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Abstract
Bone regeneration disorders are a significant problem in patients with type 2 diabetesmellitus.

Bone marrow stromal cells (BMSCs) are recognized as ideal seed cells for tissue engineering

because they can stimulate osteogenesis during bone regeneration. Therefore, the aim of this

study was to investigate the osteogenic potential of BMSCs derived from type 2 diabetic rats

and the pathogenic characteristics of dysfunctional BMSCs that affect osteogenesis. BMSCs

were isolated from normal and high-fat diet+streptozotocin-induced type 2 diabetic rats. Cell

metabolic activity, alkaline phosphatase (ALP) activity, mineralization and osteogenic gene

expression were reduced in the type 2 diabetic rat BMSCs. The expression levels of Wnt sig-

naling genes, such as β-catenin, cyclin D1 and c-myc, were also significantly decreased in the

type 2 diabetic rat BMSCs, but the expression of GSK3β remained unchanged. The derived

BMSCswere cultured on calcium phosphate cement (CPC) scaffolds and placed subcutane-

ously into nudemice for eight weeks; they were detected at a low level in newly formed bone.

The osteogenic potential of the type 2 diabetic rat BMSCs was not impaired by the culture

environment, but it was impaired by inhibition of theWnt signaling pathway, likely due to an

insufficient accumulation of β-catenin rather than because of GSK3β stimulation. Using

BMSCs derived from diabetic subjects could offer an alternative method of regenerating bone

together with the use of supplementary growth factors to stimulate theWnt signaling pathway.

Introduction
Diabetes mellitus (DM) is a pandemic metabolic disease that is characterized by an abnormal
regulation of glucose metabolism and is associated with disorders such as cardiovascular dis-
ease, retinopathy, nephropathy, osteoporosis and impaired bone healing [1,2]. DM results
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from either an absolute deficiency of insulin (type 1 diabetes, T1DM) or from insulin resistance
with/without abnormal insulin secretion (type 2 diabetes, T2DM). Out of all patients with DM,
approximately 90–95% suffer from T2DM [3]. Recently, certain qualitative studies have
reported that T1DM is associated with a decrease in bone mineral density (BMD), whereas in
T2DM patients, BMD either remains unchanged or is slightly increased. However, it is widely
accepted that T2DM carries a high risk of bone fracture and impaired bone healing, and disor-
ders of the skeletal system might seriously lower a patient’s quality of life [4–7]. Although an
increasing number of researches have been conducted on bone disorders caused by T2DM, lit-
tle progress has been made in understanding the detailed pathogenesis of these bone disorders
and/or effective treatment options for them [8,9].

In recent years, bone marrow stromal cells (BMSCs) have been investigated for use in the
acceleration of wound healing following reconstructive and restorative surgeries [10]. BMSCs,
which are a major source of osteoblasts, are a vital component of bone healing and regenera-
tion. Recent studies have revealed that BMSCs can not only accelerate bone regeneration and
healing through their effects on cell metabolism, proliferation and osteogenic differentiation in
vitro but can also promote new bone formation in vivo. Therefore, BMSCs are considered an
ideal cell source for tissue engineering [11,12]. Several studies have suggested that many types
of cells, including epidermal stem cells and bone progenitor stem cells, might impair differenti-
ation and function under diabetic conditions [13–15]. BMSCs have been autologously trans-
planted to treat diabetes mellitus by successfully restoring injured organs [16]; however, few
studies have reported the use of BMSCs for bone repair in diabetes mellitus [17]. In a previous
study, we found that the osteogenic differentiation of BMSCs was impaired in type 1 diabetics
[18]. However, whether the osteogenic ability of BMSCs from type 1 diabetics is altered and
what factors might alter this ability at the cellular and molecular levels are unknown.

The Wnt/β-catenin signaling pathway plays a central role in regulating cell growth and osteo-
genesis [19,20]. This pathway is stimulated by the accumulation of β-catenin and the inactivation
of glycogen synthase kinase 3β (GSK3β) [21]. After translocation into the nucleus, β-catenin reg-
ulates the expression of runt-related transcription factor 2 (Runx2) and osterix (OSX), thereby
strongly stimulating osteogenesis and new bone formation [22,23]. In addition, cyclin D1, which
is a downstream gene target of β-catenin, is a main factor in the regulation of metabolism, prolif-
eration and differentiation of cells [22,24]. Wnt signaling pathway activation promotes bone
regeneration [25,26]. Zhong et al. investigated the expression levels of β-catenin and cyclin D1 in
epidermal stem cells in diabetic rats. Their findings suggested that the inhibition ofWnt signaling
might be an important mechanism behind delayed wound healing in individuals with DM [14].
However, whether the disruption of the Wnt/β-catenin pathway can alter the osteogenic abilities
of BMSCs derived from type 2 diabetic rats has not yet been determined.

