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The spindle assembly checkpoint (SAC) is a conserved signaling
pathway that monitors faithful chromosome segregation during
mitosis. As a core component of SAC, the evolutionarily conserved
kinase monopolar spindle 1 (Mps1) has been implicated in regulat-
ing chromosome alignment, but the underlying molecular mecha-
nism remains unclear. Our molecular delineation of Mps1 activity in
SAC led to discovery of a previously unidentified structural deter-
minant underlying Mps1 function at the kinetochores. Here, we
show that Mps1 contains an internal region for kinetochore locali-
zation (IRK) adjacent to the tetratricopeptide repeat domain. Impor-
tantly, the IRK region determines the kinetochore localization of
inactive Mps1, and an accumulation of inactive Mps1 perturbs accu-
rate chromosome alignment and mitotic progression. Mechanisti-
cally, the IRK region binds to the nuclear division cycle 80 complex
(Ndc80C), and accumulation of inactive Mps1 at the kinetochores
prevents a dynamic interaction between Ndc80C and spindle micro-
tubules (MTs), resulting in an aberrant kinetochore attachment.
Thus, our results present a previously undefined mechanism by
which Mps1 functions in chromosome alignment by orchestrating
Ndc80C–MT interactions and highlight the importance of the pre-
cise spatiotemporal regulation of Mps1 kinase activity and kinet-
ochore localization in accurate mitotic progression.
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Faithful distribution of the duplicated genome into two daugh-
ter cells during mitosis depends on proper kinetochore–

microtubule (MT) attachments. Defects in kinetochore–MT
attachments result in chromosome missegregation, causing
aneuploidy, a hallmark of cancer (1, 2). To ensure accurate
chromosome segregation, cells use the spindle assembly check-
point (SAC) to monitor kinetochore biorientation and to control
the metaphase-to-anaphase transition. Cells enter anaphase only
after the SAC is satisfied, requiring that all kinetochores be at-
tached to MTs and be properly bioriented (3, 4). The core
components of SAC signaling include mitotic arrest deficient-
like 1 (Mad1), Mad2, Mad3/BubR1 (budding uninhibited by
benzimidazole-related 1), Bub1, Bub3, monopolar spindle 1
(Mps1), and aurora B. The full SAC function requires the cor-
rect centromere/kinetochore localization of all SAC proteins (5).
Among the SAC components, Mps1 was identified originally

in budding yeast as a gene required for duplication of the spin-
dle pole body (6). Subsequently, Mps1 orthologs were found in
various species, from fungi to mammals. The stringent re-
quirement of Mps1 for SAC activity is conserved in evolution (6–
13). Human Mps1 kinase (also known as “TTK”) is expressed in
a cell-cycle–dependent manner and has highest expression levels
and activity during mitosis. Its localization is also dynamic (8,
14). Although the molecular mechanism remains unclear, Mps1
is required to recruit Mad1 and Mad2 to unattached kineto-
chores, supporting its essential role in SAC activity (15–18). It
also is clear that aurora B kinase activity and the outer-layer

kinetochore protein nuclear division cycle 80 (Ndc80)/Hec1 are
required for Mps1 localization to kinetochores, as evidenced by
recent work, including ours (17, 19–24). How Mps1 activates the
SAC is now becoming clear. Mps1 recruits Bub1/Bub3 and
BubR1/Bub3 to kinetochores through phosphorylation of KNL1,
the kinetochore receptor protein of Bub1 and BubR1 (25-30).
Despite much progress in understanding Mps1 functions, it

remains unclear how Mps1 is involved in regulating chromosome
alignment. In budding yeast mitosis, Mps1 regulates mitotic
chromosome alignment by promoting kinetochore biorientation
independently of Ipl1 (aurora B in humans) (31), but in budding
yeast meiosis Mps1 must collaborate with Ipl1 to mediate mei-
otic kinetochore biorientation (32). In humans, Mps1 regulates
chromosomal alignment by modulating aurora B kinase activity
(33), but recent chemical biology studies show that Mps1 kinase
activity is important for proper chromosome alignment and
segregation, independently of aurora B (22, 34–36). Therefore
whether Mps1 regulates chromosome alignment through mod-
ulation of aurora B kinase activity is still under debate (37).
In this study, we reexamined the function of human Mps1 in

