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Abstract

As the early stage of Alzheimer's disease (AD), mild cognitive impairment (MCI) has high chance 

to convert to AD. Effective prediction of such conversion from MCI to AD is of great importance 

for early diagnosis of AD and also for evaluating AD risk pre-symptomatically. Unlike most 

previous methods that used only the samples from a target domain to train a classifier, in this 
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paper, we propose a novel multimodal manifold-regularized transfer learning (M2TL) method that 

jointly utilizes samples from another domain (e.g., AD vs. normal controls (NC)) as well as 

unlabeled samples to boost the performance of the MCI conversion prediction. Specifically, the 

proposed M2TL method includes two key components. The first one is a kernel-based maximum 

mean discrepancy criterion, which helps eliminate the potential negative effect induced by the 

distributional difference between the auxiliary domain (i.e., AD and NC) and the target domain 

(i.e., MCI converters (MCI-C) and MCI non-converters (MCI-NC)). The second one is a semi-

supervised multimodal manifold-regularized least squares classification method, where the target-

domain samples, the auxiliary-domain samples, and the unlabeled samples can be jointly used for 

training our classifier. Furthermore, with the integration of a group sparsity constraint into our 

objective function, the proposed M2TL has a capability of selecting the informative samples to 

build a robust classifier. Experimental results on the Alzheimer's Disease Neuroimaging Initiative 

(ADNI) database validate the effectiveness of the proposed method by significantly improving the 

classification accuracy of 80.1 % for MCI conversion prediction, and also outperforming the state-

of-the-art methods.

Keywords

Mild cognitive impairment conversion; Manifold regularization; Transfer learning; Semi-
supervised learning; Multimodal classification; Sample selection

Introduction

Alzheimer's disease (AD) is the most common cause of dementia in people aged 65 or older, 

and the incidence rate of AD is doubling every 5 years (Hurd et al. 2013). From a clinical 

perspective, it is of great importance to diagnose the early stage of AD, mild cognitive 

impairment (MCI), for timely therapy or possible delay thanks to the pharmacological 

advances. In this regard, the prediction of whether an MCI subject will progress to AD (MCI 

converter, MCI-C) or not (MCI non-converter, MCI-NC) within a few years is particularly 

important.

Early studies mainly focused on brain atrophy measurements from magnetic resonance 

imaging (MRI) scans (Chao et al. 2010; Chetelat et al. 2005b; deToledo-Morrell et al. 2004; 

Fan et al. 2008; Li et al. 2012; Misra et al. 2009; Risacher et al. 2009; Wang et al. 2011b), 

and used off-the-shelf machine learning tools to discriminate MCI-C from MCI-NC. 

However, those methods were short of high performance for clinical use. Meanwhile, other 

studies considered functional changes in the brain by using the fluorodeoxyglucose positron 

emission tomography (FDG-PET) (Chetelat et al. 2005a; Drzezga et al. 2003; Fellgiebel et 

al. 2007; Mosconi et al. 2004). In addition, cerebrospinal fluid (CSF) levels of Aβ42, total-

tau (t-tau), and phosphor-tau (p-tau) have also been considered as biomarkers for diagnosis 

and tracking MCI progression (Bouwman et al. 2007; Davatzikos et al. 2011; Lehmann et al. 

2012; Vemuri et al. 2009a, b). Recently, there are efforts for fusing multimodal information 

for diagnosis, which helps improve performance compared to the method using the single-

modal biomarkers as demonstrated in (Davatzikos et al. 2011; Jie et al. 2015; Westman et al. 

2012; Zhang et al. 2012a, b). The rationale for fusing the multimodal information is that 
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different modalities convey different properties, each of which can provide complementary 

information in discriminating MCI-C from MCI-NC.

From a machine learning point of view, the number of samples available to build a 

generalized model for the MCI-C prediction is in general overwhelmed by feature 

dimensionality. In other words, the number of training samples (including both MCI-C and 

MCI-NC subjects) is usually very limited, while the feature dimensionality is much higher. 

This so-called small-sample-size problem has been one of the main challenges in 

neuroimaging data analysis. To this end, several advanced machine learning methods have 

been proposed to reduce the feature dimensionality. For example, Zhang et al. used a multi-

task learning method to select informative features for joint regression and classification 

tasks by using multi-modality data (i.e., MRI, FDG-PET, and CSF), and achieved an 

accuracy of 73.9 % on the dataset of 43 MCI-C and 48 MCI-NC subjects (Zhang et al. 

2012b). Cho et al. adopted a manifold harmonic transform method by using the cortical 

thickness data and reported a sensitivity of 63 % and a specificity of 76 % on the dataset of 

72 MCI-C and 131 MCI-NC subjects (Cho et al. 2012). Duchesne et al. used the 

morphological factor method based on MRI data and presented an accuracy of 72.3 % on the 

dataset of 20 MCI-C and 29 MCI-NC subjects (Duchesne and Mouiha 2011). Unlike the 

approaches of reducing feature dimensionality for addressing the small-sample-size 

problem, several groups have applied a semi-supervised learning (SSL) method by 

increasing the number of training samples with unlabeled samples, which are often much 

easier to obtain (Cheng et al. 2013a; Filipovych et al. 2011a, b; Zhang and Shen 2011).

To the best of our knowledge, most of the previous methods assumed that the training and 

the testing samples lied in the same feature space and also shared the same distribution. 