In the current study, the objective was to investigate and compare the metabolism, osteo-
genic differentiation and new bone formation abilities of BMSCs derived from type 2 diabetic
rats with those derived from normal rats. The study also determined whether there were major
changes in the Wnt signaling pathway in BMSCs derived from type 2 diabetic rats. A system-
atic evaluation of the osteogenic abilities of type 2 diabetic rat BMSCs could provide a basis for
the pathogenesis underlying bone disorders in individuals with T2DM and a possible method
of cell therapy to correct the associated bone defects.

Materials and Methods

Animal Care and Induction of a Type 2 Diabetic Rat Model
All animal experiments were approved by the Animal Research Committee of the Ninth Peo-
ple’s Hospital affiliated with the Shanghai Jiao Tong University School of Medicine. Twenty
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male Sprague Dawley rats (age: 8 weeks; body weight: 200–250 g) were housed in standard
polypropylene cages (three rats/cage) under a 12-hour/12-hour light/dark cycle and an ambi-
ent temperature of 22–25°C. The rats were randomly divided into two groups: a normal group
and a diabetic group. Type 2 diabetes was induced according to the method of Zhang et al. and
Liu et al. [27,28]. The rats in the normal group were fed a regular chow diet consisting of a total
kcal value of 20 kJ/kg (5% fat, 52% carbohydrate, 20% protein), whereas the rats in the diabetic
group were placed on a high-fat diet with a total kcal value of 40 kJ/kg (20% fat, 45% carbohy-
drate, 22% protein). Both groups were maintained on their diets for eight weeks. During the
fourth week, the rats in the diabetic group were treated with streptozotocin (STZ; Sigma-
Aldrich, St Louis, MO). A single low dose of STZ (30 mg/kg, dissolved in 0.1 M sodium citrate
buffer at pH 4.4) was injected into each rat intraperitoneally. After one week, blood glucose
was tested using a blood glucose meter (Accu-Chek Performa; Roche Diagnostics, USA). Rats
with blood glucose levels lower than 16.7 mmol/l were injected with STZ (30 mg/kg) a second
time. The rats in the normal group were injected with a vehicle citrate buffer (0.25 ml/kg) at
the same time. The above-described diets were maintained post-injection. At four weeks post
injection, all rats with blood glucose concentrations greater than 16.7 mmol/l were considered
to be diabetic and were selected for further research. The blood glucose concentrations and
body weights of the rats were measured every week before and after injection. Blood insulin
concentrations were obtained on the same day of injection and again during the fourth week
after injection using an Iodine 125I Insulin Radioimmunoassay Kit.

Isolation and Culture of Primary BMSCs from Normal and Diabetic Rats
The rats in the study were euthanized by cervical dislocation during the fourth week after injec-
tion. Their BMSCs were obtained by flushing the bone marrow from their tibias and femur
bones using low-glucose Dulbecco’s modified Eagle’s medium (DMEM; Gibco BRL, Grand
Island, USA) containing 10% fetal bovine serum (FBS; Gibco BRL, USA), 100 U/ml streptomy-
cin, 100 U/ml penicillin and 200 U/ml heparin (Sigma-Aldrich, St Louis, MO), according to
previously described procedures [29,30]. The primary cells were cultured in low-glucose
DMEM supplemented with 10% FBS, 100 U/ml streptomycin and 100 U/ml penicillin at 37°C
in a 5% CO2 atmosphere. Non-adherent cells were discarded via a change of medium after 24
hours, and the medium was replaced every three days until the cells reached 80–90% conflu-
ence (S1 Fig). A Z2 Coulter particle count and size analyzer (Beckman Coulter, USA) was used
to evaluate the quantity of cells. The quantities of both normal and diabetic BMSCs were
approximately 1.2–1.5×107 cells/dish. Next, 0.25% trypsin (EDTA) was used for cell detach-
ment, and the BMSCs were subcultured at a density of 1×105 cells/ml. Cells at passage 2 or 3
were used for the subsequent experiments. Osteogenic medium (DMEM, 10% FBS, 10 mM
dexamethasone, 50 μg/ml L-2-ascorbic acid and 10 mM glycerophosphate) was used to induce
the osteogenic differentiation of BMSCs.