chromosome alignment. We found that chromosomal alignment
is largely achieved in Mps1 knockdown cells, provided that cells
are arrested in metaphase in the presence of MG132, a protea-
some inhibitor. However, disrupting Mps1 activity via small
molecule inhibitors perturbs chromosomal alignment, even in the
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presence of MG132. This chromosome misalignment is caused by
the abnormal accumulation of inactive Mps1 in the kinetochore and
the subsequent failure of correct kinetochore–MT attachments.
Further, we demonstrate that inactive Mps1 does not depend on the
previously reported tetratricopeptide repeat (TPR) domain for lo-
calizing to kinetochores, and we identify a previously unidentified
region adjacent to the C terminus of the TPR domain that is re-
sponsible for localizing inactive Mps1 to kinetochores. Thus, our
work highlights that Mps1 kinase activity is necessary in regulating
chromosome alignment and that it must be tightly regulated in space
and time to ensure proper localization of Mps1 at kinetochores.

Results
Mps1 Plays a Minor Role in Promoting Chromosome Alignment.Mps1
has been shown to be required for chromosome alignment, likely
through regulating aurora B kinase activity (33). However, later
studies demonstrated that inhibiting Mps1 activity did not per-
turb aurora B kinase activity (22, 35, 36). To address this dis-
crepancy, we aimed to reassess the role of Mps1 in chromosome
alignment. We used the well-established MG132 treatment ap-
proach, in which cells were synchronized at G2/M by double-
thymidine block release, followed by the addition of MG132 to
arrest cells in metaphase (Fig. S1A) (38). Immunofluorescence
staining indicated that the chromosomes aligned properly to the
spindle equator in shMock-transfected cells (Fig. 1 A and B).
Consistent with published results, knocking down BubR1 dis-
rupted normal chromosome alignment (38–40). However, when
Mps1 was knocked down by shRNAs (designated “shMps1-1”
and “shMps1-2”), most chromosomes aligned correctly. Full
chromosome alignment was achieved in about 80% of Mps1-
knockdown cells, and one or two pairs of chromosomes remained
unaligned in less than 20% of cells (Fig. 1 A and B). We next
examined Mps1 function using chemically synthesized siRNA with
different targeting sequences. siMps1-2 siRNA knocked down
endogenous Mps1 more effectively than siMps1-1, and more than
90% of anaphase cells contained lagging chromosomes (Fig. S1 B
and C). Therefore, we used siMps1-2 to investigate Mps1 function.
Consistently, most chromosomes aligned properly in siMps1-2–
transfected cells, whereas severe defects in chromosome align-
ment were found in cells transfected with siBubR1 (Fig. S1 D and
E). To confirm our findings, we carried out similar experiments
using untransformed diploid hTERT-RPE1 cells (Fig. 1 C and D)
and p53-positive U2OS cells (Fig. S1 F and G) and obtained
nearly the same results.
Next, we carried out live-cell imaging to examine chromosome

alignment in cells expressing shMps1. In shMock-transfected
cells, most chromosomes congressed to the metaphase plate ∼12 min
after nuclear envelope breakdown (NEBD) and entered ana-
phase about 30 min after NEBD. shMps1-transfected cells,
however, appeared to enter mitosis normally but entered ana-
phase prematurely with unaligned chromosomes, indicating that
the SAC is defective (Fig. 1 E and F). Examination showed that
most control cells formed a metaphase plate at 12 min after
NEBD, but Mps1-depleted cells lacked a defined metaphase
plate at the same time point. These data suggest that Mps1
promotes efficient chromosome alignment. When the cells were
arrested at metaphase with MG132, 88% of these shMps1-
expressing cells achieved chromosome alignment within 1 h (25
cells were examined) (Fig. 1G). We conclude that Mps1 pro-
motes efficient chromosome alignment during unperturbed mi-
tosis, but Mps1 is dispensable for chromosome alignment in the
presence of MG132.
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Fig. 1. Mps1 plays a minor role in facilitating chromosome alignment
during mitosis. (A and C ) Representative immunofluorescence images of
HeLa cells (A) and RPE1 cells (C ) treated with different shRNAs/siRNAs, as
indicated. At 36 h after transfection, cells were treated with MG132 for
1 h. Then cells were fixed and costained for MT (green), ACA (red), and
DNA (blue). (Scale bars, 10 μm.) (B) Bar graph illustrating percentages of
cells with fully aligned kinetochores, with 1–10 unaligned kinetochores
(slight alignment defect), and with more than 10 unaligned kinetochores
(severe alignment defect), treated as in A. Values are means ± SE of three
independent experiments. (D) Bar graph illustrating the percentage of
unaligned kinetochores in cells treated as in C. Values are means ± SE of
three independent experiments. (E ) Representative still photographs il-
lustrating mitotic progression in H2B-GFP–expressing cells transfected with
plasmid coexpressing mCherry (as readout for shMps1 transfection) and
shMps1 or with plasmid coexpressing mCherry and shMock. At 36 h after
transfection, cells were treated with DMSO and/or MG132. Images were
acquired at the indicated time points after the start of NEBD. (F ) Scatter
plots of the time from NEBD to the beginning of anaphase in cells treated
as in E (n = 15 cells). Bars indicate means ± SE. Student’s t test was used to
calculate P values for comparison of shMock and shMps1 samples. (G) Bar
graph illustrating percentages of cells photographed in E with fully

