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Synaptobrevin Transmembrane Domain Dimerization Studied by
Multiscale Molecular Dynamics Simulations
Jing Han,1 Kristyna Pluhackova,1 Tsjerk A. Wassenaar,1 and Rainer A. Böckmann1,*
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ABSTRACT Synaptic vesicle fusion requires assembly of the SNARE complex composed of SNAP-25, syntaxin-1, and syn-
aptobrevin-2 (sybII) proteins. The SNARE proteins found in vesicle membranes have previously been shown to dimerize via
transmembrane (TM) domain interactions. While syntaxin homodimerization is supposed to promote the transition from hemi-
fusion to complete fusion, the role of synaptobrevin’s TM domain association in the fusion process remains poorly understood.
Here, we combined coarse-grained and atomistic simulations to model the homodimerization of the sybII transmembrane
domain and of selected TM mutants. The wild-type helix is shown to form a stable, right-handed dimer with the most populated
helix-helix interface, including key residues predicted in a previous mutagenesis study. In addition, two alternative binding inter-
faces were discovered, which are essential to explain the experimentally observed higher-order oligomerization of sybII. In
contrast, only one dimerization interface was found for a fusion-inactive poly-Leu mutant. Moreover, the association kinetics
found for this mutant is lower as compared to the wild-type. These differences in dimerization between the wild-type and the
poly-Leu mutant are suggested to be responsible for the reported differences in fusogenic activity between these peptides.
This study provides molecular insight into the role of TM sequence specificity for peptide aggregation in membranes.
INTRODUCTION
Neurotransmitter release requires a rapid and precise fusion
of synaptic vesicles with the presynaptic plasma membrane.
The fusion is mediated by a set of conserved proteins collec-
tively known as the soluble n-ethylmaleimide-sensitive-
factor attachment receptor (SNARE) complex (1–3). The
protein complex that is formed upon fusion consists of the
membrane-peripheral protein SNAP-25 and the two integral
membrane proteins synaptobrevin-2 (sybII) and syntaxin.
The latter two are anchored to their respective host mem-
branes by single-pass transmembrane domains (TMDs)
while SNAP-25 is attached to the membrane by a lipidic an-
chor. SybII is localized on the vesicle membrane while syn-
taxin and SNAP-25 are located on the plasma membrane.
The assembly of SNARE proteins to a trans-complex
bridges the two opposing membranes and drives membrane
fusion. A crystal structure of the SNARE complex shows a
parallel four-helix bundle assembled from the cytoplasmic
regions of the SNARE proteins (4). The continuous zipper-
ing of this complex beyond the core complex extending all
the way into the transmembrane region leads to a highly sta-
ble cis complex, with all SNARE proteins located in the
same fused membrane (5). This directional transition is
believed to act as a force-generating machine and to be
responsible for the final membrane merging (6,7). However,
the mechanism by which SNARE induces membrane fusion
remains elusive.
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Apart from the role of the soluble domains of SNARE
proteins in mediating the formation of a SNARE complex,
various studies have shown that the TMDs of SNAREs
play an essential role in membrane fusion and complex
oligomerization (8–13). Incorporation of synthetic peptides
into liposomes mimicking these transmembrane domains of
SNARE proteins was shown to induce fusion in vitro, sug-
gesting an important role of specific TMD-TMD interac-
tions in mediating the fusion reaction (14). Additionally,
homo- and heterodimerization of SNARE proteins (both
syntaxin and sybII) have been reported to be mediated by in-
teractions between TMDs, in a sequence-specific fashion
(15–18). Additionally, signals for homotrimers and -tetra-
mers were reported for fusion constructs consisting of
nuclease A and the sybII TM segment (17). For sybII, six
residues (L99, I102, C103, L107, I110, and I111) have
been predicted to reside at the dimer interface and to be
responsible for the formation of stable dimers, as evidenced
from previous mutagenesis and computational studies
(17,19). Only weak sybII homodimerization was seen using
the method TOXCAT (20), causing a questioning of the bio-
logical relevance of TMD association in membrane fusion.
This system was later reinvestigated yielding a substantial
propensity of sybII for dimer formation (21). Additionally,
dimerization of sybII was revealed in a bimolecular fluores-
cence complementation approach, albeit the dimerization
appeared not to contribute to fusion activity in vivo as fusion
was not affected by a mutation that abolished dimerization
(G100V and G100Y (11)). In turn, Hofmann et al. (22)
suggested that the TMD-TMD interaction promotes the
http://dx.doi.org/10.1016/j.bpj.2015.06.049
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FIGURE 1 (A) Sequences of sybII wild-type and mutant helices used in

the simulations. The mutated positions are underlined and colored (orange)

in the sequences. (B) Starting configuration of a CG-WT simulation with

two helices in stick representation (black and cyan) embedded in a POPC

bilayer (headgroup and tail shown in yellow and silver spheres, respec-

tively; water is represented by blue spheres). (C) Top view of helix-helix

SybII Dimerization 761
hemifusion-to-fusion transition. Also, it was shown that the
stoichiometry of yeast SNARE TMD oligomers is at least
three (12). Although these studies suggest that the TMD
of SNARE plays a significant role in membrane fusion
(23), the mechanism of self-association of TMDs, and the
underlying structural basis as well as functional relevance
of oligomerization, are not well understood.

