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Abstract

Different from physiological axon growth during development, a major limiting factor for 

successful axon regeneration is the poor intrinsic regenerative capacity in mature neurons in the 

adult mammalian central nervous system (CNS). Recent studies identified several molecular 

pathways, including PTEN/mTOR, Jak/STAT, DLK/JNK, providing important probes in 

investigating the mechanisms by which the regenerative ability is regulated. This review will 

summarize these recent findings and speculate their implications.

Introduction

Similar to axon growth during development, axon regeneration requires the axonal extension 

guided by growth cone structures. This led to the hypothesis that similar principles and 

molecular players might operate these different processes. Ample evidence suggests that 

during development the extrinsic environmental cues largely determine the projection of 

axon growth, although the intrinsic states of responding neurons also modulate axonal 

responses (1). For axon regeneration, dissecting the relative contributions of such extrinsic 

and intrinsic mechanisms has been a major focus in the past decades (2–8). Early studies 

showed that reconstituting a permissive environment by transplanting peripheral nerve grafts 

allows the regrowth of some injured axons in the adult CNS, even though their numbers are 

limited (9, 10). These observations have been further supported by elegant in vivo imaging-

based analysis studies (11**, 12). Canty et al employed a focused laser method to transect 

individual axons, with minimal glial scar formation, in the gray matter of the adult mouse 

brain. Ylera et al also demonstrated that central sensory axon lesion produced by two-photon 

laser in the spinal cord has minimal scar formation (12). Again, while some types of axons 

in the brain could regenerate, the majority of injured axons fail to regrow even when 

visualized for periods of up to a year (11**). These observations further substantiate the 

notion that the majority of mature neurons in the adult CNS have diminished intrinsic 

growth ability.

Corresponding author: Zhigang He (zhigang.he@childrens.harvard.edu). 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Curr Opin Neurobiol. Author manuscript; available in PMC 2015 August 23.

Published in final edited form as:
Curr Opin Neurobiol. 2014 August ; 27: 135–142. doi:10.1016/j.conb.2014.03.007.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For a successful regeneration to occur, injured axonal terminals need to re-seal quickly and 

reform growth cone-like structure which will explore the extracellular environment, 

determine the direction of growth, and then guide the extension of the axon to the direction 

of their appropriate targets (13–15). Presumably, the ability of injured axons to regenerate 

their growth cone structures and extend in injury-disturbed environments should represent 

the rate-limiting steps of axon regeneration. Recent genetic studies indicated that 

manipulating several signaling pathways could allow certain populations of mature CNS 

neurons to mount regenerative growth after injury and provide valuable molecular probes to 

explore the inner mechanisms of axon regeneration control in mammalian CNS neurons.

PTEN/mTOR: a general pathway of regulating axon regeneration?

All cell types possess certain molecular mechanisms that prevent cellular overgrowth, and 

many of these pathways have been implicated as tumor suppressors. In an effort to assess 

whether these growth suppressors play a role in limiting the intrinsic axon regenerative 

ability, Park et al used an optic nerve injury model and discovered robust long-distance axon 

regenerations in adult mice with conditional deletion of the phosphatase and tensin homolog 

(PTEN) gene in retinal ganglion cells (RGCs) (16). Since no manipulation was made in the 

lesion site, the observed regeneration phenotypes are likely due to the altered intrinsic 

regenerative ability in the RGCs (16).

The PTEN protein is a phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase. It contains a 

tensin-like domain and a catalytic domain similar to that of the dual specificity protein 

tyrosine phosphatases. Unlike most of the protein tyrosine phosphatases, this protein 

preferentially dephosphorylates phosphoinositide substrates. It negatively regulates 

intracellular levels of phosphatidylinositol-3,4,5-trisphosphate and the activity of the 

Akt/PKB signaling pathway (17–19). Among multiple down-stream targets in this pathway, 

mTOR appears to be a critical effector, because administration of rapamycin, an mTOR 

inhibitor, abolishes the regeneration effect of PTEN deletion (16). Further, the mTOR 

activation by genetic deletion of TSC1, a specific negative regulator of the mTOR, also 

promotes axon regeneration (16).