Therefore, they only used target-related samples to build a classifier, where samples not 

directly related to the target domain cannot be used. Meanwhile, recent studies have shown 

that the task of identifying MCI-C from MCI-NC is related to the task of discriminating AD 

and normal control (NC) (Filipovych et al. 2011a). Although they may follow different data 

distributions, the knowledge learned from AD and NC classification can be transferred to 

the MCI-C and MCI-NC classification task, which may further improve the performance of 

MCI conversion prediction. In the machine learning community, the use of this kind of 

knowledge transfer to build a generalized model is called transfer learning (Duan et al. 

2012; Kuzborskij and Orabona 2013; Pan and Yang 2010; Yang et al. 2007, 2013). 

Hereafter, we call the domain of our interest the target domain (i.e., MCI-C and MCI-NC), 

while the other domain is an auxiliary domain (i.e., AD and NC). Recently, transfer learning 

techniques have been successfully introduced into medical imaging analysis (Cheng et al. 

2012, 2013b). For example, a domain transfer Support Vector Machine (SVM) was 

proposed for MCI conversion prediction, which achieved enhanced classification 

performance with the help of samples from an auxiliary domain (i.e., AD and NC) (Cheng et 

al. 2012).

In this paper, we propose a `multimodal manifold-regularized transfer learning' method, in 

which we effectively combine the methods of SSL and transfer learning for MCI conversion 

prediction. With regard to the distributional discrepancy between a target domain (i.e., MCI-

C and MCI-NC) and an auxiliary domain (i.e., AD and NC), we use a kernel-based 
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maximum mean discrepancy criterion. We also design a cross-domain Laplacian matrix to 

reflect the relations among samples of the target domain, samples of the auxiliary domain, 

and also the unlabeled samples. Finally, by using a group sparsity constraint in our objective 

function, the proposed method allows us to select samples informative to predict the target 

class labels. We validate the efficacy of our proposed method by conducting experiments on 

the publicly available ADNI dataset and compare our method with the state-of-the-art 

methods.

Materials

ADNI database

The data used in the preparation of this paper were obtained from the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/). ADNI researchers 

collect, validate and utilize data such as MRI and PET images, genetics, cognitive tests, 

CSF, and blood biomarkers as predictors for Alzheimer's disease. Data from the North 

American ADNI's study participants, including Alzheimer's disease patients, mild cognitive 

impairment subjects and elderly controls, are available in this database. The ADNI was 

launched in 2003 by the National Institute on Aging (NIA), the National Institute of 

Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration 

(FDA), private pharmaceutical companies, and non-profit organizations, as a $60 million, 5-

year public-private partnership. The primary goal of ADNI has been to test whether the 

serial MRI, PET, other biological markers, and clinical and neuropsychological assessments 

can be combined to measure the progression of MCI and early AD. Determination of 

sensitive and specific markers of very early AD progression is intended to aid researchers 

and clinicians to develop new treatments and monitor their effectiveness, as well as lessen 

the time and cost of clinical trials.

The ADNI is the result of efforts of many co-investigators from a broad range of academic 

institutions and private corporations, and subjects have been recruited from over 50 sites 

across the U.S. and Canada. The initial goal of ADNI was to recruit 800 adults, aged 55 to 

90, to participate in the research approximately 200 cognitively normal older individuals to 

be followed for 3 years, 400 people with MCI to be followed for 3 years, and 200 people 

with early AD to be followed for 2 years (see www.adni-info.org for up-to-date 

information). The research protocol was approved by each local institutional review board, 

and the written informed consent was obtained from each participant.

Subjects

The ADNI general eligibility criteria are described at www.adni-info.org. Briefly, subjects 

are between 55 and 90 years of age, and have a study partner able to provide an independent 

evaluation of functioning. Specific psychoactive medications were excluded. General 

inclusion/exclusion criteria are as follows: 1) healthy subjects: MMSE scores between 24 

and 30, a Clinical Dementia Rating (CDR) of 0, non-depressed, non-MCI, and non-

demented; 2) MCI subjects: MMSE scores between 24 and 30, a memory complaint, having 

objective memory loss measured by education adjusted scores on Wechsler Memory Scale 

Logical Memory II, a CDR of 0.5, absence of significant levels of impairment in other 
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cognitive domains, essentially preserved activities of daily living, and an absence of 

dementia; and 3) Mild AD: MMSE scores between 20 and 26, CDR of 0.5 or 1.0, and meets 

the National Institute of Neurological and Communicative Disorders and Stroke and the 

Alzheimer's Disease and Related Disorders Association (NINCDS/ADRDA) criteria for 

probable AD.

MRI, PET, and CSF acquisition

A detailed description of the ADNI data acquisition of MRI, PET, and CSF can be found in 

(Zhang et al. 2011). Specifically, the structural MR scans were acquired from 1.5T scanners. 

We downloaded raw Digital Imaging and Communications in Medicine (DICOM) MRI 

scans from the public ADNI website (www.loni.ucla.edu/ADNI), reviewed for quality, and 

corrected spatial distortion caused by gradient nonlinearity and B1 field inhomogeneity. The 

PET images were acquired 30–60 min post-injection, averaged, spatially aligned, 

interpolated to a standard voxel size, intensity normalized, and smoothed to a common 

resolution of 8 mm full width at half maximum. The CSF data were collected in the morning 

after an overnight fast using a 20- or 24-gauge spinal needle, frozen within 1 h of collection, 

and transported on dry ice to the ADNI Biomarker Core laboratory at the University of 

Pennsylvania Medical Center. In this study, we used Aβ42, t-tau, and p-tau as CSF features.

