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Abstract

Epidemiological studies evaluate multiple exposures, but the extent of multiplicity often remains 

non-transparent when results are reported. There is extensive debate in the literature on whether 

multiplicity should be adjusted for in the design, analysis, and reporting of most epidemiological 

studies, and, if so, how this should be done. The challenges become more acute in an era where 

the number of exposures that can be studied (the exposome) can be very large. Here, we argue that 

it can be very insightful to visualize and describe the extent of multiplicity by reporting the 

number of effective exposures for each category of exposures being assessed, and to describe the 

distribution of correlation between exposures and/or between exposures and outcomes in 

epidemiological datasets. The results of new proposed associations can be placed in the context of 

this background information. An association can be assigned to a percentile of magnitude of effect 

based on the distribution of effects seen in the field. We offer an example of how such information 

can be routinely presented in an epidemiological study/dataset using data on 530 exposure and 

demographic variables classified in 32 categories in the National Health and Nutrition 

Examination Survey (NHANES). Effects that survive multiplicity considerations and that are large 

may be prioritized for further scrutiny.

Observational epidemiological studies almost always measure multiple correlated variables 

in their populations, for example, individual nutrient intake measurements collected through 

food frequency questionnaires or panels of biomarkers. Furthermore, newer high-throughput 

measurement of hundreds (to thousands) of non-genetic, environmental variables in 

individuals can result in an expansion of exposure variables available for epidemiological 

studies (table 1).1–10 The promise of assessing personal exposomes—the totality of exposure 
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load occurring from birth to death11—includes scaling up the number of environmental 

exposures measured in individuals to enable a data-driven search for putatively novel 

exposures associated with disease or other exposures and outcomes of interest through large-

scale analyses such as the environment-wide association studies.12–19 One promising 

technology to scale up the ascertainment of ‘endogenous’ exposures includes metabolomics 

(table 1) in which hundreds to thousands of small-molecule metabolites are ascertained in 

human tissue.2420 Existing epidemiological cohorts have begun to ascertain hundreds of 

variables of these endogenous exposures such as metabolites and lipids52122 while smaller 

studies have ascertained on the order of thousands of chemical analytes.1 Of course, the raw 

number of exposure-related variables that can be measured are still far lower than what is 

seen in current day genome-wide association studies and genome sequencing, which assess 

millions of genetic variants simultaneously. However, the multiplicity burden on the 

exposome side is already impressive and is likely to get even greater with the advent of new 

platforms, including sensors that allow continuous streaming of personalised exposure 

signals.

Testing multiple variables for associations with other exposures and outcomes multiply the 

prospects of making interesting discoveries. At the same time, this multiplicity can lead to 

more false positives (due to type 1 error).23 There is a need to take this multiplicity into 

consideration in designing, analysing, interpreting and communicating epidemiological 

results in a transparent manner.

Transparency about multiplicity goes beyond the issue of whether statistical inferences 

should account/adjust for multiplicity or not. The debate of whether p values or other 

statistical inferences should be corrected for multiple comparisons has been a long one. 

Arguments have been expressed in the past that there is no need to adjust for multiple 

comparisons in observational epidemiology.24 This has been a dominant view to-date for 

most applications of traditional epidemiology. These arguments are stronger when explicit, 

unique hypotheses are tested that have been prespecified to be of primary interest. However, 

such prespecification is often non-transparent. In the absence of public preregistration25 of 

protocols and hypotheses, claims of prespecification can even be dubious and may meet 

with some healthy scepticism. Therefore, other investigators have highlighted the need for 

more stringency, for example, by using routinely more stringent thresholds and avoiding 

focus on statistical significance.26 At the other extreme, for agnostic genomic 

epidemiological studies, adjusting for the entire multiplicity of genomic comparisons has 

become standard practice.27 Increasingly, epidemiological studies of exposures will be 

dealing with numerous variables. Being explicit and transparent about the extent of 

multiplicity may be important for other scientists to understand the background/context 

against which the result is reported.

Environmental exposure variables are often densely correlated.142829 We argue that the 

density of the correlations in the variables of interest is also useful to convey transparently in 

any epidemiological study. New proposed correlations (or other measures of effect size) 

may need to be interpreted differently depending on what correlations (or other effect sizes) 

prevail, on average, in the field. For example, suppose that a new correlation is identified 

between two variables and its absolute magnitude is r=0.2 (and it is highly statistically 
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significant at p<0.0001). This new correlation of r=0.2 may need to be interpreted 

differently if correlations seen for these type of exposure variables are usually very strong 

(eg, r>0.5 on average) or null or very small (eg, r<0.05) on average.