aligned chromosomes or with a few unaligned chromosomes within 1 h after
treatment.
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Mps1 Is Not Required for Correcting Errors in the Kinetochore–MT
Attachment. Next, we asked whether Mps1 plays a role in cor-
recting erroneous kinetochore–MT attachments. We used the
well-established monastrol washout approach as illustrated in
Fig. S2A (41), because cells treated with monastrol contain a
large number of erroneous kinetochore–MT attachments. In
shMock- and shMps1-transfected HeLa cells, chromosome align-
ment appeared to be normal. In shBubR1-transfected HeLa cells,
however, chromosome misalignment was apparent (Fig. 2 A and
B). Live-cell imaging confirmed the findings (Fig. 2C). Consis-
tently, experiments carried out using RPE1 cells showed similar
results (Fig. S2 B and C). Thus, we concluded that Mps1 is not
involved in correcting errors in kinetochore–MT attachments.

Inhibition of Mps1 Kinase Activity Prevents Kinetochore–MT Attachments.
Previous RNA interference and chemical biology studies found
that human Mps1 is essential for chromosome alignment and

error correction (22, 33, 35, 36). However, our observations so
far could not fully confirm those results. Therefore, we tested
whether Mps1 kinase activity is important for regulating chro-
mosome alignment. HeLa cells treated with both reversine and
AZ3146, two potent chemical inhibitors for inhibiting Mps1 ki-
nase activity, displayed remarkable chromosome misalignment
(Fig. 3 A and B), suggesting that Mps1 kinase activity is essential
for proper alignment. We next performed a monastrol washout
assay to examine the correction of errors in chromosome at-
tachment. When released in DMEM (Dulbecco’s modified eagle
medium) containing MG132 for 1 h, cells established bipolar
spindles, and most chromosomes aligned correctly (Fig. 3C, Top).
When cells were released in DMEM containing MG132 plus
reversine, there were numerous unaligned chromosomes (Fig. 3
C, Middle and D). Consistent with the previous finding (42), after
cells were released in DMEM containing MG132 plus the aurora B
inhibitor ZM447439 (referred to as “ZM” hereafter), numerous
chromosomes remained unaligned, and syntelic kinetochore–MT
attachment was clear (Fig. 3 C, Bottom and D). However, exami-
nation of the kinetochore–MT attachment revealed that, unlike the
stable syntelic kinetochore–MT attachment in the aurora B in-
hibition group, all unaligned kinetochores lost the MT attach-
ment in the Mps1 inhibition group (enlarged inset 1 in Fig. 3C).
This observation suggests that, although inhibiting Mps1 disrupts
chromosome alignment, it interferes with a pathway other than
aurora B-dependent error correction. We next examined the
phenotype of Mps1 inhibition in RPE1 cells and U2OS cells.
Consistent with the data for HeLa cells, inhibition of Mps1 also
perturbed chromosome alignment severely in RPE1 (Fig. S3 A
and B) and U2OS (Fig. S3 C and D) cells. Taken together, these
findings demonstrate that inhibiting Mps1 kinase activity disrupts
correct chromosomal alignment but does so through a mechanism
other than aurora B inhibition.