Image pre-processing and feature extraction

All MRI and PET images were pre-processed by first performing an anterior commissure-

posterior commissure (AC-PC) correction using the MIPAV software (CIT 2012). The AC-

PC corrected images were resampled to 256×256×256, and the N3 algorithm (Sled et al. 

1998) was used to correct intensity inhomogeneity. For the MRI images, a skull stripping 

method (Wang et al. 2011a) was performed, and the skull stripping results were manually 

reviewed to ensure clean skull and dura removal. The cerebellum was removed by first 

registering the skull stripped image to a manually-labeled cerebellum template, and then 

removing all voxels within the labeled cerebellum mask. FAST in FSL (Zhang et al. 2001) 

was then used to segment the human brain into three different tissues: grey matter (GM), 

white matter (WM), and cerebro-spinal fluid (CSF). We used HAMMER (Shen and 

Davatzikos 2002) for registration. After registration, the subject-labeled image was 

generated based on the Jacob template (Kabani et al. 1998) that dissects a brain into 93 

manually labeled ROIs. Then, for each of 93 ROIs, we computed the GM tissue volume in 

an ROI as a feature. For the PET images, we used a rigid transformation to align them onto 

their respective MRT1 image of the same subject, and then computed the average intensity 

of each ROI as a feature. In total, for each subject, we extracted 189 features including 93 

MRI features, 93 PET features, and 3 CSF features.

Proposed method

In this section, we describe our method to classify between MCI-C and MCI-NC. After 

depicting a general overview of our framework, we formulate a multimodal manifold- 

regularized transfer learning (M2TL) method and provide an optimization algorithm to solve 

our objective function. Then, we explain our classification scheme with a sample selection 

procedure by using the proposed M2TL method.
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Overview

In Fig. 1, we illustrate the proposed framework for MCI conversion prediction based on our 

M2TL method. Specifically, our framework consists of three main components, i.e., (1) 

image pre-processing, (2) M2TL-based sample selection, and (3) M2TL-based 

classification. As shown in Fig. 1, we first pre-process all MRI and PET images, and extract 

features from each modality as described in the Image pre-processing and feature extraction 

section. Then, we select informative samples for building a generalized model via the 

proposed M2TL method. We finally make a decision using both the sample weights and the 

modality weights trained in our M2TL method.

Multimodal manifold-regularized transfer learning (M2TL)

Unlike the previous methods that only considered samples of the target domain in model 

training, in this work, we use samples of different domains as well as unlabeled samples to 

build a generalized model. Furthermore, we use multimodal samples. Hereafter, we denote 

M as the number of different modalities with an index m∈{1,…,M} throughout the whole 

paper. Assume that we have NA samples with class labels in the auxiliary domain (i.e., AD 

and NC), denoted as , where  is the a-th sample and 

is its corresponding class label (e.g., AD as +1 and NC as −1). Also, assume that we have 

 labeled samples of the target domain, denoted as , where  is the l-

th sample and  is the corresponding class label (e.g., MCI-C as +1 and MCI-

NC as −1). Similarly, we have  unlabeled samples of the target domain, denoted as 

. We use  to represent the total number of samples in the 

target domain, i.e., . Also,  is the total number of all 

samples.

In this work, we use a traditional regularized least square method (Belkin et al. 2006) to 

design our model for classification, and use all the available data from the auxiliary domain 

as well as the target domain to build a more generalized model. However, there may be 

some noise and irrelevant samples in the auxiliary domain as well as in the target domain, 

especially for the case of using multimodal biomarkers. To remove the noise and irrelevant 

samples from different modalities consistently, we introduce an L1/L2-norm based 

regularizer on weight matrix (i.e., W2,1), which can simultaneously remove a common 

subset of samples relevant to all modalities (Zhang et al. 2012b). In addition, by 

simultaneously performing sample selection for multimodal data, it is very helpful to 

suppress noise in the individual modalities. Accordingly, the base model can be written as 

follows:

(1)
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Where Y is the label vector and , J is a 

diagonal matrix with the first  diagonal entries to be 1 and the remaining 

diagonal entries to be 0, λm is a modality weighting factor, W = [w1,w2,…wM] ∈ RN × M 

denotes a weight matrix whose i-th row wi is the vector of coefficients associated with the i-

th training sample across different modalities, and μ>0 is a sparsity control parameter. The 

symbol ' denotes the transpose of a matrix. It is worth noting that a `group sparsity' 

regularization in Eq. (1) is used for joint selection or un-selection of samples across different 

modalities based on the L1/L2-norm, i.e., . As for the selection of Y 
and J, according to the weight matrix W whose elements in some rows are all zeros, we just 

select those corresponding samples and their labels (Y and J) with non-zero weights. In Eq. 

(1), Km is a compound cross-domain kernel matrix over Am and Tm. In the following, we 

will introduce how to compute this cross-domain kernel matrix Km for implementing the 

knowledge fusion from both auxiliary and target domains (including labeled and unlabeled 

samples).