In addition to RGCs, the activation of mTOR activity has been shown to promote the 

regenerative growth of other types of CNS axons. For example, the adult mice with PTEN 

inhibition, by either genetic deletion (20) or shRNA-mediated inhibition (21*), in the 

cortical neurons from the neonatal ages, showed robust regrowth of injured corticospinal 

tract axons, which are known to be refractory to regeneration (22–24). Similarly, over-

expression of constitutively active forms of the kinase Akt and the GTPase Ras homolog 

enriched in brain (Rheb) induces the regrowth of axons from dopaminergic neurons to their 

target, the striatum (25). Moreover, a recent study showed that newly differentiated neurons 

from transplanted neuronal stem cells are able to extend their axons from the spinal cord 

lesion sites to both sides of host tissues and such axonal growth could be partially blocked 

by an mTOR inhibitor (*26). However, it remains unknown whether the manipulation of the 

PTEN/Akt/mTOR pathway could promote the regeneration of all types of axons in the adult 

CNS.
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In contrast to the adult mammalian CNS, injured axons in the peripheral nervous system 

(PNS) are able to regenerate spontaneously. Activating PI3K or inhibiting PTEN in dorsal 

root ganglion (DRG) neurons increases the neurite growth (27–32). However, inhibiting 

mTOR activity by rapamycin fails to block the neurite growth of DRG neurons (28, *31), 

suggesting that mTOR-independent mechanisms mediate the regeneration of peripheral 

sensory axons. Instead, Saijilafu et al found that glycogen synthase kinase 3 (GSK3), 

another down-stream target of PI3K (32), mediates PI3K-dependent augmentation of the 

growth potential in the PNS (*31). Furthermore, instead of the known role of GSK-3 in 

regulating microtubule re-organization (32, 33), PI3K-GSK3 signal may induce a 

transcription factor Smad1, which has been suggested to enhance sensory axon regeneration 

(34–36). Thus, it appears that different mechanisms mediate the effects of the PTEN/PI3K 

pathway in axon regeneration of PNS and CNS neurons.

Interestingly, recent studies indicated that the regulation of axon regeneration by the PTEN/

mTOR pathway is not limited to mammalian neurons. Inhibiting PTEN or activating Akt in 

Drosophila class IV da neurons enhances their regenerative responses to axotomy and 

dendriotomy, suggesting this as an evolutionally conserved growth program that regulates 

neuronal regenerative ability (37). Although little is known about the regeneration of 

dendrites in mammals, these observations suggested a possibility that common mechanisms 

regulate the regeneration of axons and dendrites. However, activation of the Akt pathway is 

insufficient to confer a regenerative ability in regeneration-incompetent Class I da neurons 

(38). Nevertheless, these results suggested that PTEN-dependent pathways might be 

evolutionally conserved in regulating neuronal regenerative responses in a neuron type-

specific manner (37, 38).

mTOR as an indicator of regenerative competence?

The precise mechanisms by which PTEN/mTOR controls axon regeneration remain to be 

elucidated. Like other resting cells, intact mature neurons produce ATP mainly through 

catabolic processes to fuel the maintenance of energy-costly homoeostatic processes, such as 

cytoskeletal functions and ion and nutrient transport. However, for an injured neuron to 

initiate a regenerative growth, it has to shift towards anabolic processes, allowing for the de 

novo synthesis of macromolecules from available nutrients (39). For this, there must be 

molecular links between the pathways sensing cellular growth signals and those controlling 

the metabolic networks underlying cell growth. In this regard, mTOR might be a good 

candidate for such tasks. It is known that in all cell types, mTOR is able to alter cellular 

metabolism to drive the biosynthesis of building blocks and macromolecules essential for 

cell growth (17–19). In addition to its well-known effects on cap-dependent protein 

translation (19), mTOR has been shown to regulate the synthesis of other cellular building 

blocks such as lipids and nucleotides (40) and regulate mitochondrial oxidative function (41, 

42).