Inactive Mps1 Accumulates Abnormally at Kinetochores, Leading to
Defects in the Establishment of Kinetochore–MT Attachments. Why
does the absence of Mps1 cause insignificant chromosome mis-
alignment, whereas inhibiting Mps1 kinase activity severely dis-
rupts chromosome alignment? Normally, Mps1 at kinetochores
with inappropriate MT attachment exchanges dynamically with
the cytoplasmic pool of Mps1 (43, 44). Upon inhibition of kinase
activity, Mps1 localization on kinetochores is elevated signifi-
cantly (Fig. S4 A and B) (22, 35, 44, 45). Therefore, we hy-
pothesized that the abnormal accumulation of inactive Mps1
in kinetochores causes defects in kinetochore–MT attachments.
To test this hypothesis, we used a kinase-dead Mps1 mutant
(Mps1KD), which has significantly elevated kinetochore locali-
zation compared with WT Mps1. Indeed, we observed massive
chromosome misalignment in cells expressing Mps1KD (Fig. 4 A
and B). Consistently, removal of the N-terminal extension (NTE)
of Mps1, which is responsible for its localization to kinetochores
(designated as Mps1KD-Δ60), reduced the level of Mps1 at ki-
netochores but did not affect chromosome alignment (Fig. 4 A
and B) (21). Similarly, the previously reported phospho-mim-
icking Mps1 mutant in Mps1KD (designated as Mps1KD-8D) also
induced a slight chromosome alignment defect because of its
weaker localization on kinetochores (Fig. S4 C and D) (45).
These findings are consistent with the hypothesis that an ab-
normal accumulation of inactive Mps1 at kinetochores causes
chromosome misalignment. We further predicted that, when
endogenous Mps1 was knocked down, reversine treatment would
not disrupt chromosome alignment. Consistent with our pre-
diction, knocking down endogenous Mps1 decreased reversine-
induced defects in chromosome alignment (Fig. 4 C and D).
These observations further support the concept that Mps1 is not
essential for chromosome alignment. Taken together, our data
demonstrate that the chromosome alignment defect caused by
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Fig. 2. Mps1 is not essential for the correction of errors in kinetochore–MT
attachment. (A) Representative immunofluorescence images of HeLa cells
treated with different shRNAs as indicated. At 34 h after transfection, cells
were treated with monastrol for 2 h and thenwere released for 1 h in medium
containing MG132. Then cells were fixed and costained for MT (green), ACA
(red), and DNA (blue). (Scale bar, 10 μm.) (B) Bar graph illustrating the per-
centage of unaligned kinetochores in cells treated as in A. Values are means ±
SE of three independent experiments. (C) Representative still photographs il-
lustrating mitotic progression in H2B-GFP–expressing cells transfected with
different plasmids coexpressing mCherry (as a readout for shRNA transfection)
and shMock/shMps1/shBubR1. At 36 h after transfection, cells were treated
with monastrol for 2 h and then were released in DMEM containing MG132.
Images were acquired at the indicated time points. (Scale bars, 10 μm.)
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Mps1 inhibitors is caused mainly by the elevated localization of
an inactive form of Mps1 in the kinetochore.
Next, we examined the stability of the kinetochore–MT at-

tachment in cells treated with or without reversine. The re-
cruitment of active Mps1 to the kinetochore was evident in HeLa
cells treated with monastrol (Fig. S4E) and was enhanced when
Mps1 was inhibited by reversine. To monitor the stability of the
kinetochore fiber (K-fiber), we incubated the cells at 4 °C for
15 min. As expected, the kinetochore–MT attachment was stable
in the control situation after cold treatment (Fig. 4 E and F), but
numerous kinetochores treated with reversine lost their in-
teraction with MTs (Fig. 4 E and F). Once again, this effect is
specific for Mps1, and not aurora B, inhibition, because the
K-fibers were stable in cells treated with ZM (Fig. 4E, Bottom

Row). This observation indicates that localization of inactive, as
opposed to active, Mps1 to the kinetochore impairs the estab-
lishment of stable MT attachments.
We further observed that the signal intensity of Mps1KD was

weaker at the kinetochores attached to MTs than at the un-
attached kinetochores (Fig. 4 G and H). Preferred localization
on unattached kinetochores is a common feature for SAC pro-
teins (46). However, SAC was inactive in this assay because
endogenous Mps1 was knocked down. Thus, these data indicate
that Mps1KD has a higher affinity for the unattached kinetochore
and that this higher affinity is independent of the SAC. Taken
together, these findings demonstrate that the elevated and stable
kinetochore recruitment of inactive Mps1 perturbs the estab-
lishment of stable kinetochore–MT attachments.