Here, the instance-transfer approach (Dai et al. 2007) is used to link the auxiliary domain 

data to the target domain data. To be specific, we first define the kernel matrices from the 

auxiliary domain and the target domain as  and 

, respectively. Here,  and  are 

samples in the auxiliary and target domains, respectively, NA and NT are the numbers of 

samples in the auxiliary and target domains, respectively. Then, we define the cross-domain 

kernel matrices from the auxiliary domain to the target domain, and also from the target 

domain to the auxiliary domain as , and 

 respectively. Finally, the cross-domain kernel matrix 

Km can be computed as: , which can be seen as the 

similarity between pairwise samples in the cross-domain for the m-th modality. In our study, 

the linear kernel function is used.

Note that the base model in Eq. (1) treats the samples from the auxiliary domain (i.e., AD 

and NC) and the unlabeled samples equally as the labeled samples from the target domain 

(i.e., MC-C and MC-NC) with no consideration of their own distributions. However, due to 

the potential distributional discrepancy between domains, i.e., the target domain (MCI-C and 

MCI-NC) and the auxiliary domain (AD and NC), the base model would not successfully 

combine them in learning. To this end, we utilize a maximum mean discrepancy (MMD) 

criterion (Borgwardt et al. 2006; Duan et al. 2012), which was originally designed to 

measure whether two sets of data are from the same or different probability distributions. 

Specifically, we use a kernel-based MMD criterion formulated as follows:

(2)
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where , tr(·) denotes a trace of a matrix, and the 

symbol' denotes the transpose of a matrix.

Regarding to the SSL method that utilizes the unlabeled samples to train a classifier, we 

define a compound cross-domain Laplacian matrix on the m-th modality as follows:

(3)

where  and  are the Laplacian matrices over the auxiliary 

domain and the target domain, respectively. Here,  and 

 are the similarity matrices for the samples of the auxiliary domain 

and the samples of the target domain, respectively, and  and 

 are the diagonal matrices with elements  and 

respectively. In conjunction with the compound cross-domain kernel matrix Km and the 

weight coefficient vector wm, we define a manifold regularization function (Belkin et al. 

2006) as follows:

(4)

By integrating a kernel-based MMD criterion in Eq. (2) and a manifold regularization 

function in Eq. (4) into the base model in Eq. (1), we define our objective function as 

follows:

(5)

where γ>0 is a regularization control parameter. We call our method a `multimodal 

manifold-regularized transfer learning method' (M2TL). In Eq. (5), the first term tr(KmS) is 

the kernel-based MMD criterion, which can help eliminate the potential negative effect 

introduced by the distributional difference between the auxiliary domain and the target 

domain. The manifold regularization term R(Λm,Km,wm)=(Kmwm)′Λm(Kmwm) can capture 

the geometry of the probability distribution between the labeled and unlabeled data via the 

compound cross-domain Laplacian matrix Λm. By minimizing Eq. (5), we can learn a 

converged W among multi-domains, labeled and unlabeled data, and multimodal data. It is 

worth noting that, because of using `group sparsity', the elements of some rows in the 

common weight matrix W will be all zeros. For sample selection, we just keep those 

samples with non-zero weights.

To solve the optimization problem of Eq. (5), we employ an accelerated gradient descent 

(AGD) method (Chen et al. 2009). To be specific, we decompose the objective function of 

Eq. (5) into two parts of a smooth term G(W) and a non-smooth term H(W) as follows:
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(6)

(7)

We then define the generalized gradient update rule as follows:

(8)

where ▽G(Wt) denotes the gradient of G(W) at the point Wt at the t-th iteration, h is a step 

size, 〈W–Wt, ▽G(Wt)〉= tr((W–Wt)′▽G(Wt)) is the matrix inner product, and ∥ ∥Fdenotes a 

Frobenius norm. According to (Chen et al. 2009), the generalized gradient update rule of Eq. 

(8) can be further decomposed into N separate sub-problems with a gradient mapping update 

approach. We summarize the details of AGD algorithm in Algorithm 1.

Algorithm 1. AGD algorithm for M2TL in Eq. (5)

1.
Initialization: h0 > 0,η > 1, W0, , h = h0 and α0 = 1.

2. for t=0,1,2,… until convergence of Wt do:

3.  Set h=ht

4.
 while , h = ηh

5.    Set ht+1=h and compute

   Wt+1 = argminwQht+1 ( ), , βt+1 = Wt+1–Wt and 

 end-while

6. end-for

Sample selection and classification

It is noteworthy that, due to the use of the group sparsity constraint in Eq. (5), after 

optimization, some row vectors in the optimized weight matrix W have their l2-norm being 

close to or equal to zero. This implies that the corresponding samples are less informative 

for classification. This favorable property allows us to use the proposed M2TL method for 

sample selection in a data-driven manner, and when making a decision we can only use 

those selected samples.

We finally build our classifier by performing the proposed M2TL on the selected samples. 

After learning the optimal weight matrix , given a test sample 

, we can then make a decision with the following multi-kernel SVM function 

f*(x):
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(9)

where  is the testing sample's kernel vector on the m-th 

modality (between the testing sample xm and the i-th selected training sample  in the 

cross-domain).

Results

In this section, we first describe the experimental settings in our experiments and then 

evaluate the effectiveness of the proposed M2TL method on the ADNI dataset, by 

comparing with other methods in the literature. In addition, we also use the M2TL method to 

select the informative unlabeled samples before classification, and then evaluate the 

classification performance of M2TL with respect to the use of a different number of samples 

from the auxiliary domain and a different number of unlabeled samples, respectively.