Considering the difficulty in obtaining high-resolution
structural information of membrane proteins, different
computational approaches have been proven as insightful
alternatives in studying the structure and dynamics of
TMD associations (19,24–26). For example, multiple bind-
ing modes have been discovered for the fibroblast growth
factor receptor 3 TMD association by molecular-dynamics
(MD) simulations, and these were consistent with the exper-
imental model (25). For the TMD of sybII, a right-handed
dimer with a crossing angle of �38� was modeled, with
the interaction interface being in agreement with alanine
mutagenesis data (19). Here, we applied a multiscale
approach combining coarse-grained MD and subsequent
atomistic simulations to investigate TMD-TMD dimeriza-
tion of the sybII wild-type and mutants thereof to charac-
terize the sequence-dependency of TMD association and
for structural analysis of obtained dimer conformations.
The predicted sybII dimer structure from this unbiased asso-
ciation study is in good agreement with previous computa-
tional and mutagenesis data. Additionally, two alternative
binding modes are described that are suggested to be
involved in SNARE oligomerization. Altering TMD resi-
dues led to an increased (poly-Val mutant) or a decreased
(poly-Leu) dimerization propensity, while an interfacial
tryptophan mutant (W89A-W90A) showed dimerization
characteristics similar to the wild-type. These results
contribute to an improved understanding of the role of
TMD-TMD interactions in SNARE-mediated membrane
fusion.
configurations after fit on one helix (black, in the center) for starting struc-

tures of CG simulations (blue); after 500 ns of simulation (green); and after

5 ms (magenta). To see this figure in color, go online.
MATERIALS AND METHODS

Ensembles of coarse-grained (CG) simulations were employed to study un-

biased sybII TMD association. Selected obtained dimer conformations

were subsequently validated in atomistic MD simulations. All simulations

started from the wild-type (wt) and mutated sequences of the TMD of sybII

(residues 85–116) in a lipid bilayer. The mutants included a tryptophan

double-mutant previously shown to affect priming of synaptic vesicles

(W89A, W90A) (27), as well as mutants addressing the sequence-speci-

ficity of the part of sybII located within the hydrophobic core of the

membrane (residues 97–112). These core residues were replaced by either

valine (PolyV mutant), isoleucine (PolyI mutant), or leucine (PolyL

mutant) (Fig. 1 A).
Coarse-grained simulations

The coarse-grained methodology of the MARTINI force field (28) was em-

ployed for all association studies of the wt sybII. The association propensity

of sybII and of the mutants was analyzed based on ensembles of CG asso-

ciation simulations generated using our recently developed docking assay
for transmembrane (DAFT) components protocol for association studies

of transmembrane proteins (29) or for adsorption studies on membrane in-

terfaces (30). In brief, this method assists in the setup and analysis of a large

number of association simulations starting from unbiased noninteracting

initial states (see below). All simulations were set up starting from either

the wt sybII TMD or from one of the four studied mutants (see Fig. 1 A).

For each sequence, dimerization profiles were built from 500 simulations

of 5 ms in a POPC bilayer. All simulations were performed using the soft-

ware GROMACS, Ver. 4.5.2 (31).

Starting from the TMD sequences, DAFT first built idealized atomistic

helices, using the software PYMOL (32), which were subsequently

coarse-grained using the software MARTINIZE (28). The resulting

coarse-grained helices were placed on the corresponding two-component

(checkerboard) layout, at a center-of-mass (COM) COM-COM distance

of ~4.5 nm and with random in-plane rotations to ensure that the starting

ensemble has no bias toward a particular bound state. If one chain is taken

as reference and used to align the ensemble, this yields a distribution of

starting positions as shown in blue in Fig. 1 C. For each configuration
Biophysical Journal 109(4) 760–771
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with two parallel TMD helices, a surrounding POPC bilayer and solvent

(standard MARTINI water model, see Fig. 1 B) were built using the soft-

ware INSANE (33,34), yielding systems with ~110 lipids, 1280 solvent

molecules, and a total of 2900 particles.