On the other hand, mTOR is activated by nutrients, growth factors and certain hormones and 

is tightly regulated in vivo (17–19). In mammalian RGCs and cortical neurons, the mTOR 

activity undergoes a development-dependent down-regulation (16, 20). Axotomy further 

inhibits the neuronal mTOR activity, presumably as a result of injury-triggered stress 
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responses (16, 20). The detailed molecular mechanisms for such mTOR regulations in 

neurons are still unknown, although many mTOR regulators have been identified in non-

neuronal cells (17–19). A recent study showed that the microRNA (miRNA) bantam (ban) 

regulates neuronal Akt activity and regenerative ability in Drosophila (37). Instead of acting 

in the neurons, this miRNA appears to function in their target cells, resulting in a down-

regulation of Akt expression in neurons during development (37). Such cell non-

autonomous regulation by a miRNA is reminiscent of the role of miR-206, a skeletal 

muscle-specific miRNA, in regulating the regeneration of the neuromuscular synapses in 

mice (43). mTOR inactivation has also been documented under cellular stress conditions, 

such as hypoxia or DNA damage, and many molecules, such as REDD1 (43–45) and sestrin 

(46), have been implicated in such stress responses. But their relevance to axotomy-induced 

mTOR regulation remains to be studied. Elucidating the mechanisms of mTOR regulation 

during development and after injury should reveal new insights into the regulatory 

mechanisms of axon regeneration.

Although most of studies on PTEN have been focused on its cytosolic lipid phosphatase 

activity, recent studies suggested that PTEN might also function in the nucleus (47–49). 

Recently, an intriguing study by Zhang et al demonstrated that nuclear translocation of 

PTEN might be a step causatively leading to excitotoxic (in vitro) and ischemic (in vivo) 

neuronal loss (50). Since PTEN deletion impact both neuronal survival and axon 

regeneration, it would be interesting to assess the contribution of nuclear vs cytosolic PTEN 

after axotomy.

Injury signals from the lesioned axons to neuronal soma

As neuronal networks are formed in the developing nervous system, axons progressively 

cease growing. Even in the adult CNS, transient sprouting could occur in the terminals of 

injured axons, likely as the result of local cytoskeleton rearrangements. To convert such 

abortive local events to sustained axon extension, a set of injury signals generated locally 

need to be retrogradely transported to the cell body and initiate injury responses (Fig. 1). An 

important topic in the field is to determine the molecular signatures of such injury signals.

As a drastic stress condition, axotomy leads to a variety of changes in axotomized neurons. 

For example, axotomy triggers a rapid depolarization and leads to an increase of local 

calcium concentrations that may further propagate towards other neuronal compartments 

(51). At least in Aplysia, such calcium increase is important for initiating axonal regrowth 

program (13–15). A recent study suggested that in DRG neurons such back-propagating 

calcium wave causes nuclear export of histone deacetylase 5(HDAC5), which subsequently 

activates a regenerative program (52, *53).

In addition, a number of other molecules have been implicated as possible carriers of injury 

signals. An emerging common theme is that following axotomy different transcription 

factors undergo certain modifications, which lead to the alteration of their subcellular 

localizations (*54–58). A well-documented example is that an injury in the peripheral axons 

of DRG neurons led to the nuclear accumulation of phosphorylated STAT3 (*54,50,60), 

presumably due to the activation of Jak2 kinase.
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In cultured DRG neurons, an inhibitor of Jak2 blocks the neurite growth (61). In vivo 

perineural infusion of Jak2 inhibitor also attenuates dorsal column axonal regeneation (60). 

