Table 3. Discriminative ability of Support Vector Machine (SVM), Random Forest (RF), and L1-Regularised Logistic Regression (RLR) to classify patients likely to benefit from a TC test.
Classifier | AUC | F1 measure | F2 measure | F3 measure | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F1 | Se | Sp | F2 | Se | Sp | F3 | Se | Sp | ||
score | (%) | (%) | Score | (%) | (%) | Score | (%) | (%) | ||
SVM | 0.87 | 0.54 | 90 | 76 | 0.72 | 95 | 72 | 0.82 | 95 | 72 |
SVM† | 0.84 | 91 | 69 | 96 | 66 | 96 | 66 | |||
RF | 0.84 | 0.51 | 82 | 76 | 0.68 | 91 | 70 | 0.78 | 93 | 67 |
RF† | 0.85 | 87 | 71 | 91 | 66 | 91 | 62 | |||
RLR | 0.86 | 0.54 | 81 | 80 | 0.69 | 86 | 77 | 0.79 | 96 | 62 |
RLR† | 0.82 | 75 | 74 | 81 | 71 | 98 | 56 |