The resulting systems were processed with the software MARTINATE

(35), which first performed a 500-steps steepest-descent energy minimiza-

tion, followed by a short (10-ps) simulation with position restraints on the

protein beads together with a short time step of 2 fs to relax the membrane

environment. Production MD simulations of 5 ms in length were per-

formed in the NpT ensemble. The temperature was controlled by weak

coupling to an external heat bath of 310 K, using the Bussi velocity rescale

thermostat (36) with a coupling time of 1.0 ps, and the pressure was

coupled semiisotropically to an external reference pressure of 1.0 bar

using the Berendsen barostat (37), with a coupling time of 3.0 ps and a

compressibility of 3.0 � 10�4 bar�1. Electrostatic interactions were

switched to zero between 0 and 1.2 nm, while Lennard-Jones interactions

were switched to zero between 0.9 and 1.2 nm. Neighbor-lists for calcu-

lation of short-range interactions were updated every 10 steps. Water

was modeled using the standard MARTINI water model, with a relative

dielectric permittivity of 15. An integration time step of 20 fs was used

and coordinates were written out every 500 ps. A 5-ms CG simulation

(~2900 CG atoms) took ~17 h on eight cores (Xeon 2660v2 chip; Intel,

Mountain View, CA).
Atomistic MD simulations

Representative structures obtained from the CG association simulations

were converted to atomistic resolution using the BACKWARD algorithm

(38). The resolution switching covered the whole system, i.e., proteins,

POPC molecules, and water molecules, adopting the periodic box setup

from the respective CG simulation. To avoid any bias due to a specific force

field, the complex stability was investigated and compared for two different

atomistic force fields, namely CHARMM36 (39) and a combination of

AMBER99sb-ILDN (40) for the proteins and SLIPIDS (41,42) for the lipid

molecules. Before simulation, the resulting atomistic systems were energy-

minimized and equilibrated for 2 ns with restraints on the protein backbone

atoms. The pressure was coupled semiisotropically to a pressure bath at

1 bar using the Parrinello-Rahman barostat (43). The temperature was

maintained at 310 K using the Nosé-Hoover thermostat (44,45). The time

constant for the temperature and pressure coupling was chosen as 1 ps in

the CHARMM36 force field, while 0.5 and 10.0 ps were applied for temper-

ature and pressure coupling, respectively, in the AMBER99sb-ILDN force

field. Bond lengths were constrained using the LINCS algorithm (46) differ-

ently for CHARMM36 (H-bonds only) and AMBER/SLIPIDS (all bonds).

Long-range Coulomb interactions were treated using particle-mesh Ewald

(47) summation beyond a cutoff of 1.2 nm. The van der Waals interaction

was switched to zero between 0.8 and 1.2 nm. The time step used for inte-

gration of the Newton equations of motion was set to 2 fs and the neighbor-

list was updated every 10 steps. The final production MD simulations were

conducted for 200 ns using the software GROMACS, Ver. 4.5.2 (31). The

trajectories were analyzed using GROMACS tools and in-house codes.

The atomistic simulations (>31,000 atoms) were run on 96 cores (Xeon

5650 chip; Intel); a 200-ns simulation took ~84 h.
FIGURE 2 Reaction coordinates used to describe the relative orientation

of two interacting sybII helices. The rotational angle of helix B relative to

the reference helix A (b, binding position), the rotational angle of helix B

around its own helical axis (binding phase f) with respect to the reference

structure, and the relative binding position (c) defined as the rotational

angle of helix A relative to helix B, are used to describe the association

states of sybII TM helices. To see this figure in color, go online.
Analysis

Potential-of-mean-force calculation

The potential-of-mean-force (PMF) calculation was used to energetically

characterize different states. The PMF may be computed by integrating

the mean force along an arbitrary path connecting two states, e.g., by using

umbrella sampling (48). Alternatively, it can be obtained from the popula-

tion density between the two states at equilibrium according to
Biophysical Journal 109(4) 760–771
uðzÞ � uðz�Þ ¼ �kBTln
PðzÞ
Pðz�Þ;

where u(z) is the PMF in state z; P(z)/P(z*) is the density of states, z /z*;

k is the Boltzmann constant; and T is the temperature. The calculation of
B

PMF profiles from unbiased simulations as generated with DAFT has been

reported recently (49). Obtained PMF profiles for a poly-Ala peptide were

consistent with results from the conventional umbrella sampling method,

however, for the studied peptide even at reduced computational costs.

Here, the one-dimensional PMF for TMD dimerization was calculated

using the interhelical distance between the centers of mass (COM) of the

two helices as a reaction coordinate. The population densities were binned

with a width of 0.05 nm. Convergence issues were assessed by analyzing

the PMF for time windows of 100-ns length each (corresponding to 200

structures) at different points in time between 500 ns and 5 ms.

Packing-density distribution

A packing-density distribution was calculated to describe the packing prop-

erties of the two sybII TMD helices in the CG simulations for the wild-type

and the mutants. To that end, all trajectories were fitted on the first sybII

helix (A) of a reference frame. Subsequently, the probability density of

the backbone particles of the second helix (B) relative to Awas calculated

for periods of 100 ns after 400 ns and 4.9 ms of simulation time to assess the

packing convergence of dimer association over time.

Binding orientation analysis

Preferred binding orientations in the dimer ensembles were characterized

by reaction coordinates that describe the relative orientation of the dimer

structures (29): the position of binding of helix B on helix A (b) and the

binding phase of B (f) or, alternatively, by the relative binding position c

(see Fig. 2 for a sketch on the angles). The binding position (b) is defined

by the rotation angle of B relative to A in the reference structure, the

binding phase (f) refers to the rotation of B around its helical axis,

and the relative binding position (c) denotes the rotational angle of A rela-

tive to B.

The two parameters b and f were calculated for all configurations with a

COM distance between the helices below a cutoff distance. The latter is

given by the first maximum in the PMF profiles (see above), defined sepa-

rately for the wt and the mutants. Two-dimensional probability density dis-

tributions are presented for the two orientational parameters b and c.
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RESULTS

The dimerization of sybII TMD was studied in coarse-
grained MD simulations. The influence of the specific
sequence was addressed by replacing the hydrophobic
stretch (residues 97–112) by valine (PolyV), isoleucine
(PolyI), or leucine (PolyL). Experimentally, PolyL peptides
were shown to have a low fusogenic activity, while fusion
was enhanced for peptides with high valine content. Addi-
tionally, we analyzed the influence of the conserved trypto-
phans on TMD association.
TM helix association

The self-association of sybII TMD and a number of mutants
within a POPC bilayer was studied in coarse-grained molec-
ular dynamics simulations (CG-MD). Statistical informa-
tion was gained by performing 500 simulations for each
system. At the beginning of each simulation, two sybII
TM helices were inserted perpendicular to the membrane
plane with a separation distance of z4.5 nm to exclude
intermolecular interactions. After 5 ms of simulation time,
dimers were formed in almost all systems (compare also
Table 1), underlining the propensity of sybII TMDs for
dimer formation.