Experimental settings

We used the samples of 202 subjects (51 AD, 43 MCI-C, 56 MCI-NC, and 52 NC), for 

whom the baseline MRI, PET, and CSF data were all available. Also, for each of the three 

modalities, we included another set of unlabeled samples from 153 randomly selected 

subjects. We regarded the samples of 43 MCI-C and 56 MCI-NC subjects as the target 

domain data and also those of 51 AD and 52 NC subjects as the auxiliary domain data. It is 

worth noting that, for all 99 MCI subjects (43 MCI-C + 56 MCI-NC), during the 24-month 

follow-up period, 43 MCI subjects converted to AD and 56 remained stable.

To evaluate the performances of the proposed method as well as the competing methods, we 

used a 10-fold cross-validation strategy by partitioning the target domain data into training 

and testing subsets. In particular, 99 MCI samples in our target domain were partitioned into 

10 subsets (each subset with a roughly equal size), and then one subset was successively 

selected as the testing samples and all the remaining subsets were used for training. To avoid 

the possible bias occurring during sample partitioning, we repeated this process 10 times. 

We reported the performances in terms of area under the receiver operating characteristic 

curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE).

We compared the proposed method with a standard SVM, domain transfer SVM (DTSVM) 

(Cheng et al. 2012), and manifold-regularized Laplacian SVM (LapSVM) (Belkin et al. 

2006). The main difference among these methods lies in how much information they use in 

learning from the available samples:

• SVM: labeled samples from the target domain;

• DTSVM: labeled samples from both the target and the auxiliary domains;

• LapSVM: both labeled and unlabeled samples from the target domain.
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The standard SVM method was implemented using the LIBSVM toolbox (Chang and Lin 

2001) with a linear kernel and a default value for the parameter C (i.e., C=1). We used a 

linear kernel for a Laplacian matrix in both M2TL and LapSVM methods. The optimal 

model parameters of γ and μ in our M2TL method were chosen from the range of {0.001, 

0.01,0.03,0.06,0.09,0.1,0.2,0.4,0.6,0.8} by a nested 10-fold cross-validation on the training 

data.

In the experiments, both single-modal and multimodal features were used to evaluate the 

proposed method as well as other methods. A multi-kernel combination technique (Zhang et 

al. 2011) was adopted for multi-modality fusion. To be specific, the combination weights for 

multi-kernels were learned within a nested cross-validation via a grid search in the range of 

0 and 1 at a step size of 0.1. The optimal parameter λm in the proposed M2TL method was 

determined in the same manner. Before training models, we normalized features by 

following (Zhang et al. 2011).

Comparison between M2TL and other methods

Here, we first compare the proposed M2TL method without sample selection with the 

competing methods, with results reported in Table 1. Note that Table 1 shows the averaged 

results of the 10-fold cross-validation performed on 10 independent experiments. We also 

presented the ROC curves achieved by different methods in Fig. 2. From Table 1 and Fig. 2, 

we can see that the proposed M2TL method achieved better performance than DTSVM, 

LapSVM, and SVM in terms of both accuracy and sensitivity. At the same time, in most 

cases, the proposed M2TL method outperformed the competing methods in terms of 

specificity and AUC. Specifically, by using multimodal data, M2TL achieved a 

classification accuracy of 77.8 %, which significantly outperformed DTSVM (69.4 %), 

LapSVM (69.1 %), and SVM (63.8). At the same time, by using single modality, the 

proposed M2TL method usually achieved better performances than DTSVM, LapSVM, and 

SVM. These results validate the efficacy of our M2TL method, which uses both labeled and 

unlabeled samples from the auxiliary domain (i.e., AD and NC) and the target domain (i.e., 

MCI-C and MCI-NC) in MCI conversion prediction.

Comparison between M2TL with sample selection and other methods

To investigate the influence of the proposed sample selection method, we also compare the 

proposed method without sample selection (M2TL) and with sample selection (M2TL+SS) 

to LapSVM with Sample Selection (LapSVM+SS), and also DTSVM with Sample Selection 

(DTSVM+SS). Specifically, for the methods of LapSVM+SS and DTSVM+SS, we first 

applied our M2TL method for sample selection and then trained the respective LapSVM and 

DTSVM on the selected samples. It is worth noting that, because labeled samples from the 

auxiliary and the target domains are more informative than unlabeled samples, we applied 

the sample selection strategy only for unlabeled samples. The experimental results are 

shown in Table 2.

From Table 2, we can see that M2TL+SS with multimodal data achieved a classification 

accuracy of 80.1 %, which is significantly better than M2TL (77.8 %), LapSVM+SS (71.6 

%), and DTSVM+SS (71.3 %). With single modality, especially with PET, M2TL+SS still 
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achieved better performance than M2TL, LapSVM+SS, and DTSVM+SS. Recalling the 

experimental results reported in Table 1, we could say that the proposed M2TL-based 

sample selection method has the effect of promoting the performance of MCI conversion 

prediction. These results validate the efficacy of the proposed M2TL-based sample 

selection.

Furthermore, we investigated the influence of the number samples from the auxiliary 

domain for M2TL+SS and M2TL by comparing to other transfer learning methods, i.e., 

DTSVM and DTSVM+SS. We randomly chose samples from the auxiliary domain and then 

reported the average accuracies in Fig. 3, from which we can see that the proposed M2TL

+SS and M2TL consistently outperformed DTSVM+SS and DTSVM. In addition, with the 

increase of the number of samples from the auxiliary domain, the classification accuracy 

rises monotonically for M2TL+SS, M2TL, and DTSVM.