We offer here an example of how an epidemiological study could convey this essential 

background information: how many exposures it has measured and what are the typical 

correlation patterns between exposures against which new results may be placed to gauge 

relative importance. We use data from the National Health and Nutrition Examination 

Survey (NHANES) from 2003 to 2004.30 NHANES has captured different domains/

categories of exposures, such as urine/serum biomarkers of nutrients, pesticides, 

hydrocarbons, infectious agents, as well as self-reported indicators of behaviour, such as 

smoking, physical activity and nutrient intake, and also socioeconomic and demographic 

variables (table 2). We defined categories of exposures/variables based on documented 

chemical relatedness (eg, polychlorinated biphenyls compounds, phenols or hydrocarbons), 

dietary relevance (eg, serum nutrients or self-reported diet questionnaire) or behaviour 

relatedness (eg, physical activity, smoking or pharmaceutical drug intake), and assay type 

ascertained from the NHANES (eg, serum or urine-based mass spectrometry).

Table 2 shows the number of exposures assessed for each of the 32 categories. Given the 

substantial correlation between some variables, the number of independent comparisons is 

somewhat smaller than the number of variables assessed. To correct for this, we have 

adopted here a method used in genetic association studies to estimate the number of 

effective variables that are present after taking the between-variable correlation into 

account.31 For example, 38 polychlorinated biphenyl analytes were assessed, but after taking 

into account their correlation, this is equivalent to 24 ‘independent’ variables (table 2). This 

adjustment matters most where the correlations are largest (eg, polychlorinated biphenyls, 

dioxins, furans) (figure 1). We also show indicatively what p value thresholds would be 

used, if one wanted to correct for the number of independent variables in each category. If 

we assume all 530 variables were independent, correcting for 530 comparisons would result 

in a p value threshold of 0.05/530=0.0001. We do not intend to settle here the debate of 

whether p values should be avoided, left uncorrected, corrected for the effective number of 

variables in the category of interest or whether a different method (eg, false discovery rate 

using the ‘step-down’32 or permutation-based approach33) should be adopted. However, 

presenting the number of variables and effective variables (M and Meff, respectively) will 

be useful in helping other scientists and readers to understand the extent of multiplicity at 

hand behind an epidemiological dataset that has been analysed to obtain some reported 

results. Further, reporting of such information can be mandated by journal editors just as 

authorship and participant roles are documented prior to submission of a manuscript.

Figure 1 shows the magnitude of the absolute correlation coefficients across each category 

of variables for 29 of the 32 categories that had two or more variables. These correlations 

are Spearman rank for continuous variables and biserial correlations for binary variables. As 

documented, most categories had correlated exposures; however, most correlations were not 

very large (r<0.5 in absolute values). Serum measures of persistent pollutants such as 

polychlorinated biphenyls, acrylamide, dioxins and organochlorine pesticides had the 

highest average correlations in their respective categories. Further, dietary measures, such as 
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serum levels of nutrients and self-reported dietary factors, were also densely but modestly 

correlated with one another, perhaps reflecting the phenomenon of cluster of nutrients that 

are consumed together. Epidemiological associations may be better understood in the 

context of other associations in the same field where similar variables are involved. For 

example, an absolute correlation coefficient of 0.15 between two new nutritional variables is 

probably not that noteworthy, since the average absolute correlation between two nutritional 

variables exceeds that value.

The same principle can also be extended to the evaluation of exposures with specific 

outcomes of interest. For example, in NHANES the median absolute correlation coefficient 

between the serum nutrients and low-density lipoprotein (LDL)-cholesterol is 0.17. A new 

proposed correlation between a nutrient and LDL-cholesterol with correlation coefficient 

less than 0.17 may not be particularly noteworthy, regardless of its level of statistical 

significance, since 0.17 is around the average absolute correlation that is seen for the 

average nutrient. Conversely, the median absolute correlation between the nutritional 

variables and diabetes mellitus (defined as serum blood glucose greater or equal to 126 

mg/dL34) is 0.07. Thus, a correlation of 0.17 between a nutrient and diabetes mellitus may 

be noteworthy since it is greater than two times the size of the typical correlation seen for 

this field.