Cell Metabolic Activity Analysis
As described in a previous study, an MTT assay was performed to investigate the metabolic
activities of BMSCs from normal and type 2 diabetic rats at 1, 3, 5 and 7 days after culture in
low-glucose DMEM (each group, n = 3) [31]. In brief, MTT solution (5 mg/ml) was added to
each well in a 96-well plate, in which the cells had been plated at a density of 5×103 cells/well.
After incubation for four hours, the medium was extracted, and dimethyl sulfoxide (DMSO)
was applied to dissolve the resultant formazan crystals. The absorbance was measured at 490
nm using an ELX Ultra Microplate Reader (Bio-Tek, VT, USA).
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Alkaline Phosphatase Staining and Activity Assay
To evaluate alkaline phosphatase (ALP) staining and activity, BMSCs were cultured in osteo-
genic medium for 7 days and 14 days. For ALP staining, the cells were treated with BCIP/NBT
solution (Beyotime, China) in a dark environment after fixation for 15 min at 4°C. Regions
that were positive for ALP staining displayed a purple color. The ALP activity was determined
using p-nitrophenyl phosphate (Sigma-Aldrich, USA), as described in a previous study, while
the cells were suspended in lysis buffer containing 2% NP-40 [32]. The absorbance was mea-
sured at 405 nm. The total protein content was determined using a Bio-Rad protein assay kit
(Bio-Rad, USA) and measuring the absorbance at 630 nm and calculating the concentration
according to a standard BSA (Sigma-Aldrich, USA) curve. ALP activity was indicated by the
OD value at 405 nm, which was normalized to the total cellular protein. All experiments were
performed in triplicate.

Alizarin Red Staining and Mineralization Assay
BMSCs were cultured in osteogenic medium for 21 days before being subjected to alizarin red
staining and calcium deposition assays. The cells were fixed with 95% ethanol and stained with
0.1% alizarin red S (Sigma-Aldrich, USA) for 30 minutes [33]. To quantify the mineralization,
the stained cells were incubated with 100 mM cetylpyridinium chloride (Sigma-Aldrich, USA)
for 1 h to release the calcium-bound stains into solution [34]. The absorbance of alizarin red S
was determined at 590 nm. The results of the calcium deposition quantity assay were normal-
ized and calculated as OD values per mg of total protein (n = 3 for each group).

RNA Extraction and Real-Time Quantitative PCR Analysis
BMSCs were cultured for 7 days in osteogenic medium to detect gene expression related to
osteogenesis or in low-glucose DMEM to detect gene expression related to the Wnt signaling
pathway; total RNA was extracted using TRIzol reagent (Invitrogen, Carlsbad, USA). cDNA
was acquired using a PrimeScript 1st strand cDNA synthesis kit (TaKaRa, Shiga, Japan). Four
osteogenesis-related genes (alkaline phosphatase (ALP), osteocalcin (OCN), OSX, and Runx2)
and four Wnt signaling pathway-related genes (β-catenin, GSK3β, cyclin D1 and myelocyto-
matosis oncogene (c-myc)) were assessed using a Bio-Rad real-time PCR system (Bio-Rad,
USA). The relative expression levels of the genes were normalized to GAPDH, a housekeeping
gene, according to the ΔΔCt method. The primers corresponding to the analyzed genes are
listed in Table 1. All analyses were carried out in triplicate.

Expression Analysis of Proteins Related to Osteogenesis andWnt
Signaling
Total protein was extracted from BMSCs using a mammalian cell extraction kit according to
the manufacturer’s instructions (Biovision, Mountain View, CA). Aliquots of twenty micro-
grams of protein were separated via SDS-polyacrylamide gel electrophoresis and transferred to
nitrocellulose membranes. The membranes were with Tris-buffered saline containing 5% skim
milk and 0.05% Tween-20 for 2 hours at 37°C and then incubated at 4°C overnight with 1:1000
dilutions of the following primary antibodies: anti-β-catenin, anti-phosphorylated β-catenin
(p-β-catenin), anti-GSK3β, anti-phosphorylated GSK3β (p-GSK3β), anti-cyclin D1, anti-c-
myc, and anti-Runx2. In the case of the anti-GAPDH antibody, a 1:10,000 dilution was used.
All of the antibodies were obtained from Cell Signaling Technology, USA. To remove unbound
antibodies, the membranes were rinsed three times with Tris-buffered saline for 10 minutes
each before being incubated in Tris-buffered saline containing a secondary antibody at a
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1:5000 dilution for 1 hour at room temperature. Finally, a chemiluminescence reagent
(Thermo, Waltham, MA) was applied to the membranes. The blots were exposed to Kodak X-
ray film, and the grayscale values of each protein band were determined using NIH ImageJ
1.34. All of the results were normalized against GAPDH protein levels. The assays were con-
ducted in triplicate.