In addition, motorneurons from STAT3 conditional knockout mice showed decreased 

survival after nerve lesion but it can be rescued by addition neurotrophic factors, including 

CNTF (59). STAT3 is activated upon injury and retrogradely transported to modulate 

survival of the host neurons (54), suggesting a role of the Jak/STAT pathway in regulating 

axon regeneration and survival in these neurons. Cytokines such as CNTF have also been 

suggested to regulate the survival and axon regeneration of CNS neurons (62–64). However, 

several studies showed that exogenously delivered cytokines have only limited effects on 

promoting survival and regeneration following optic nerve injury (65, 66) or spinal cord 

injury (67). This might be due to the SOCS3-mediated negative feedback (68), thus limiting 

the activation of the Jak/STAT pathway in responding neurons, because increased neuronal 

survival and axon regeneration are seen in the adult mice with conditional deletion of 

SOCS3, a negative regulator of Jak/STAT pathway (69). The co-deletion of SOCS3 and 

STAT3 in RGCs abolishes the regeneration phenotypes, suggesting that the regeneration 

phenotype of SOCS3 deletion is dependent on the STAT3-activated gene expression 

program.

The next question is what are the endogenous sources of cytokines after injury. After 

peripheral nerve injury, the cells in the lesion, such as Schwann cells, up-regulate expression 

of interleukin 6 (IL-6) and perhaps other cytokines (70–73). After optic nerve injury, the 

cells in the retinal ganglion layers, likely to be astrocytes, also showed increased expression 

of CNTF and LIF (62–65). It is also known that inflammatory stimulations, such as lens 

injury, could result in enhanced optic nerve regeneration (75). Although multiple molecular 

players have been implicated (76), genetic studies suggested that neuronal STAT3 is 

essential for the axon regeneration after such inflammatory stimulations (64, 77).

Compelling evidence suggests the existence of other important molecular carriers of injury 

signals. For example, dual lencine zipper kinase (DLK) is a component of a conserved 

MAPK cascade that includes the MAP kinase kinase MKK-4 and the p38 MAP kinase 

PMK-3. Loss-of-function mutations of the dlk-1, mkk-4 or pmk-3 gene result in axon 

regeneration defects (78, 79), suggesting that this entire signaling pathway is required for 

axon regeneration in C. elegans. Importantly, the involvement of this pathway in axon 

regeneration control is conserved in other species (80–*82). Deletion of DLK in DRG 

neurons blocks their axon regeneration (81). After optic nerve injury, deletion of DLK 

increases the survival of injured RGCs but blocks the axon regeneration induced by PTEN 

deletion (*82). Mechanistically, DLK protein is present in axons, and protein levels are 

increased in response to axonal injury (80). In C. elegans DLK is activated by a Ca++-

dependent switch from inactive heteromeric to active homomeric protein complexes (83). 

Further, it interacts with the scaffolding protein JNK-interacting protein 3 (JIP3), a 

component of axonal transport (84–85). As positive and negative retrograde signals have 

been proposed (86), it will be interesting to examine whether different transcription factors 

mediate the effects of DLK on neuronal survival and axon regeneration. DLK interacts with 

JNK1 and is implicated in regulation of microtubule stability (87). It has been demonstrated 

that microtubule stabilization is an important component of axon regeneration after spinal 

cord injury (88).
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Signaling networks for integrated regenerative programs?

Differential injury responses in axotomized neurons should be the results of the interactions 

between the intrinsic neuronal state and the injury-triggered signals. As discussed above, 

JAK/STATs and DLK might participate in axotomy-triggered injury signal generation and 

delivery, and PTEN/mTOR might be a potential determinant of neuronal competence for 

axon regeneration (Fig. 1). Recent studies start to reveal interactive mechanisms of these and 

other molecular pathways.