Finally, we investigated the influence of the number of unlabeled samples for the proposed 

M2TL+SS and M2TL methods, in comparison to two SSL methods (i.e., LapSVM+SS and 

LapSVM). The average accuracies achieved by these four different methods are reported in 

Fig. 4. Specifically, for M2TL and LapSVM methods, we randomly chose unlabeled 

samples and then performed M2TL and LapSVM for classification, respectively. On the 

other hand, for M2TL+SS and LapSVM+SS methods, we first conducted sample selection 

using M2TL to select samples from unlabeled samples and then performed M2TL and 

LapSVM for classification, respectively.

As we can see from Fig. 4, regardless of the number of unlabeled samples, the proposed 

M2TL+SS and M2TL methods outperformed LapSVM+SS and LapSVM in terms of 

classification accuracy. As the used number of unlabelled subjects changes from 0 to 15, 

there are obvious improvements in accuracy by using four methods, which explicitly 

demonstrates that using unlabelled samples can improve classification performance. In 

addition, Fig. 4 shows that the classification accuracies of M2TL and LapSVM methods 

(based on random sample selection) rise gradually with the increase of the number of 

unlabelled samples. On the other hand, for M2TL+SS and LapSVM+SS methods, their 

corresponding performances are first improved as the number of unlabelled samples 

increases, and then dropped when too many (e.g., over 75) unlabelled subjects are used. This 

implies that our proposed M2TL method for sample selection can effectively select 

informative unlabelled samples and also avoid noisy or irrelevant samples for the underlying 

classification task.

Discussion

In this paper, we proposed a multimodal manifold-regularized transfer learning method to 

identify MCI-C and MCI-NC, in which we further used the samples of AD and NC and the 

unlabeled samples jointly. We evaluated the performance of our method on 202 labeled and 

153 unlabeled baseline samples from ADNI database. The experimental results showed that 

the proposed method consistently and substantially improved the performance of MCI 

conversion prediction with a maximum accuracy of 80.1 %.
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Use of all available samples in learning

In the field of neuroimaging-based brain disease diagnosis, there have been studies 

presenting relations among tasks of identifying different stages of disease, e.g., AD vs. NC 

and MCI-C vs. MCI-NC. Motivated by these studies, in this paper, we proposed a method 

that could use samples from different domains by means of transfer learning. Specifically, 

we adopted the AD/NC as an auxiliary domain to help the task of discriminating MCI-C 

from MCI-NC. From a machine learning point of view, transfer learning aims to apply the 

knowledge learned from one or more auxiliary domains to a target domain. However, due to 

the potential difference in distributions of auxiliary domains and the target domain, it is 

challenging to efficiently use such knowledge in learning. To handle the distributional 

discrepancy between domains, we used an MMD criterion to measure the similarity or 

dissimilarity between two sets of samples from different domains.

While it is difficult to get more labeled samples, it is relatively easy to obtain more 

unlabeled samples in general. In our previous work (Cheng et al. 2012), we used labeled 

auxiliary-domain samples to foster the generalization of a classifier in a target domain. In 

this work, we extended it to use unlabeled samples for further performance improvement. To 

be precise, we proposed a multimodal manifold-regularized transfer learning (M2TL) 

method for automatic selection of informative samples and also automatic rejection of 

uninformative samples to make a decision.

As a naïve way for transfer learning, we can apply the model trained on AD and NC to the 

task of MCI conversion prediction directly (Da et al. 2014; Eskildsen et al. 2013; Filipovych 

et al. 2011a; Young et al. 2013). We call this kind of method as a direct transfer learning 

(DTL), or direct semi-supervised transfer learning (DSSTL). In DTL, samples of AD and 

NC are treated as training data, while samples of MCI-C and MCI-NC are used for testing 

data; In DSSTL, samples of AD and NC are used as labeled data, while samples of MCI-C 

and MCI-NC are regarded as unlabeled data. Then, the model is trained based on both 

labeled and unlabeled data. Finally, samples of MCI-C and MCI-NC are treated as testing 

data to evaluate the performance of each learned model. In our additional experiment, we 

compared the proposed M2TL method with DTL and DSSTL using multimodal data (i.e., 

MRI+CSF+PET). The DTL method achieved a classification accuracy of 66.7 % and AUC 

of 0.702, and the DSSTL method achieved a classification accuracy of 70.9 % and AUC of 

0.766. These results are much worse than those of the proposed M2TL method that 

produced the maximum classification accuracy of 80.1 % and AUC of 0.852. We believe 

that these results validated the advantage of the proposed M2TL method over other transfer 

learning methods.

Besides modalities used in this paper, i.e., MRI, PET, and CSF, there also exist other 

modalities (e.g., Diffusion Tensor Imaging (DTI) and Resting-state functional Magnetic 

Resonance Imaging (RS-fMRI)) which can be used for AD/MCI classification (Jie et al. 