Surgical Implantation of Scaffolds with BMSCs
Porous calcium phosphate cement scaffolds (CPCs; Rebone, China) that were 4 mm in diame-
ter and 2 mm in height were used in this study. The scaffolds were manufactured to have aver-
age pore diameters of 400 μm and 70% porosity. A 20-μl aliquot of low-glucose DMEM
containing either normal or diabetic rat BMSCs was placed on each CPC scaffold at a density
of 2×107 cells/ml. The scaffolds were subcutaneously implanted into the backs of eight athymic
nude mice obtained from the Ninth People’s Hospital Animal Center (Shanghai, China); each
implant was placed near the center of the spine. The implants were placed vertically at 10-mm
intervals. Each mouse received three different implants randomly placed in the back area from
the following groups: the CPC scaffold group (n = 8), the normal BMSCs/CPC complex group
(n = 8) or the diabetic BMSCs/CPC complex group (n = 8).

Histological and Immunohistochemical Analyses
Histological and immunohistochemical analyses were performed on samples taken from the
scaffold-implanted mice at 8 weeks post-implantation. Eight mice were euthanized by cervical
dislocation, and their implants were extracted, fixed, decalcified and embedded with paraffin.
The samples were then cut into 5-μm-thick sections and stained with hematoxylin and eosin
(HE staining). Images were captured using a light microscope (Olympus, Japan). Areas exhibit-
ing red staining with non-specific eosin staining around scaffold pore borders represented
newly developed bone and/or osteoid. The areas were analyzed using an automated image

Table 1. Primer sequences for real-time polymerase chain reaction.

Gene Primer sequence (F: forward; R: reverse) Accession number

ALP F: CACGTTGACTGTGGTTACTGCTGA NM_013059.1

R: CCTTGTAACCAGGCCCGTTG

OCN F: AAAGCCCAGCGACTCT NM_013414.1

R: CTAAACGGTGGTGCCATAGAT

Osterix F: CTATGCCAATGACTACCCACCC NM_001037632.1

R: CTGCCCACCACCTAACCAA

Runx2 F: ACAACCACAGAACCACAAG NM_001278483.1

R: TCTCGGTGGCTGGTAGTGA

β-catenin F: AAGGTGCTGTCTGTCTGCTCTA NM_053357.2

R: CTTCCATCCCTTCCTGCTTAGT

GSK-3β F: ACCATCCTTATCCCTCCTCAC NM_032080.1

R: TTATTGGTCTGTCCACGGTCT

Cyclin D1 F: GCGTACCCTGACACCAATCT NM_171992.4

R: GCTCCAGAGACAAGAAACGG

c-myc F: AAGAACAAGATGATGAGGAAG NM_012603.2

R: GTGCTGGTGAGTAGAGAC

GAPDH F: GGCACAGTCAAGGCTGAGAATG NM_017008.4

R: ATGGTGGTGAAGACGCCAGTA

doi:10.1371/journal.pone.0136390.t001
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analysis system (Image Pro 7.0; Media Cybernetics, USA). Three parallel sections were ran-
domly selected from the serial sections of each sample and were measured to calculate the per-
centages of red-stained regions (new bone and osteoid area). These percentages were also
calculated for the entire implant. New bone formation was quantified based on a ratio of the
red-stained region to the entire implant.

Immunohistochemical analysis was conducted according to a previous study [18]. In brief,
paraffin tissue slides were de-waxed, rehydrated and immersed in H2O2 for peroxidase quench-
ing. Next, after blocking, the slides were incubated with a primary antibody against osteocalcin
(OCN) (Santa Cruz Biotechnology, CA, USA) at 4°C overnight. Finally, an HRP-conjugated
secondary antibody was added to the immersed slides, which were then maintained at room
temperature for approximately one hour. Next, the color-developing reagent from a diamino-
benzidine kit (dAB; Beyotime, China) was applied, and the slides were counterstained with
hematoxylin. Photomicrographs were acquired via a light microscope (Olympus, Japan).

Statistical Analysis
The data are expressed as the means ± standard deviation. Statistical analyses of the results
were performed using Student’s independent samples t-test with SPSS v18.0 software (SPSS,
Chicago, IL, USA). Differences were considered statistically significant at p<0.05.