The association of TM helices to stable dimers followed a
specific pattern: upon contact of the two helices, a subse-
quent tilting was observed, which finally led to the forma-
tion of a crossed dimer (Fig. 3). In almost all simulations
(464 out of 500 runs) for wt sybII, the dimer formation
was initiated by C-terminal contacts between the helices,
forming a V-shaped dimer (denoted as D2 in Fig. 3), fol-
lowed by an increase of the interaction surface thereby
forming a compact dimer. Two dimer conformations could
be distinguished, these being a left-handed (LH) dimer
and a right-handed (RH) dimer, displayed in Fig. 4.

The associated bimodal distribution for the crossing angle
(Fig. 4 A) was observed both for the wild-type and mutant
dimers. The crossing angle of z�30� obtained for the
RH dimer is in good agreement with the dimer configuration
predicted in a previous study using a simulated annealing
protocol combined with mutagenesis data (19). The LH
TABLE 1 Number of simulations, counts of monomers,

C-terminal dimers, and compact dimer populations after 5 ms of

CG simulation are given for each assay

System

Number

of Simulations Monomer C-dimer

Compact

Dimer

Rate

Constant (%)

WT 500 2 7 491 100.0

WWAA 500 2 8 490 75.4

PolyV 500 0 0 500 190.7

PolyL 497 15 48 434 55.8

Additionally, rate constants relative to the dimerization speed of the wt

sybII (set to 100%) are presented. The rate constant was determined based

on a linear fit on the time interval of 0–2 ms assuming a first-order reaction.

All systems show a linear behavior in this time interval.
dimer exhibiting a smaller crossing angle of zþ20� was
not resolved in previous reports. Interestingly, the relative
populations between the LH and RH dimers for the wild-
type and the mutants differ significantly, indicating a
remarkable effect of amino-acid sequence in the hydropho-
bic TM portion on the preferred geometry. The wild-type
and the WWAA mutant mostly adopt the RH dimer confor-
mation with the glycine at position 100 (Gly100) pointing
toward the interaction surface. In contrast, Gly100 are oppo-
sitely oriented in the LH dimer conformation, directed away
from each other. Thus Gly100 probably adopts an important
role in maintaining the geometry of the RH dimer configu-
ration. A similar role of a central Gly residue for dimeriza-
tion was reported before for integrin TM helices (24).

The LH dimer is significantly more populated for PolyL,
PolyI, and PolyV dimers (increasing in percentage) as
compared to wt and the WWAA mutant.

In particular, the PolyV dimer showed a comparable pop-
ulation for LH and RH dimers. A detailed inspection of the
trajectories for representative dimer structures indicates that
the stability of the dimer structure correlates with its relative
population. The wild-type LH dimer represents an interme-
diate structure, which tends to convert to a more stable RH
dimer conformation that accounts for z98% of the entire
final dimer ensemble. In contrast, the stability of the LH
dimer for the PolyV mutant is significantly increased
and the conformation is well maintained over the entire
5 ms of simulation time, resulting in a final population
of z39% for the LH dimer. Unexpectedly, no LH dimer
conformations were observed in the case of the WWAA
mutant after 5 ms of simulation time. Additionally, the RH
crossing-angle distribution is shifted by 8� to a larger
crossing angle. These changes suggest a possibly important
role of the membrane interfacial tryptophans not only for the
membrane insertion depth (27) but for the packing of sybII
helices as well.

The initial association time between helices was typically
within 100–400 ns, showing no significant difference be-
tween the wild-type and mutant systems. Dissociation
events leading to separation of the helices were not observed
in the ensemble over the entire 5 ms of simulation time,
i.e., no dissociation was seen for a total simulation time
of ~10 ms.
Energetic characterization of sybII dimers

To explore the free energy of dimer association of the wild-
type and mutant peptides, we calculated the PMF as a func-
tion of the COM distance between the helices analyzed from
the CG simulations.

For the self-association of wild-type peptides, the PMF
profiles were also calculated over different time regions to
monitor the convergence, as shown in Fig. 5 (top panel).
The shape of the PMF profiles is globally similar at different
points in time. However, the PMF profiles are not converged
Biophysical Journal 109(4) 760–771



FIGURE 3 Self-association process of synapto-

brevin TM helices as obtained in CG-MD simula-

tions. (A) A representative dimerization process is

shown for the approach of helices (COM distance

of helices) as a function of simulation time

(0–5 ms). (Bottom row) Structures representing

the monomeric initial state (left, Monomer), an in-

termediate state (a V-shaped dimer, D2, middle),

and a compact dimer (D1, right). (B) Population

of sybII wt monomer and dimer configurations as

a function of simulation time, indicating the rear-

rangement of initially formed intermediate D2

dimer configurations to a compact sybII dimer

(D1). To see this figure in color, go online.
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because no dissociation events could be observed on the
simulation timescale. Strictly speaking, only PMF-like pro-
files are shown in Figs 5 and 6. Initially, after 500 ns, two
local minima with similar energies are seen for the bound
state at ~0.75 and 1.0 nm COM distance. As shown in
Fig. 5 (bottom and middle panels), these minima differ in
the binding phase f, i.e., the dimers differ in the interaction
interface. The second minimum at 1 nm vanished after 3 ms,
indicating a slow convergence of PMF profiles to a single
state for dimer association. The slow convergence of PMF
profiles implies the necessity for long simulation times
(z2–3 ms for the wild-type and mutants in this study) to
obtain sufficient sampling of preferred orientations.