Inactive and Active Mps1 Kinases Exhibit Distinctly Different Structural
Requirements for Localization to the Kinetochore. Inactivating Mps1
kinase activity causes strongly elevated kinetochore localization of
Mps1 (22, 35, 44, 45, 47). However, the mechanism remains un-
known. Several observations suggest that inactive Mps1 may localize
to kinetochores via a mechanism different from that used by
Mps1WT. First, inactive Mps1 has a much slower turnover rate at
kinetochores than Mps1WT (22, 35, 44). Second, although twoMps1
mutants with a disrupted TPR domain (a domain shown to be re-
sponsible for the kinetochore localization of Mps1WT) fail to lo-
calize to kinetochores, inhibition of their kinase activity with
reversine restores their normal kinetochore localization (48). Third,
Mps1 mutants lacking the entire TPR domain localize to kineto-
chore in the presence of reversine (21). Therefore, it is likely that
Mps1 localizes to kinetochores independently of its TPR domain.
To confirm this notion, we examined the localization of an Mps1
mutant lacking the TPR domain (Mps1ΔTPR) (see Fig. 5A for the
schematic representation). In contrast to the clear kinetochore lo-
calization of Mps1WT, the kinetochore signal of Mps1ΔTPR was
nearly undetectable (Fig. 5 A and B), supporting the concept that
the TPR domain is essential for the localization of Mps1WT. In the
presence of reversine, however, the Mps1ΔTPR signals increased
significantly at kinetochores. The same was true when Mps1ΔTPR

was mutated further to create its kinase-dead mutant (Fig. 5 A and
B). These findings indicate that a region other than the TPR do-
main is responsible for localizing inactive Mps1 to kinetochores.
One candidate region could be the NTE (amino acids 1–61) of

Mps1, because it is important for targeting Mps1 to kinetochores
(21). Therefore we tested the kinetochore localization of GFP-
tagged Mps11–61. In the absence of endogenous Mps1, Mps11–61

did not localize to kinetochores at all, but weak kinetochore
localization of Mps11–61 appeared in the presence of endogenous
Mps1 (Fig. S5A). These data indicate that the NTE is not suf-
ficient for localizing Mps1 to kinetochores.
To pinpoint the domain(s) essential for the localization of

Mps1KD to the kinetochore, we constructed a series of Mps1
deletion mutants and examined their localization in transiently
transfected HeLa cells (Fig. 5C, Upper). As shown in Fig. 5C,
Mps1KD-Δ62–220 localized on kinetochores with an intensity sim-
ilar to that for Mps1KD-ΔTPR. The localization of Mps1KD-Δ62–260

at kinetochores was readily apparent. Strikingly, Mps1KD-Δ62–276

and Mps1KD-Δ62–300 exhibit no apparent kinetochore localization
(Fig. 5 C and D). Nevertheless, the Mps1Δ301–514 is readily ap-
parent at the kinetochores (Fig. S5B), indicating that Mps1301–514

is not a determinant for Mps1 localization to the kinetochore.
These data suggest that the Mps1261–300 (hereafter referred as
the “internal region for kinetochore localization,” IRK) is the
structural determinant for Mps1KD localization to the kineto-
chores. In particular, the sequence encompassing amino acids
261–276 plays a key role. Consistently, the kinetochore locali-
zation of a series of Mps1 deletion mutants lacking the catalytic
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domain also showed that the IRK region contributes to the ki-
netochore localization of inactive Mps1 (Fig. S5 C and D).
An Mps1KD construct lacking both the TPR domain and the

IRK lost kinetochore localization capacity (Fig. 5 C and D). We
next examined the localization of recombinant Mps1 proteins
lacking only the IRK. Removing the amino acids 260–300 or
220–300 did not affect the localization of Mps1 proteins with a
WT kinase domain. Compared with full-length Mps1KD, how-
ever, the Mps1KD lacking amino acids 260–300 or 220–300
exhibited greatly decreased kinetochore localization, suggesting
that the IRK is involved in the recruitment of inactive Mps1 to
kinetochores (Fig. 5 E and F). Further mapping experiments
showed that the residues R273 and V274 within the IRK are two
key residues responsible for targeting inactive Mps1 to kineto-
chores (Fig. 5 G and H and Fig. S5E). In addition, pull-down
assays showed that GFP-tagged Mps1 fragments containing the
IRK were coprecipitated by the recombinant Ndc80CBonsai com-
plex (Fig. 5I), suggesting that the newly identified IRK is indeed
the region responsible for targeting Mps1 to kinetochores.
Our data demonstrate that inactive Mps1 uses a structural de-

terminant distinct from that of Mps1WT for kinetochore targeting.
The TPR domain is essential for mediating the localization of
Mps1WT to the kinetochore but is dispensable for localizing inactive
Mps1. Thus, we conclude that IRK is the structural determinant
responsible for localizing inactive Mps1 to the kinetochore and that
Mps1 uses two distinct structural modules for its localization to
kinetochores, depending on its kinase activity.