Results

Experimental Rat Model of Type 2 Diabetes Mellitus
The diabetic group of rats, which were treated with a four-week high-fat diet and multiple
injections of low-dose STZ to induce diabetes, exhibited characteristic symptoms of diabetes
mellitus, i.e., increased intake of food, polyuria, and polydipsia. The body weights of the dia-
betic group rats at four weeks before STZ injection were slightly higher than those of the nor-
mal group with no significant difference, and there were similar blood glucose levels between
the groups. After STZ injection, the blood glucose levels of the diabetic group were significantly
higher than those of the normal group. The body weights of the two groups were similar (Fig
1A and 1B, S1 Table). Compared with the normal group, the diabetic group exhibited signifi-
cantly upregulated serum insulin concentrations prior to injection and significantly decreased
serum insulin concentrations at four weeks post-injection (Fig 1C, S1 Table, p<0.05).

Cell Metabolic Activity
The results from the cell metabolic activity analysis are shown in Fig 1D. On day 1, no signifi-
cant difference was observed between the two groups. However, the metabolic activity levels of
BMSCs from the type 2 diabetic rats were significantly decreased compared with those from
the normal rats at days 3, 5, and 7 in low-glucose DMEM (p<0.05, S2 Table).

ALP Activity and Calcium Deposition
After 7 and 14 days in osteogenic medium, BMSCs from the type 2 diabetic rats displayed less
pronounced ALP-positive areas than BMSCs from the normal rats (Fig 2A and 2B). Similarly,
the quantification examination results showed that ALP activity in the diabetic rat BMSCs was
significantly diminished by 38.3% at day 7 and by 67.5% at day 14 compared with that in nor-
mal rat BMSCs (p<0.05, Fig 2C). Furthermore, the results from alizarin red S staining and the
quantitative assessment of calcium deposition revealed significantly reduced calcium deposi-
tion in the type 2 diabetic rat BMSCs compared with that in the normal rat BMSCs (p<0.05;
Fig 2D and 2E; S2 Table).
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Expression Analysis of mRNAs Related to Osteogenesis andWnt
Signaling
Real-time quantitative PCR analysis of markers for osteogenic differentiation (ALP, OCN,
OSX and Runx2) was performed using BMSCs that were cultured in osteogenic medium for 7
days (Fig 3A, S3 Table). An analysis of markers related to the Wnt signaling pathway (β-cate-
nin, GSK3β, cyclin D1 and c-myc) was also performed using BMSCs that were incubated in
low-glucose DMEM for 7 days (Fig 3B, S3 Table). Compared with the control (BMSCs from
normal rats), the mRNA expression levels of ALP, OCN, OSX and Runx2 were significantly
(p<0.01) decreased by 64.6%, 50.4%, 38.4% and 62.7%, respectively, in BMSCs derived from
diabetic rats. Furthermore, the expression levels of β-catenin, cyclin D1 and c-myc were also
significantly reduced in the type 2 diabetic rat BMSCs compared with the normal rat BMSCs
(p<0.01), but the expression of GSK3β was unchanged.

Expression Analysis of Proteins Related to Osteogenesis andWnt
Signaling
To evaluate the expression levels of proteins related to osteogenesis and Wnt signaling, BMSCs
from both groups were cultured in low-glucose DMEM for seven days. The results are illus-
trated in Fig 4. A considerable decrease was observed in the protein expression levels of Runx2,
β-catenin, p-β-catenin, cyclin D1 and c-myc in BMSCs from type 2 diabetic rats compared
with BMSCs from normal rats (p<0.05, S3 Table). Nevertheless, the level of GSK3β protein

Fig 1. Changes in blood glucose levels, body weights and insulin concentrations in type 2 diabetic
and normal rats during the experimental period and cell metabolic activity assay results. (A) Blood
glucose was measured each week before and after injection (8 weeks). (B) Bodyweight was measured on the
same day of every week (8 weeks). (C) Insulin concentration was measured at the four-week point prior to
injection and again four weeks after injection (n = 10, *p<0.05, **p<0.01 versus normal rats). (D) Metabolic
activity levels of BSMCs derived from type 2 diabetic and normal rats were analyzed on days 1, 3, 5, and 7
after culture in low-glucose DMEM via an MTT assay (n = 3, *p<0.05, **p<0.01 versus normal BMSCs).

doi:10.1371/journal.pone.0136390.g001
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expression in the diabetic rat BMSCs was slightly higher than that in the normal rat BMSCs,
although the difference was not significant (p>0.05, S3 Table), and the level of p-GSK3β in the
diabetic group was reduced compared with that in the normal group (p<0.05, S3 Table).

