

20. McLachlan GJ, Krishnan T. The EM algorithm and extensions. New York: Wiley; 1997.
21. Blekas K, Likas A, Galatsanos NP, Lagaris IE. A spatially constrained mixture model for image segmentation. IEEE

Trans Neural Netw. 2005;16(2):494–8.
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23. Pieczyński W. Statistical image segmentation. Mach Graph Vis. 1992;1(1/2):261–8.
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