PMF-like profiles for both wild-type and mutants
sampled at 5 ms are shown in Fig. 6 A. A similar PMF profile
as for the wild-type was observed for the WWAA mutant,
with the minimum located atz0.6 nm, suggesting a slightly
closer packing for the WWAA dimer. In contrast, the dimer
states of the PolyVand PolyL mutants were found at a COM
distance ofz1.0 nm, indicating a more loose packing of the
dimers as compared to the wild-type. A possible reason for
the changed packing is due to the substitution of the Gly100

residue in the TM core by more bulky Ile, Leu, or Val resi-
dues. Gly is known to be essential for tight helix-helix asso-
ciation. Interestingly, a second minimum (at z2.2 nm),
which corresponds to a weakly bound dimer, quickly disap-
peared for the PolyV, resulting in faster kinetics for the
helix-helix association for the PolyV mutant (Fig. 6 D).
This can also be verified by the fast convergence of the
Biophysical Journal 109(4) 760–771
average interaction energy for the whole ensemble as a func-
tion of simulation time, as shown in Fig. 6 B.
Dimerization kinetics

The time development of the average interaction energy for
the ensemble of dimerization simulations is comparable
for the wild-type and the mutants within the initial 0.5 ms
(Fig. 6 B). On longer times, after association, kinetics is
significantly decreased for the PolyL mutant and slightly
increased for the PolyV mutant. The WWAA mutant dis-
plays an association kinetics similar to the wild-type.

To quantify the dimerization propensity, we calculated
the quantity of compact dimers as a function of simulation
time for the whole simulation ensembles (Table 1). A
compact or stable dimer (see, e.g., Fig. 4 B) is defined by
a COM distance between the helices below the distance
corresponding to the first peak of the PMF profile (see the
previous section).

To study the dimer structures evolution, we also calcu-
lated the population of dimer structures with only contact
of the C-termini (D2). The dimerization process starts
with a contact between the C-termini, followed by a subse-
quent conversion to a more stable dimer (D1) in most sim-
ulations (see above).

Consistent with the PMF profiles for dimer association,
the quantity of stable dimers for the PolyV mutant is larger
as compared to the wild-type. The rate of formed dimers
(Fig. 6 C) is significantly reduced for the PolyL mutant
FIGURE 4 (A) Helix crossing-angle distribution

for the sybII wild-type and mutants computed over

the total simulation time (5 ms). (B) Representative

structures from CG-MD simulations (after conver-

sion to an all-atom representation (38)) for the

right-handed (RH, blue) and left-handed (LH,

red) dimer conformations (wild-type). The refer-

ence TM helix (gray); G100 residues (yellow

spheres). To see this figure in color, go online.



FIGURE 5 Association of wild-type helices characterized by the one-

dimensional PMF as a function of the interhelical distance (COM) at

different times (top panel, analyzed on time windows of 100 ns each).

The correlations between the rotation of helix B relative to A (b, middle

panel), and the rotation of helix B around its helical axis (f, bottom panel)

as a function of interhelical distance, are shown for t¼ 500 ns only to distin-

guish the distinct states in the PMF profile.
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with respect to the wild-type and strongly promoted for the
PolyV mutant as compared to the wild-type. Thus the dimer-
ization kinetics may be considerably influenced by the TM
sequence. In contrast, only little influence of the membrane
interfacial tryptophans on the dimerization kinetics of sybII
was found.
Dimer packing distribution

The lateral distribution of the second helix (B) relative to the
first sybII helix (A) is shown in Fig. 7. The probability den-
sity for helix B around helix A was calculated for 100-ns
windows after short (500 ns, upper panel) and long trajec-
tories (5 ms, lower panel). Three regions (I, II, and III) of
increased packing density were observed for the wild-type
system at 500 ns, which correspond to distinct packing
modes as displayed in Fig. 7. Right-handed (RH) dimers
are found in regions I (yellow, I-c1 configuration, and
blue, I-c2 configuration), II (cyan), and III (red). Left-
handed (LH) dimers are restricted to region II (green).
A comparison to the probability density map after 5 ms
yields a depleted region II that includes both LH and
partially RH dimers, implying metastability of configura-
tions in this region. Region I is the most populated
region in phase space after 5 ms. Region III also shows a sub-
stantial stability over the full simulation time of 5 ms. How-
ever, after extension of selected simulations to 25 ms (data
not shown), all dimer configurations passed over to a spe-
cific configuration within region I (I-c1; see the following
section).