Fig 2. ALP activity andmineralization assays. (A, B) ALP staining of BMSCs derived from type 2 diabetic
and normal rats on day 7 and day 14 of culture in osteogenic medium (lower images ×50). (C) ALP activity in
BMSCs derived from type 2 diabetic and normal rats measured via a pNPP assay on day 7 and day 14. (D, E)
Alizarin red S staining and quantitative mineralization assay of BMSCs derived from type 2 diabetic and
normal rats on day 21 of culture in osteogenic medium (lower image of D ×50) (n = 3 for each group, *p<0.05,
**p<0.01 versus normal BMSCs).

doi:10.1371/journal.pone.0136390.g002

Fig 3. Gene expression levels of osteogenic differentiation andWnt signaling markers. (A) Expression
of the osteogenic differentiation-related genes ALP, OCN, OSX and Runx2 in BMSCs derived from type 2
diabetic and normal rats assayed at day 7 by real-time PCR. (B) TheWnt signaling markers β-catenin,
GSK3β, cyclin D1 and c-myc measured at day 7 by real-time PCR (n = 3 for each group, **p<0.01 versus
normal BMSCs).

doi:10.1371/journal.pone.0136390.g003
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Osteogenic Potential of Type 2 Diabetic and Normal Rat BMSCs In Vivo
BMSCs from both groups were cultured on CPC scaffolds and implanted into nude mice to
further confirm the decreased osteogenic potential of type 2 diabetic rat BMSCs in vitro. At the
eighth week after implantation, less new bone and osteoid formation was observed in the dia-
betic rat BMSCs/CPC complex group than in the normal rat BMSCs/CPC complex group (Fig
5C–5F). No newly formed bone was detected in the CPC scaffold group (Fig 5A and 5B). His-
tomorphometric analysis showed that the percentage of new bone and osteoid area in the dia-
betic rat BMSCs/CPC complex group (8.27±0.30%) was significantly less (65% of the normal
value; p<0.05) than that in the normal rat BMSCs/CPC complex group (12.73±0.41%) (Fig
5M, S4 Table). In addition, immunohistochemical staining of OCN in the diabetic group was
less intense compared with that in the normal group (Fig 5G–5L). These in vivo results further
supported our in vitro data demonstrating that type 2 diabetes mellitus impairs the osteogenic
potential of BMSCs.

Discussion
Diabetes mellitus is a metabolic disease that can result in a series of disorders of the skeletal sys-
tem. Even with normal BMD, T2DM patients still face a high risk of bone fractures and
impaired bone healing. Recent researches have shown that these disorders primarily result
from impaired bone formation rather than from bone resorption [2,35,36]. Previous studies
have concentrated on the abnormal osteogenesis of skeletal tissues in DM and on the depressed
proliferation, osteogenic differentiation and new bone formation ability of osteoblast cells in
T1DM [5,37], but not on osteoblast cells in T2DM. Furthermore, BMSCs are considered an
ideal cell for bone restoration in tissue engineering because they are a major component of
bone formation and regeneration. In a previous study, we investigated BMSC osteogenesis in
T1DM [18]. However, research on whether BMSC osteogenic ability in T2DM changes in a
manner similar to that in T1DM has not yet been reported, and the related mechanisms of
such changes remain unclear. In the current study, we confirmed that the osteogenic potential

Fig 4. Western blot analysis of Wnt signaling pathway components. (A) Western blotting of β-catenin, p-
β-catenin, GSK3β, p-GSK3β, cyclin D1, c-myc and Runx2. One representative image from three
independently conducted assays is shown. (B) Protein levels of β-catenin, p-β-catenin, GSK3β, p-GSK3β,
cyclin D1, c-myc and Runx2 quantified by densitometry (n = 3, *p<0.05, **p<0.01 versus normal BMSCs).

doi:10.1371/journal.pone.0136390.g004
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of BMSCs derived from type 2 diabetic rats was reduced relative to those derived from normal
rats both in vitro and in vivo. Furthermore, we demonstrated that inhibition of the Wnt signal-
ing pathway might also contribute to depressed osteogenic differentiation and impairment of
new bone formation in BMSCs from type 2 diabetics.

A high-fat diet and multiple low doses of streptozotocin were used to develop an improved
and more stable type 2 diabetic rat model from which to acquire BMSCs. According to many
previous studies, feeding rats a high-fat diet can promote the development of insulin resistance
[27,38]. Injections of high doses of STZ have been shown to critically damage pancreatic β-cell
functioning, leading to insulin secretion, which is considered to resemble T1DM [38]. Recently,
multiple low-dose injections of STZ have been reported to induce a gradual impairment of
insulin secretion, which is similar to the natural progression of T2DM in humans [27,28].
Therefore, in the current study, a high-fat diet and multiple low-dose injections of STZ (30
mg/kg injected twice at weekly intervals) were adopted to induce type 2 diabetes in rats accord-
ing to the methods of Zhang et al. and Srinivasan et al. [27,39]. Hyperglycemia and insulin
resistance are the key symptoms of type 2 diabetes mellitus. The high blood glucose levels and
low insulin concentrations of the induced rats are consistent with the features of T2DM. Thus,
we successfully developed a stable type 2 diabetic rat model and were able to evaluate the osteo-
genic potential of BMSCs derived from these rats.