2014; Supekar et al. 2008; Wang et al. 2007; Wee et al. 2012, 2014; Zhu et al. 2014). It will 

be interesting to further investigate the incorporation of these modalities into our proposed 

M2TL model, which will be one of our future works.
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M2TL model for sample selection

According to (Wang et al. 2011b), the sparse weight matrix can not only consistently select 

the informative samples from different modalities, but also indicate the contributions of 

different modalities and subjects in the prediction. Accordingly, we specifically count the 

number of non-zero elements from each column weight vector of W. Since we used a 10-

fold cross-validation strategy in the experiments, we should count the frequency of each 

subject selected across all folds and all runs (i.e., a total of 100 times for 10-fold cross-

validation with 10 independent runs) on the training set. Then, those subjects with frequency 

of 100 (i.e., always selected in all folds and all runs) are regarded as stable subjects.

For M2TL+SS, we obtained the number and percentage of stable subjects for different 

domains on the training set as follows: Auxiliary (90/103=87.38 %), Labeled target 

(69/90=76.67 %), and Unlabeled target (75/153=49.02 %). It shows that the most selected 

stable subjects are from the auxiliary domain, followed by the target domain. This 

observation is reasonable since AD and NC subjects are more separable than MCI-C and 

MCI-NC subjects, and thus the former is more important than the latter for robust 

classification.

In addition, we compute the sum of absolute values of each column weight vector, and find 

that the MRI modality is more important than the PET modality, and also the PET modality 

is more important than the CSF modality, i.e., wMRI>wPET>wCSF, which is consistent with 

results in Tables 1 and 2. In our current study, we only report results of excluding subjects 

(by sample selection methods), and the experimental results show that excluding certain 

subjects can further improve the classification performance (e.g., as shown in Tables 1 and 

2). But we did not report results of excluding any modality since our previous works (Cheng 

et al. 2013a; Zhang et al. 2011) show that using more modalities often leads to better 

performance.

Effect of feature selection

To investigate the influence of feature selection on the performances of the proposed 

methods, we further performed a set of experiments by using an extra feature selection step, 

i.e., based on t-test statistics (Zhang et al. 2011), before sample selection and classification. 

Fig. 5 shows the classification accuracies achieved by our M2TL+SS and M2TL methods 

with the t-test based feature selection, with respect to the different number of selected 

features. As can be seen from Fig. 5, feature selection can help further improve the 

classification accuracy compared with the original methods using all features (without 

feature selection). We expect that the use of more advanced feature selection methods in the 

future could further improve the performance of our M2TL model.

In the current study, we adopt a linear kernel to compute the kernel matrix, because it has 

been shown effective for multimodal classification of AD and MCI in our previous works 

(Zhang et al. 2011, 2012b). In future work, we will investigate using other kernel functions 

(e.g., Gaussian kernel) for computing a kernel matrix, which may provide more precise 

similarity measurement of the cross-domain kernel matrix.
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Comparison with the state-of-the-art methods

Recently, many groups have focused on predicting the conversion of MCI to AD, i.e., 

identifying MCI-C and MCI-NC subjects (Cho et al. 2012; Coupé et al. 2012; Cuingnet et 

al. 2011; Davatzikos et al. 2011; Duchesne and Mouiha 2011; Eskildsen et al. 2013; 

Hinrichs et al. 2011; Lehmann et al. 2012; Leung et al. 2010; Misra et al. 2009; Wee et al. 

2013; Westman et al. 2012; Young et al. 2013; Zhang et al. 2012a, b). In Table 3, we 

compare the performances of the proposed M2TL method with those of the state-of-the-art 

methods in terms of accuracy, sensitivity, specificity, and AUC, although some metrics are 

not available for certain studies. It should be noted that different modalities and different 

numbers of samples were used for different studies. Nevertheless, we would like to 

emphasize that, in most of performance measurements, our proposed method achieved better 

performance than the state-of-the-art methods in MCI conversion prediction.

Limitations

The proposed method is based on multimodal data (e.g., MRI, PET, and CSF) and thus 

requires each subject to have the complete dataset. Such a requirement prevents the 

proposed method from utilizing a huge amount of available samples with incomplete data, 

i.e., missing of one or two modalities. For example, in the ADNI database, many subjects 

have incomplete data due to unavailability of certain modalities. Hence, only a small number 

of subjects with complete data were used in our study. It will be our future research work to 

extend our method to deal samples with incomplete data for further performance 

improvement.

In addition, in our current study, the proposed M2TL model mainly focused on sample 

selection and classification rather than feature selection. Therefore, our proposed M2TL 

model is not able to directly identify the relevant biomarkers (i.e., features). In the future 

work, we will also extend our M2TL model to include a feature selection step for 

multimodal biomarkers selection.

Conclusions

In this paper, we proposed a novel method for jointly exploiting data from the auxiliary 

domain (i.e., AD and NC) and unlabeled data to enhance performance in distinguishing 

MCI-C from MCI-NC. By integrating the kernel-based MMD criterion and also a manifold 

regularization function into the sparse least squares classification model, we formulated a 

multimodal manifold-regularized transfer learning method (M2TL) for MCI conversion 

prediction. Also, with the further introduction of group sparsity regularization into the 

objective function, the proposed method can automatically select informative samples for 

classification. In the experiments, we compared the proposed method with those related 

methods in the literature, and presented its efficacy by achieving the maximum classification 

accuracy of 80.1 % and AUC of 0.852.
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Fig. 1. 
The system diagram of our framework for MCI conversion prediction using the proposed 

multimodal manifold-regularized transfer learning (M2TL) method
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Fig. 2. 
Comparison of the ROC curves of the proposed M2TL method and the competing methods 