The Localization of Inactive Mps1 to Unattached Kinetochores Is
Independent of Aurora B Activity. The kinetochore localization of
Mps1WT depends on aurora B kinase activity (19, 20, 22, 23). We
next asked whether the recruitment of inactive Mps1 to the ki-
netochore also depends on aurora B. For this purpose, we ex-
amined the kinetochore localization of Mps1 in the presence of
reversine and ZM. Relative to cells treated with reversine, there
was a heterogeneous result in cells double-treated with reversine
and ZM: The kinetochore signal of Mps1 decreased in some cells
and remained unchanged in other cells (Fig. S6A). Examination
indicated that the cells with an unchanged Mps1 signal were in
prophase, and the cells with a decreased Mps1 signal were in
prometaphase. One difference between prophase and prom-
etaphase is that all kinetochores are unattached to MTs in pro-
phase, whereas in prometaphase most kinetochores show MT
attachment, although not necessarily in a correct manner. Therefore
we thought that inactive Mps1 might adopt either aurora
B-dependent or aurora B-independent localization depending on the
state of MT attachment. To challenge our hypothesis, we treated
cells with nocodazole plus reversine for 2 h to depolymerize MT
and then treated these cells with DMSO or ZM for 1 h. In this
experiment we observed that the Mps1 kinetochore signal in ZM-
treated cells was as bright as that in DMSO-treated cells (Fig. 6 A
and B). This result suggests that, in the absence of a kinetochore–
MT interaction, aurora B is not required to recruit inactive Mps1
at the kinetochores. On the contrary, when cells were treated first
with monastrol plus reversine, the Mps1 kinetochore signal de-
creased sharply in cells subsequently treated with ZM (Fig. 6 C
and D). This result suggests that the recruitment of inactive Mps1
onto MT-bound kinetochores depends upon aurora B. Taken
together, these data suggest that aurora B is required to localize
inactive Mps1 only to kinetochores that are already bound to MTs
but not to the “naked” kinetochores in prophase. However, aurora
B activity is required, in both unattached and attached situations,
for the recruitment of active Mps1 to the kinetochore (Fig. S6B).
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Fig. 4. Kinetochore localization of inactive Mps1 prevents the establish-
ment of stable MT attachment. (A) Representative immunofluorescence
images of HeLa cells cotransfected with Mps1 shRNA and different shRNA-
resistant, GFP-tagged Mps1 constructs. At 36 h after transfection, cells were
treated with MG132 for 1 h and then were fixed and costained for MT (red),
ACA (shown as black and white images), and DNA (blue). (Scale bar, 10 μm.)
(B) Bar graph illustrating the degree of chromosome misalignment in cells
treated as in A. Bars represent the means ± SE of three independent ex-
periments. In each experiment, five cells were measured (>60 kinetochores
per cell). (C) HeLa cells were transfected with different shRNAs as indicated.
At 36 h after transfection, cells were treated with reversine plus MG132 for
1 h and then were fixed and stained for Mps1 (green), ACA (red), and DNA
(blue). (Scale bar, 10 μm.) (D) Bar graph illustrating the degree of chromo-
some misalignment in cells treated as in C. Bars represent the means ± SE of
five measured cells. (E) Representative immunofluorescence images of HeLa
cells treated for 2 h with monastrol in combination with DMSO, reversine, or
ZM. Cells then were incubated at 4 °C for 15 min and fixed for immuno-
fluorescence staining for MT (green), ACA (red), and DNA (blue). Magnified
views of the boxed areas are shown in the panels on the right. (Scale bar,
10 μm.) (F) Bar graph showing the percentage of kinetochores with MT at-
tachment in cells treated as in E. Bars represent the means ± SE of kineto-
chores with attachment from five cells. (G) Representative immunofluores-
cence images of HeLa cells cotransfected with shMps1 and shRNA-resistant
LAP-Mps1KD constructs. At 36 h after transfection, cells were treated with
MG132 for 1 h and then were immunostained for MT (red), ACA (shown as
black and white images), and DNA (blue). Magnified views of the boxed
areas are shown in the panels at the right. (Scale bar, 10 μm.) (H) Bar graph
representing the intensity of the Mps1 signal at unattached kinetochores
and attached kinetochores (average of five cells ± SE). The y axis shows the