One way to place a new proposed association in context is to state what the percentile of its 

estimated effect is as compared with other associations in the same field using exposure 

variables and/or outcomes of the same family/type of variables (its ‘relative importance’). In 

the example given above using correlation coefficients, a correlation of 0.17 with LDL-

cholesterol would be at the 50th percentile, while a correlation of 0.17 with diabetes would 

be at 97th percentile. While we use correlation coefficients for computational convenience, 

other metrics of effect may be used (eg, standardised effects or regression slopes per unit of 

exposure) and these metrics are typically easily interchangeable, for example, correlation 

coefficients may be transformed to an equivalent standardised effect (=0.5ln((1 +r)/(1 − r))). 

For example, a correlation of 0.8 would be equivalent to a standardised effect of 1.1 (a 

change in 1 SD of one exposure is associated with a 1.1 unit change of the other exposure or 

outcome of interest). Correlations of 0.17 and 0.07, respectively, are equivalent to 0.17 and 

0.07 units of standardised effects. Standardised effects may also be converted to equivalents 

of ORs.35 Understanding the relative effect sizes may be important for planning follow-up 

investigations and eventually (for those correlations that have additional causal support) 

considering what the health policy may be, if any.

Of course, one cannot stress enough that causality cannot be discerned based alone on the 

level of statistical significance (no matter whether and how it is corrected or not) or 

magnitude of correlation (or other effect metric) in observational studies. However, we 

argue that the extra transparency of presenting the multiplicity inherent in an 

epidemiological dataset and of placing the effect size against the distribution of typical 

effects seen in the same field might be insightful and mitigate chances for false positive 

reporting. Many epidemiological datasets are used in reporting dozens and hundreds of 

separate papers on diverse associations. A report of the data multiplicity and correlation 

profile of each dataset can be used to inform all of these papers. This profile can be added in 
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a dataset registration record that describes in public view the overall dataset and study 

design.

Multiplicity can also be induced by the procedure in which analysts produce findings such 

as different study designs and even choice of adjustment variables that are used to correct 

for confounding. Confounding is a major hindrance to assessing causality. In this regard, 

efforts for causal modelling (eg, via directed acyclic graphs36) exist, but a stumbling block is 

how the structure of the directed acyclic graph is to be chosen. Often, this choice is achieved 

through a combination of some a priori knowledge and biological plausibility (or biological 

speculation) and through examining statistical associations (eg, correlations) between 

arbitrary variables.37 By considering the correlations between all variables (and the effective 

number of tests), analysts may prioritise for further consideration adjustments for the 

strongest correlates with their outcome and exposures of interest. These correlates might 

have been missed by traditional epidemiological thinking that relies on arbitrarily picking 

potential adjustment variables. Different teams of epidemiologists may think of adjusting for 

very different sets of variables, even when the same exposure and outcome are assessed 

across their studies. This is routinely demonstrated in systematic reviews and meta-analyses 

of epidemiological studies where the set of adjusting factors is almost always markedly 

different across the combined investigations. Part of this divergence may be due to the fact 

that not all studies measure the very same confounders. However, even for routinely 

collected variables, clearly there is large subjectivity among investigators on how they use 

them. This creates a situation where almost any result can be achieved that would conform 

to the original expectations of the traditional epidemiologist, provided a suitable set of 

adjustments and a self-justifying causal model is adopted. This flexibility can transform 

epidemiology into a champion field for subjectivity, allegiance bias and confirmation bias.

Some traditional epidemiologists who have heard us suggest agnostic approaches for 

assessments of the exposome take a defensive stance claiming that most epidemiology is 

(and should be) testing specific focused a priori hypotheses. For example, a reviewer of the 

original submission of this paper felt that ‘it probably would be extremely complicated and 

finally useless to produce the same approach with a study such as European Prospective 

Investigation into Cancer and Nutrition (EPIC). Many environmental studies do have solid a 

priori hypotheses’. However, a perusal of PubMed and of the EPIC website shows that EPIC 

(a classic paradigm of a cohort that claims to have prior hypotheses) has already published 

over a thousand papers and the same applies to other leading cohorts such as the Nurses’ 

Health Study. While each paper usually does test only a few hypotheses of associations, 

cumulatively this cohort-specific publication corpus results in investigating several 

thousands of hypotheses in the very same single cohort dataset. We think it is better to adapt 

a systematic all-inclusive approach to the data rather than try to separate arbitrarily and one-

at-a-time the thousands of ‘solid a priori’ hypotheses from the thousands that no one has 

happened to pick—until now.