In the current study, the osteogenic potential of type 2 diabetic rat BMSCs in vitro was
assayed based on cell metabolic activity, ALP activity and calcium deposition. The results
showed that the cell metabolic activity in diabetic rat BMSCs significantly declined compared
with that in normal rat BMSCs. The cell metabolic activity could to some extent represent the
cell proliferation rate. Therefore, the results suggested that the metabolic activity and prolifera-
tion rate of BMSCs were depressed in the diabetic environment, an observation that is in

Fig 5. Histological and immunohistochemical findings at eight weeks. The red area around the pore of
the scaffold represents new bone and osteoid area. Newly formed bone and osteoid was found in the type 2
diabetic rat BMSCs/CPC (E, F) and the normal rat BMSCs/CPC groups (C, D), but no new bone formation
was found in the CPC scaffold group (A, B). NB: new bone and osteoid. Immunohistochemical staining of the
OCN protein in the CPC scaffold group (G, H), type 2 diabetic rat BMSCs/CPC group (K, L), and normal rat
BMSCs/CPC group (I, J). Percentages of new bone and osteoid area in the type 2 diabetic rat BMSCs/CPC
and normal rat BMSCs/CPC groups were assessed via histomorphometric analysis (M) (A, C, E, G, I, K ×40;
B, D, F, H, J, L ×100; n = 8, **p<0.01 versus normal rat BMSCs/CPC group).

doi:10.1371/journal.pone.0136390.g005
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agreement with previous studies [18,40]. The decreased ALP activity and reduced calcium
deposition also demonstrated the decreased osteogenic potential of diabetic rat BMSCs in
vitro. The decreased osteogenic ability of the type 2 diabetic rat BMSCs was similar to that
reported in our previous study on BMSCs in T1DM [18], which might explain the relationship
between DM and impaired bone regeneration. The osteogenic abilities of BMSCs derived from
type 2 diabetic and normal rats were also compared at the mRNA level. Four osteogenic mark-
ers, ALP, OCN, OSX and Runx2, were selected for study. ALP is adjusted in response to phos-
phate metabolism and acts as a marker for early osteogenic cell differentiation [41]. OCN,
which is a product of the deposition and mineralization of osteoblasts, is considered a marker
for later stages of osteogenic differentiation [42]. OSX is recognized as a key gene in osteogenic
maturation and is associated with the Wnt signaling pathway [43]. Runx2, an osteoblast tran-
scription activator, is necessary for osteogenic differentiation. In the early stages of osteogene-
sis, Runx2 regulates the expression of osteogenic genes and is also expressed downstream of
the Wnt signaling pathway [37,44]. The results of our real-time PCR analysis indicated that the
mRNA expression levels of all of the evaluated osteogenic genes were decreased in BMSCs
from type 2 diabetic rats compared with those from normal rats. The low expression levels of
ALP, OCN, OSX and Runx2 suggested that the osteogenic potential of type 2 diabetic rat
BMSCs was severely impaired. These results further suggested that BMSCs in T2DM patients
could serve as potential targets for the treatment of bone disorders and that further study to
improve their osteogenic ability is warranted.

Histological and immunohistochemical analyses were conducted to evaluate new bone and
osteoid formation by CPC scaffold-associated type 2 diabetic rat BMSCs. A well-defined model
of ectopic bone formation was used in the current study. BMSCs from diabetic rats were cul-
tured on CPC scaffolds and implanted in vivo to further reveal their osteogenic potential,
which was demonstrated to be impaired in vitro. In the nude mouse model that was employed,
osteogenic differentiation and new bone and osteoid formation were detected in both the dia-
betic and normal BMSC groups. The overall area of new bone and osteoid in the diabetic group
was smaller than that in the normal group (i.e., reduced by 65%) according to histological anal-
ysis. Additionally, immunohistochemical analysis indicated that diabetic rat BMSCs showed
impaired osteogenic differentiation with low expression of the OCN protein. The results veri-
fied that the osteogenic capability of type 2 diabetic rat BMSCs was impaired both in vitro and
in vivo, which is similar to our previous findings on type 1 diabetic rat BMSCs [18]. Because
new bone was detected in the diabetic group, diabetic rat BMSCs might offer a possible source
of stem cells for the treatment of diabetic bone disorders, although this prospect requires fur-
ther investigation.