intensity of the kinetochore signal. Student’s t test was used to calculate P
values. a.u., arbitrary units.
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Discussion
Mps1 is an evolutionarily conserved SAC kinase (3, 49). A pre-
vailing hypothesis accounting for Mps1 function is that it has a
role in accurate chromosome alignment during eukaryotic cell
division (31, 33). Our results have identified a structural de-

terminant underlying the localization of inactive Mps1 to the
kinetochore and have revealed a dual mode of kinetochore lo-
calization of Mps1, sensing the temporal dynamics of Mps1 ki-
nase activity at the kinetochore for accurate SAC execution
(modeled in Fig. 6E). First, Mps1 localizes to the kinetochore of
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prophase cells via an interaction mediated by the IRK and nu-
clear division cycle 80 complex (Ndc80C). This IRK-mediated
Ndc80C–Mps1 interaction competes for Ndc80C–MT association,
preventing premature end-on capture of kinetochores. After
phosphorylation by Cdk1 and/or its autophosphorylation at the
kinetochore, Mps1 undergoes a conformational change that
switches its binding interface with Ndc80C from the IRK to the
TPR domain to facilitate a dynamic molecular turnover of Mps1
at the kinetochore. This spatiotemporal dynamics of Mps1 acts
as a fine-tuning mechanism to facilitate accurate kinetochore
biorientation and subsequent end-on MT capture during the
prometaphase–metaphase transition. Thus, phosphorylation-in-
duced conformational rearrangement of the Mps1 molecule
provides a spatial cue to ensure accurate Ndc80C–MT attachment
during chromosome congression and alignment, integrating its en-
zymatic catalysis-coupled mechanosensing into SAC activity control.
Mps1 kinase promotes efficient chromosome alignment in

unperturbed mitosis. Most chromosomes in Mps1-suppressed
cells achieved full alignment in the presence of MG132, sug-
gesting that chromosomes could achieve alignment via a less
efficient manner when the Mps1 level is low for a prolonged
period. Mps1 is required for the maximal kinetochore re-
cruitment of BubR1 and centromere-associated protein E
(CENP-E), two proteins that play dual roles in checkpoint sig-
naling and chromosome alignment (6). Approximately 30% of
BubR1 and CENP-E remains bound to kinetochores in Mps1-
suppressed cells (36), suggesting that reduced but sufficient
levels of BubR1 and CENP-E are essential to regulate chro-
mosome alignment, particularly during the prolonged mitosis in
cells treated with MG132. Consistent with this notion, we also
noticed that a few chromosomes fail to align to the spindle
equator and remain at the spindle poles in ∼20% of Mps1
knockdown cells. We interpret this phenotype as a consequence
of insufficient CENP-E localization at kinetochores, because the
phenotype is similar to that seen in cells lacking CENP-E motor
activity (50–52). It is possible that an alternative back-up
mechanism drives chromosome alignment in Mps1-suppressed
cells when mitotic exit is blocked by MG132. In the future, it
would be of great interest to elucidate the precise kinetics of
chromosome alignment in Mps1-deficient cells. Such kinetics can
be understood by visualizing and quantifying the temporal dy-
namics of the Mps1 kinase gradient during chromosome con-
gression and alignment in normal mitosis and when alignment is
perturbed (53).
It is worth noting that chemical inhibition of Mps1 induces

much more severe defects in chromosome alignment than those
seen in cells treated with Mps1 shRNA, which are caused mainly
by an accumulation of enzymatic inactive Mps1 (Mps1KD or
chemically inhibited Mps1). Thus, we reason that the persistent
accumulation of inactive Mps1 at kinetochores, caused by a
stable Ndc80C–IRK interaction, prevents the establishment of
stable kinetochore–MT attachments and results in an aberrant
chromosome alignment. How then does the accumulated in-
active Mps1 at kinetochores affect chromosome alignment?
Because the Hec1 MT-binding domain also is required for
recruiting Mps1 to kinetochores (21, 23), it is likely that the
Hec1–MT binding and Hec1–Mps1 binding are mutually exclu-
sive. In support of this view, our study showed that the kineto-
chore localization of inactive Mps1, but not active Mps1,
prevented the establishment of stable kinetochore–MT attach-
ments. Conversely, stable MT attachment also attenuated the
kinetochore localization of inactive Mps1 (Fig. 4 G and H).
During the revision of our manuscript, two groups reported the
competition between Mps1 and MT for Ndc80C binding (54, 55),
supporting our conclusion that the kinetochore localization of
inactive Mps1 induces chromosome misalignment by interfering
with MT attachment to Ndc80C.