Finally, a caveat is also needed about the meaning and implications of large effects. Large 

effects are considered to have increased credibility in evidence appraisal schemes such as 

GRADE.38 Nevertheless, even a very large effect at the top percentile of a field may 

sometimes reflect an error (‘too good to be true’) or an inflated effect (due to the winner’s 

Patel and Ioannidis Page 5

J Epidemiol Community Health. Author manuscript; available in PMC 2015 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



curse).39 Thus, it would require careful examination and replication in additional 

epidemiological studies. Effects that remain at the top percentiles across multiple studies 

may be worth prioritising for further corroboration with other types of biological or 

experimental evidence. One would need to consider also whether this variable that has the 

top effect is not strongly correlated with other variables or has strong correlations with many 

other variables.14 Finally, this approach does not negate also the possibility that many 

genuine effects, including those that reflect causal relationships, may be small or even 

tiny.40 Regardless, deciding what is large, small or tiny, and what is significant or not may 

benefit from knowing the profile of the relevant correlation matrix of studied exposures, its 

inherent multiplicity and the size of average effects that circulate in the field.
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Figure 1. 
Within-category absolute value of correlations (Spearman or biserial). Boxplot illustrates 

IQR (25–75th percentile) with median in the middle of the box. Only one pair of 

correlations was estimated for acrylamide and perchlorate exposures. Outliers outside of the 

99th percentile are shown in actual points. We estimated significance of correlations through 

‘permutation’ testing, randomly shuffling exposures to estimate correlation thresholds under 

the null distribution of no correlation. The horizontal black line denotes the 95th percentile 

of all ‘permuted’ correlations. ‘all’: denotes correlation across all pairs of variables 

available.
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Table 1

Emerging technologies to measure multiple environmental/non-genetic variables

Measurement platform type Number of variables Example references

Metabolomics (small molecules) 10–1000s 1245

Transcriptomics/proteomics (mRNA/protein) 30–50 000 36

Nutrient questionnaires 100s 7

Automated dietary intake sensors 100s 8

Physical activity/behaviour sensors (iPhone/smart devices) 10–100s 910
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Table 2

Number of variables in each of the 32 exposure, demographics or behaviour categories

Category (measurement type) M Meff Mdiff p Value

Polychlorinated biphenyls (s) 38 23.79 14.21 0.002

Dioxins (s) 7 4.90 2.10 0.01

Acrylamide (s) 2 1.44 0.56 0.03

Organochlorine pesticides (s) 13 9.95 3.05 0.005

Polybrominated ethers (s) 11 8.47 2.53 0.006

Furans (s) 10 7.99 2.01 0.006

Perchlorate (u) 2 1.66 0.34 0.03

Smoking behaviour (s/sr) 14 11.65 2.35 0.004

Phthalates (u) 13 10.85 2.15 0.005

Food component recall (sr) 74 63.92 10.08 0.0008

Phytoestrogens (u) 6 5.22 0.78 0.01

Hydrocarbons (u) 21 18.47 2.53 0.003

Nutrients (s) 29 26.32 2.68 0.002

Volatile compounds (s) 38 34.60 3.40 0.001

Physical fitness (sr*) 3 2.78 0.22 0.02

Diakyl metabolites (u) 6 5.59 0.41 0.009

Socioeconomics (SES) (sr) 9 8.49 0.51 0.006

Demographics (sr) 8 7.55 0.45 0.007

Polyflourochemicals (s) 12 11.39 0.61 0.004

Phenol pesticides (u) 7 6.65 0.35 0.008

Heavy metals (s/u) 29 27.68 1.32 0.002

Bacterial infection (s/u) 33 32.19 0.81 0.002

Viral infection (s) 16 15.72 0.28 0.003

Phenols (u) 3 2.97 0.03 0.02

Atrazine-like pesticides (u) 6 5.98 0.02 0.008

Hormone (s) 2 1.99 0.01 0.03

Pharmaceutical (sr) 107 106.78 0.22 0.0005

Organophosphate pesticides (u) 4 4.00 0.00 0.01

Carbamate pesticides (u) 4 4.00 0.00 0.01

Melamine (u) 1 1.00 0.00 0.05

Chloroacetanilide pesticides (u) 1 1.00 0.00 0.05

Pyrethyroid pesticides (u) 1 1.00 0.00 0.05

Total 530 476.0 54.0 0.0001

M, number of variables in category; Meff, effective number of variables after taking into account correlation; Mdiff, difference between M and 
Meff; p value, indicative correlation-adjusted Bonferroni p value threshold (0.05/Meff).

*
Denotes quantitative assessment of physical activity (VO2Max) was also measured.

s, serum; sr, self-report; u, urine.
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