(DTSVM, LapSVM, and SVM) for MCI-C/MCI-NC classification using multi-modality and 

single-modality, respectively
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Fig. 3. 
The changes of accuracies of M2TL+SS, M2TL, DTSVM+SS and DTSVM with respect to 

the used number of samples from the auxiliary domain
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Fig. 4. 
The changes of accuracies of M2TL+SS, M2TL, LapSVM+SS, and LapSVM with respect 

to the used number of unlabeled samples
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Fig. 5. 
Classification accuracies of M2TL+SS and M2TL methods using a feature selection based 

on t-test statistics (namely M2TL+SS(+t-test) and M2TL(+t-test)), with respect to the 

different number of selected features for the multimodal case. Here, `MRI+PET' denotes the 

selected MRI and PET features. For comparison, the classification accuracies of M2TL+SS 

and M2TL methods without feature selection are also provided by the two dash lines
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Table 1

Comparison of performances of M2TL, DTSVM, LapSVM, and SVM for MCI-C/MCI-NC classification 

using different types of modalities

Modality Method ACC (%) SEN (%) SPE (%) AUC

Multimodal (MRI+CSF+PET) M2TL 77.8 83.9 69.8 0.814

DTSVM 69.4 64.3 73.5 0.736

LapSVM 69.1 74.3 62.1 0.751

SVM 63.8 58.8 67.7 0.683

MRI M2TL 72.1 75.1 68.2 0.768

DTSVM 63.3 59.8 66.0 0.700

LapSVM 65.9 69.6 61.0 0.686

SVM 53.9 47.6 57.7 0.554

CSF M2TL 66.7 74.6 60.5 0.668

DTSVM 66.2 60.3 70.8 0.701

LapSVM 62.1 66.2 56.8 0.660

SVM 60.8 55.2 65.0 0.647

PET M2TL 68.1 71.5 63.7 0.734

DTSVM 67.0 59.6 12.1 0.732

LapSVM 61.6 65.7 56.1 0.661

SVM 58.0 52.1 62.5 0.612

ACC Accuracy, SEN Sensitivity, SPE Specificity
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Table 2

Comparison of performances of M2TL+SS, M2TL, LapSVM+SS, and DTSVM+SS, for MCI-C/MCI-NC 

classification using different types of modalities

Modality Method ACC (%) SEN (%) SPE (%) AUC

Multimodal (MRI+CSF+PET) M2TL+SS 80.1 85.3 73.3 0.852

M2TL 77.8 83.9 69.8 0.814

LapSVM+SS 71.6 81.3 58.9 0.751

DTSVM+SS 71.3 84.0 61.4 0.755

MRI M2TL+SS 72.3 75.3 68.4 0.768

M2TL 72.1 75.1 68.2 0.768

LapSVM+SS 66.0 69.7 61.2 0.684

DTSVM+SS 65.6 66.2 65.3 0.686

CSF M2TL+SS 67.8 75.2 62.9 0.670

M2TL 66.7 74.6 60.5 0.668

LapSVM+SS 63.3 67.5 57.9 0.664

DTSVM+SS 67.0 74.0 61.5 0.705

PET M2TL+SS 71.4 74.5 67.5 0.800

M2TL 68.1 71.5 63.7 0.734

LapSVM+SS 66.3 70.0 61.6 0.701

DTSVM+SS 68.1 72.9 60.8 0.726

ACC Accuracy, SEN Sensitivity, SPE Specificity
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Table 3

Comparison with the state-of-the-art methods for MCI conversion prediction

Method Modalities #Subjects Performances

ACC (%) SEN (%) SPE (%) AUC

Duchesne and Mouiha 2011 MRI 20 MCI-C, 29 MCI-NC 72.3 % 75 % 62 % 0.794

Hinrichs et al. 2011 MRI, FDG-PET, CSF, APOE 119 MCI N/A N/A N/A 0.7911

Davatzikos et al. 2011 MRI, CSF 69 MCI-C, 170 MCI-NC 61.7 % 95 % 38 % 0.734

Zhang et al. 2012a MRI, FDG-PET, CSF 38 MCI-C, 50 MCI-NC 78.4 % 79 % 78 % 0.768

Coupé et al. 2012c MRI 167 MCI-C, 238 MCI-NC 71 % 70 % 72 % N/A

Wee et al. 2013 MRI 89 MCI-C, 111 MCI-NC 75.05 % N/A N/A 0.8426

Westman et al. 2012 MRI, CSF 81 MCI-C, 81 MCI-NC 68.5 % 74.1 % 63 % 0.76

Zhang et al. 2012b MRI, FDG-PET, CSF 43 MCI-C, 48 MCI-NC 73.9 % 68.6 % 73.6 % 0.797

Cho et al. 2012 MRI 72 MCI-C, 131 MCI-NC 71 % 63 % 76 % N/A

Eskildsen et al. 2013 MRI 161 MCI-C, 227 MCI-NC 75.4 % 70.5 % 77.6 % 0.82

Young et al. 2013 MRI, FDG-PET, CSF, APOE 47 MCI-C, 96 MCI-NC 74.1 % 78.7 % 65.6 % 0.795

Proposed method MRI, FDG-PET, CSF 43 MCI-C, 56 MCI-NC 80.1 % 85.3 % 73.3 % 0.852
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