Kruppel-like factors (KLFs), a subclass of the zinc-finger transcription factors, have been 

implicated in axon growth control (89–91). In zebrafish, KLF6 and KLF7 were identified 

among the group of up-regulated genes in regenerating RGCs (89). In mice, different KLFs 

differ in their expression levels over the course of development: while KLF6/7 are down-

regulated, KLF4/9 are up-regulated in adult RGCs (90). Knockout of KLF4 in RGCs 

promotes axon regeneration after an optic nerve injury (90). Forced expression of KLF7 

promotes the regenerative growth of injured corticospinal tract axons (91). In a recent study, 

Qin et al. showed that KLF4 physically interacts with STAT3 upon cytokine-induced 

phosphorylation of tyrosine 705 (Y705) on STAT3, resulting in the suppression of STAT3-

dependent gene expression by blocking its DNA-binding activity (*92). These findings 

suggested a possible mechanism by which KLFs impact on the neuronal regenerative ability 

is by regulating the activity of STAT3.

The cross-talks between these pathways are also indicated from the synergistic effects of 

PTEN deletion and other treatments, such as inflammatory stimulation (*93) or SOCS3 

deletion (**94), on promoting optic nerve regeneration. An obvious explanation is the 

coordination of increased protein translation and gene transcription under these treatments 

respectively, resulting in the higher and more sustained activation of regeneration-initiating 

programs. This could be important considering ample evidence for drastic changes of gene 

expression in injured neurons. In addition, the gene expression profiling studies indicated 

that injured RGCs with PTEN and SOCS3 double deletion showed increased expression of 

mTOR activators, such as small GTPase Rheb and Insulin-like growth factor 1 (IGF1), 

suggesting that such a positive feedback regulation of the mTOR activity may contribute to 

the enhanced and sustained axon regeneration (*94). Further studies are needed to dissect 

the contributions of individual pathways and develop optimized combinatorial treatments 

with other manipulations.

Perspectives

While these new studies demonstrated exciting possibilities of promoting the regeneration of 

injured axons in the adult CNS, many challenges remain towards translating these findings 

to therapeutic strategies. With dramatically increased body size in the adult, regenerating 

axons usually need to carry out de novo growth over relatively vast distances to reach their 

targets (95). Even with these newly developed strategies of promoting axon regeneration, it 

is unclear what might be maximal distances these regenerating axons can grow in the adult 

mammalian CNS. Another key question concerns whether these regenerating axons are able 

to follow their original projection paths and find their appropriate targets. A recent study 
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suggested that after a combinatorial treatment of PTEN deletion, inflammatory stimulation 

and cAMP elevation, regenerating optic nerve axons could follow their original paths and 

resulted in functional recovery (96). However, others studies failed to reproduce these 

findings and instead showed that regenerating axons did not follow their original trajectories 

(97, 98). This might not be completely unexpected, since even in the PNS system, 

regenerating axons often project ectopically initially and activity-dependent processes later 

drive the refinement of such regenerating axons. On the other hand, it is not known whether 

it is necessary for regenerating axons to make direct connections with their original targets 

for functional recovery. Recent studies suggested that indirect relay connections, such as the 

axons from differentiated neurons from transplanted neuronal stem cells (*26, 99) or from 

the rearrangements of local circuits (100, 101), might allow some degree of functional 

recovery after spinal cord injury. Addressing these and other questions might pave the paths 

for developing strategies of rebuilding neuronal circuits for functional recovery after 

damage.
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Highlights

• Differential intrinsic regenerative ability of adult cortical neurons revealed by 

In vivo imaging analysis

• Evolutionarily conserved pathways in regulating axon regeneration

* Functional interactions among different pathways in regulating axon 

regeneration
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Figure 1. A working model of the mechanisms that regulate the intrinsic regenerative ability of 
axon regeneration
(1) To respond to axotomy, the neuronal cell bodies need to be informed by retrogradely 

transported injury signals. In addition to acute axotomy-induced changes such as ion influx, 

cytokines such as IL-6 and CNTF are up-regulated at the lesion site and/or around the cell 

body. As a result, DLK and Jak/STAT pathways are activated, resulting in the generation 

and transport of the injury signals. (2). How injured neurons respond to injury signals is 
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dependent on their regenerative competence. An important determinant of the competence 

might be the mTOR activity but other molecular pathways likely exist.
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