The packing density for the WWAA mutant after 5 ms is
similar to the wild-type. Unexpectedly, the PolyV dimer
exhibited a highly promiscuous binding interface over
the whole simulation time. This nonspecific association
behavior may provide an explanation for the observed fast
kinetics (see above). PolyL and PolyI mutants display a
similar packing at 500 ns, explained by their very similar
force-field parameters in the MARTINI force field (only
slightly distinct bond lengths between backbone and side-
chain beads). For this reason, only the PolyL mutant was
extended to the full simulation time (5 ms). PolyL displays
predominantly one dimer configuration with both RH and
LH dimers, as described above (Fig. 4).
Two-dimensional orientational distribution

The dimer configurations were characterized further using
the binding position b, describing the position of the second
helix with respect to the reference helix, and the relative
binding position c analyzed over the final 50 ns of
the 5-ms simulations (Fig. 8). The most populated dimer
configuration (I-c1) is similar for both wt and mutant
systems (compare Table 2). In addition, alternative bind-
ing interfaces (I-c2 and III, or E) with significant popula-
tions were observed. SybII and the WWAA mutant
showed the same alternative binding modes with similar
populations.

In agreement with the packing density, the PolyV dimer
does not show a strong preference for a single specific
binding interface. It adopts an additional configuration
(termed E) as compared to the wt with a high probability
(>40%). This is in agreement with a previous experimental
Biophysical Journal 109(4) 760–771



FIGURE 6 Comparison of dimerization kinetics

for wild-type and mutants. (A) One-dimensional

PMF as a function of interhelical distance at

5 ms. (B) Convergence of mean interaction energy

between helices. (C) Population of compact dimers

over the entire ensembles (500 runs) as a function

of simulation time. (D) Logarithm of the concen-

tration of monomers as a function of simulation

time and fit (dashed lines) assuming a first-order

reaction. The reaction constant is given by the

slope of the linear fit (between 0 and 2 ms) and

shown in Table 1. To see this figure in color,

go online.
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study on a Val-based TM peptide (V16) flanked by lysines
and tryptophan that led to massive lipid-peptide aggregates
(50). Thus, the number of available binding interfaces and
the packing probability do appear to be correlated with the
degree of TM helix aggregation.
FIGURE 7 Packing-density distribution of sybII helix B relative to the

reference helix A of the wild-type and mutants by CG-MD simulation at

500 ns (top panel) and 5 ms (bottom panel) as a function of lateral position

(x-y). Representative CG-dimer structures of the wild-type were converted

to atomistic resolution with the reference helix A indicated (magenta). I-c1

(blue) and I-c2 (yellow) dimers correspond to region I; LH (green) and RH

(cyan) dimers to region II; (red) region III. (A gradient color scheme from

blue to red represents low to high density of states.) The PolyI mutant simu-

lation was not extended to the full simulation time (5 ms) due to its similar-

ity to PolyL in the coarse-grained force field. To see this figure in color,

go online.
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Structural validation by atomistic MD simulations

Selected coarse-grained dimer configurations were further
inspected and validated by subsequent atomistic MD simu-
lations; CG model structures were first converted to atom-
istic representations using the BACKWARD algorithm
(38), followed by atomistic (AA) MD simulation using
both the CHARMM36 force field and the AMBER/
SLIPIDS force fields for comparison. The conformational
stability was addressed for three sybII wt dimer configura-
tions (I-c1, I-c2, and III) as well as for the most populated
dimer configurations for WWAA, PolyV, PolyI, and PolyL
(I-c1) by comparing the backbone root-mean-square devia-
tion (RMSD) obtained in 200-ns MD simulations (Fig. 9).
Overall, the dimer configurations were stable, with RMSD
values between 2 and 4 Å; the exception was the PolyI
mutant, which displayed the largest flexibility with RMSD
values ranging up to 6 Å for both force fields.

Those residues contributing favorably to dimer formation
were pinpointed by analyzing their contribution to the total
interaction energy between the helices (restricted to van der
Waals and Coulomb interactions averaged over the final
50 ns of the simulations). The analysis was restricted to
the most populated conformation of the sybII wt TM helix
(I-c1). As shown in Fig. 10, Leu99, Cys103, Leu107, and
Ile111 contribute most strongly to helix-helix association
within the hydrophobic part of the TM helix (residues 97–
112), in good agreement with previous mutagenesis and
computational studies (17,19). These four residues are
located on the same side of the TM helix, forming, together
with M95 and M96, the symmetric binding interface of the
sybII dimer (see Fig. 11, left panel). The other two residues



FIGURE 8 Two-dimensional orientational anal-

ysis of dimer ensemble by the probability distribu-

tion of binding position (b) and relative binding

position (c) for wild-type and mutant sequences.

The regions corresponding to dimer configurations

representative of dimer I-c1, I-c2, and III are high-

lighted in the wild-type sybII TM helix plot. An

extra configuration (E) is pointed to in the PolyV

plot. To see this figure in color, go online.