We cultured type 2 diabetic rat BMSCs in low-glucose DMEM to understand the mecha-
nism driving their osteogenic potential. Studies have found that hyperglycemia plays an impor-
tant role in bone disorders in diabetes mellitus [45]. Therefore, we selected low-glucose
DMEM as a culture medium to avoid the effects caused by high-glucose DMEM on cell prolif-
eration and differentiation. The results indicate that in a low-glucose culture environment, the
impairments observed in cell proliferation and osteogenic differentiation in diabetic rat BMSCs
might be permanent and not merely related to hyperglycemia. These findings are in agreement
with those of our previous study [18].

TheWnt signaling pathway, which is a crucial signaling pathway in cell maturity and osteo-
genesis, was evaluated in the current study. Recent studies have indicated that it is an important
signal transduction pathway in regulating cell growth, differentiation and tissue morphogenesis
[20,22,23,46]. Genes related toWnt signaling, including β-catenin, GSK3β, cyclin D1 and c-myc,
were measured at both the mRNA and protein levels. β-catenin is a key factor of Wnt signaling
and possesses multiple functions in the regulation of cell proliferation and differentiation. An
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accumulation of β-catenin will activate theWnt signaling pathway [20,22,47]. GSK3β is com-
monly viewed as an inhibitor of Wnt signaling [20,25]. The activation of GSK3β leads to the deg-
radation of β-catenin, which reduces the expression of β-catenin [26,48]. Moreover, GSK3β is a
major factor in insulin resistance via its role in the regulation of the insulin signaling pathway
[49,50]. Cyclin D1 and c-myc are the significant target genes of theWnt signaling pathway and
cause alterations to cell cycle, cell proliferation and cell survival [24,51]. Wnt signaling also regu-
lates the expression of Runx2, an osteogenic transcription factor. The activation of theWnt sig-
naling pathway strongly accelerates osteogenesis [22,52]. In diabetic rats, Wnt signaling plays a
central role in diabetic wound healing. It has been reported that the survival time for exogenous
bone mesenchymal stem cells in diabetic wounds is short, which might be partially due to dys-
functional Wnt signaling [53]. In addition, the expression levels of β-catenin and GSK3β are sig-
nificantly reduced in the femurs and tibias of type 1 diabetic rats [37]. Therefore, alterations in
theWnt signaling pathway might impact the osteogenic potential of type 2 diabetic rat BMSCs.
In the current study, the major changes inWnt signaling in type 2 diabetic rat BMSCs were
decreased mRNA and protein expression levels of β-catenin, cyclin D1, c-myc and Runx2. The
level of p-β-catenin was also significantly diminished, perhaps due to the low expression of β-
catenin, leading to decreased phosphorylation of β-catenin. The decreased expression levels of
cyclin D1 and c-myc might have affected the proliferation ability of the diabetic rat BMSCs.
However, the expression of GSK3β was the same between BMSCs derived from diabetic versus
normal rats, while the expression of p-GSK3β was downregulated in diabetic rat BMSCs. Previ-
ous studies have suggested that abnormal activation of GSK3β and decreased levels of p-GSK3β
can depress glycogen synthesis and inhibit the insulin signaling pathway, which contributes to in
the induction of insulin resistance in diabetes mellitus [49,50]. Despite the lack of changes in the
expression level of GSK3β observed in the present study, the result of p-GSK3β expression level
indicated that the activity of GSK3β was enhanced while the phosphorylation of GSK3β was
decreased in BMSCs of type 2 diabetic rats, which might reflect the reported involvement of
GSK3β in insulin resistance. These results suggested that the proliferation ability and osteogenic
potential of type 2 diabetic rat BMSCs were impaired following the inhibition of Wnt signaling,
likely because of an insufficient accumulation of β-catenin rather than as a response to GSK3β
activation.

In conclusion, decreased osteogenic potential was observed in BMSCs derived from type 2 dia-
betic rats, which was not merely due to the cell culture environment. Their impaired osteogenic
potential might be partially related to the inhibition of Wnt signaling as a result of insufficient β-
catenin accumulation rather in response to GSK3β stimulation. These results may enhance our
understanding of the bone disorders that are related to T2DM, and a key aspect of bone disorder
treatment could be improving the osteogenic ability of BMSCs in T2DM patients. Moreover,
BMSCs from individuals with T2DMmay still offer an alternative for bone regeneration in tan-
dem with the supplementation of certain growth factors to activate theWnt signaling pathway.
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