SybII Dimerization 767
important for sybII dimerization as predicted by experiment,
I102 and I110, were found to contribute to the asymmetric
binding interfaces I-c2 and III, respectively (Fig. 11, middle
and right panels). Consistent results were obtained for both
AMBER and CHARMM36 force fields.
DISCUSSION

The TMD of SNARE proteins was previously shown to be
essential for its fusion activity (8,23,51). For synaptobrevin
II, the TMD was shown to form dimers and higher-order
oligomers (17). This interaction between the TMDs is
thought to be critical for the transition from hemifusion to
complete fusion (22). Here we applied multiscale simula-
tions to investigate the TMD homodimerization of sybII
and a range of mutants and characterized the influence of
mutations on dimerization. In order to fully sample the
accessible conformational space for dimerization, i.e., to
sample alternative binding modes for the TM peptides,
TABLE 2 Populations of different dimerization interfaces at 5

ms as determined from orientation analysis

System I-c1 III I-c2 E

WT 48.6 26.2 21.2 —

WWAA 48.5 27.7 17.1 —

PolyV 41.1 11.0 2.7 40.6

PolyL 73.9 6.6 — 8.1
500 simulations were performed for each system. Meta-
stable states exhibited a stability on the timescale of
nanoseconds to microseconds. Accordingly, the simulation
length was chosen to be 5 ms. This timescale allows us to
distinguish subtle differences in the relative populations of
distinct dimer configurations and enables the identification
of the main binding modes as well as the relative stabilities
of different conformations. Still, the distribution of states is
not likely to be fully equilibrated on this timescale.

In this study, the wild-type sybII and all the mutants
formed stable dimers. A previous experimental study has
shown that an oligo-leucine (L16) peptide could form
dimers in both solution and membrane environments (52).
Dimerization was comparably low for a differently bordered
poly-leucine peptide (R at N-terminus, RRLI at C-terminus)
(53). Langosch et al. (14) showed further that L16 with
flanking Lys residues is ineffective in promoting the lipo-
some-liposome fusion upon incorporation into membranes,
while the peptide harboring the TMD core of sybII signifi-
cantly enhances fusion kinetics. In addition, TM peptides
containing a mixture of Val and Leu residues have been
shown to be active in promoting membrane fusion, and
the fusion activity was reported to be increased for high
Val contents (50). In line with these experimental studies,
the PolyL mutant displayed in the CG simulations a consid-
erably decreased dimerization kinetics and less compact
dimers (see below), while it was increased for the PolyV
Biophysical Journal 109(4) 760–771



FIGURE 9 Conformational stability of representative sybII TM helix

dimer configurations measured by the backbone RMSD from the starting

configuration for both the AMBER (A) and CHARMM36 (B) force fields.

To see this figure in color, go online.
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mutant. The highly promiscuous binding interface of the
PolyV mutant enables fast binding. This also agrees with
earlier experimental results, which showed that poly-valine
peptides could overaggregate in micelles (14,50), corrobo-
rating our simulation results.

In the majority of the dimerization events, the formation
of a stable dimer was preceded by C-terminal contacts. This
suggests that the C-terminus plays a possible role in promot-
ing the association. The C-terminal part of sybII has previ-
ously been shown to be involved in the formation of the
fusion pore (10,54). Additionally, a previous FRET study re-
ported C-terminal interactions upon association of SNARE
proteins (12). The content mixing involved in the final stage
of membrane fusion was reported to be abolished when the
C-terminal half of the TMD is deleted (8), suggesting an
Biophysical Journal 109(4) 760–771
essential role of the C-terminal part in the final stage of
membrane fusion. However, it remains to be shown how
the fusion activity is influenced by the C-terminus.

The sybII homodimer interface predicted from our simula-
tions is consistent with previous mutagenesis and computa-
tional studies (17,19). The four residues (L99, C103, L107,
and I111) in the dominant dimer configuration (I-c1, see
Fig. 11) constitute a well-defined binding interface in the hy-
drophobic core (residues 97–112) of sybII TMD (Fig. 10).
The largest effect of a single-point mutation on binding is ex-
pected for such mutations at the I-c1 dimer interface in
particular, due to both its symmetry and restricted number
of side chains interacting with the partner. The asymmetric
I-c2 dimer possesses a comparably extended dimerization
interface with many residues contributing (in detail: residues
I97, L99, V101, A104, I105, L107, and I108 of onemonomer
interact with I98, I102, I105, I106, and I110 of the other
monomer). However, most of those residues point sideways
from the dimerization interface, and thus the exchange of one
of them for an alanine mutant will probably only moderately
reduce the dimerization propensity.

Besides the above-identified residues within the hydro-
phobic core of sybII TMD that contribute to helix-helix
interaction, two adjacent residues M95/M96 also showed
substantial contributions (see Fig. 10), suggesting a role of
these two residues for sybII TMD homodimerization. A pre-
vious experimental study on the sybII TMD construct re-
ported a remarkable promotion of self-association upon
substitution of Leu by Met residues, possibly by facilitating
the formation of a disulfide bond between the helices (18). It
is also interesting to note that W89/W90 are directed away
from the binding interface for the most populated dimer
configuration (I-c1) and thus hardly contribute to dimer sta-
bility. Accordingly, the WWAA mutant displays only small
differences in dimer packing and dimerization kinetics as
compared to the wild-type.

Despite the similarity of the dimerization behavior
between the wild-type and the WWAA mutant, subtle
FIGURE 10 Interaction energy contribution for

individual residues to the helix-helix association

for the most populated dimer (I-c1) in wild-type

sybII simulation. (Red stars) Residues critical to

the dimerization obtained in experiments (17,19).

Interaction energies were approximated as the

sum of (short-range) Lennard-Jones and electro-

static contributions. To see this figure in color, go

online.



FIGURE 11 Comparison of binding interfaces for representative dimer structures of the wild-type sybII TMD in AA-MD simulations. For the dimer I-c1, a

symmetric packing interface is seen, consisting of L99, C103, L107, and I111 in the hydrophobic part of the TM (highlighted by magenta and purple

spheres). The asymmetric I-c2 dimer possesses a comparably extended dimerization interface displayed from two perspectives. The average helix

crossing-angle for I-c1 is z50�, for I-c2 is 30�, and for dimer configuration III, 19� (calculated for CHARMM36). To see this figure in color, go online.

FIGURE 12 Models for sybII homotrimer and -tetramer structures based

on the binding interfaces displayed in Fig. 11. To see this figure in color, go

online.
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differences were identified for the helix packing. The
packing of the WWAA dimer is more compact (see
Fig. 8), reflecting a comparably more flexible binding inter-
face for the wild-type. The interfacial tryptophan residues
thus may adopt a role in maintaining the flexibility of
sybII dimers, thereby possibly facilitating the interconver-
sion between the SNARE proteins (i.e., from homodimer
to heterodimer), which is considered to be essential in the
final stage of membrane fusion (2,5). It is also interesting
to note that PolyV forms the alternative binding interface
E instead of I-c2 (wt) (Fig. 8). This is explained by the
replacement of G100 in the hydrophobic core of sybII
TMD, known to play an important role in helix-helix
packing (24,55). E.g., the packing of the GpA dimer was
reported to be disrupted upon the mutations of key
glycine residues, with the geometry preference lost and
flexibility increased (55). For integrin heterodimers consist-
ing of allb and b3 TM helices, weaker helix packing inter-
actions were found for mutated glycine residues in the
central TM domain of allb (24). In the PolyV mutant, the
Gly substitution also results in a larger helix separation dis-
tance as compared to the wt, reflected by the one-dimen-
sional PMF.

Although two alternative binding interfaces are observed
for the wild-type or WWAA mutant, the synaptobrevin ho-
modimer flexibility appears to be functionally important
for effective SNARE-mediated membrane fusion. In other
words, at the priming stage of membrane fusion, the stable
synaptobrevin homooligomer may help to establish an effi-
cient contact between two opposing membranes before the
formation of the hemifusion state. A further evolution of
the hemifusion state requires the continuous zipping of
SNARE proteins extending to the TMD core (forming syn-
aptobrevin/syntaxin TMD heterooligomers), which would
pull the distal leaflet closer to form a fusion pore. Thus,
a synaptobrevin TMD homooligomerization of optimal
strength is important during this process, which makes the
synaptobrevin oligomer more accessible for the interaction
with its syntaxin partner.

The formation of sybII oligomers consisting of two to
four monomers was reported in a previous study, albeit
the concentration of higher-order oligomers was relatively
small as compared to dimers. The formation of higher-order
oligomers was probably suppressed due to sterical hin-
drance of the fused soluble nuclease-A protein (17). Alter-
native sybII binding interfaces to the one reported
previously are essential to explain the higher-order oligo-
merization. The above-described different dimerization in-
terfaces indeed allow for the formation of higher-order
oligomers, as shown in Fig. 12 for a trimer and a tetramer
modeled from the different dimer configurations.

In addition, the cooperativity of several SNARE com-
plexes is required for efficient membrane fusion, with the
number of complexes reported to range between two and
eight (12,56–62). This supracomplex was proposed to be
mediated by the TMD of SNARE proteins (13). A recent
Biophysical Journal 109(4) 760–771
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study suggested a model in which the number of SNAREs
required for fusion is greatly variable and dependent on
the biological conditions (63). However, the functional
organization and dynamics of SNARE proteins and com-
plexes is only partially understood.

The alternative binding modes observed in the wild-type,
but not in the PolyL mutant, explain the experimental
finding that a poly-leucine mutant has a low fusogenic activ-
ity (14,50). The alternative binding interfaces of sybII
dimerization adopt an important functional role for higher-
order oligomerization required for fusion.

In conclusion, the dimerization of the sybII TM helix and
selected mutants was characterized by multiscale simulation
on the basis of a high-throughput approach. The wild-type
sequence of sybII appears to be optimized for fast binding
as well as for display of different interaction surfaces. The
latter is suggested to be required for further oligomerization
possibly required for membrane fusion.
AUTHOR CONTRIBUTIONS

R.A.B. designed research; J.H. performed simulations; J.H., K.P., and

T.A.W. did the analysis; and J.H., K.P., T.A.W., and R.A.B. wrote the

article.
ACKNOWLEDGMENTS

Computer time was provided by the Computing Center of the University

Erlangen-Nürnberg.

This work was supported by the Deutsche Forschungsgemeinschaft under

project No. BO2963/2-1 and Research Training Group grant No. 1962,

‘‘Dynamic Interactions at Biological Membranes—From Single Molecules

to Tissue’’ (to J.H., K.P., and R.A.B.). This work was also supported by a

scholarship from the China Scholarship Council (to J.H.) and by the

emerging field initiative ‘‘Synthetic Biology’’ of the Friedrich-Alexander

University of Erlangen-Nürnberg (to T.A.W. and R.A.B.).
REFERENCES

1. Li, L., and L.-S. Chin. 2003. The molecular machinery of synaptic
vesicle exocytosis. Cell. Mol. Life Sci. 60:942–960.
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