Interestingly, the recruitment of Mps1WT to the kinetochores
strictly depends on the TPR domain, whereas the kinetochore
localization of inactive Mps1 requires the IRK. Removal of the
IRK impaired the capacity of inactive Mps1 to localize to the
kinetochores (Fig. 5 E and F), whereas deletion of both the TPR
domain and the IRK abolished the kinetochore localization of
Mps1 (Fig. 5 C and D). These observations suggest that inactive
Mps1 depends mainly on the IRK for its kinetochore recruit-
ment. Although not playing a major role, the TPR domain also
contributes to the kinetochore localization of inactive Mps1. We
also present evidence that inactive Mps1 localizes to kineto-
chores in two different regulatory manners: in an aurora
B-independent manner in the absence of MT attachment and in
an aurora B-dependent manner otherwise. What is the biological
significance of using two distinct regions for Mps1 localization
to the kinetochore before and after Mps1 full activation? We
speculate that this highly orchestrated localization of Mps1 has
several benefits. First, the localization of inactive Mps1 via the
high-affinity binding between its IRK and Ndc80C allows a quick
increase in the local concentration of Mps1 at kinetochores in
prophase and promotes its activation through autophosphor-
ylation in trans and further by Cdk1-dependent phosphorylation
(56, 57). Previous studies show that Mps1 is active in interphase
and promotes the formation of an interphase Cdc20 inhibitory
complex (36, 58). However, mounting evidence demonstrates
that Mps1 kinase activity peaks in mitosis (8, 56). Therefore, we
argue that the predominant pool of cytoplasmic Mps1 is inactive
and that kinetochore localization is essential for the full activation
of Mps1. Second, the localization of active Mps1 depends on au-
rora B activity in a TPR domain-dependent manner and promotes
Mps1 to phosphorylate its key kinetochore substrate, KNL1, which
is essential for the downstream SAC signaling (59). Numerous
reports demonstrate that active Mps1 has a higher turnover rate
and lower signal intensity at kinetochores than does inactive Mps1
(22, 35, 43–45). We envision that low-affinity localization ensures a
prompt silencing of SAC when biorientation is achieved. The ac-
tivation of Mps1 may switch its binding interface with Ndc80C in
several ways. First, it is well known that kinase conformation
changes after the activation by phosphorylation of sites within the
activation loop (60). In addition, the active conformation of Mps1
kinase may block the access of IRK to Ndc80C. The other possi-
bility is that the direct phosphorylation of Ndc80/Hec1 by Mps1
changes the binding interface between Mps1 and Ndc80C (24).
Finally, autophosphorylation sites outside the activation loop (and
also outside the IRK) may participate in the regulation via an as yet
uncharacterized mechanism (45). Thus, it would be of great in-
terest to quantify the dynamics of Mps1 kinase activity at the ki-
netochore using a FRET-based optical sensor (53) and to establish
the relationship between the temporal dynamics of Mps1 kinase
activity and accurate attachment during mitosis.
The results of previous publications combined with our cur-

rent findings enable us to propose a two-module model for the
Mps1 kinetochore localization. In early prophase, inactive Mps1
associates with Ndc80C in an aurora B-independent manner and
remains stable at kinetochores. During this stage, the IRK region
serves as the major kinetochore-targeting module (Fig. 6E). The
accumulated Mps1 at the kinetochore then undergoes auto-
phosphorylation to activate Mps1 via a conformational change,
promoting Mps1 dynamics and the establishment of Ndc80C–
MT binding (43, 44, 56). It is likely that, upon activation, the
conformation of Mps1 changes to block the interaction of the IRK
with Ndc80C. This blocking then would allow the TPR domain
(together with the NTE) to act solely and to bias Mps1 binding to
Hec1 in a dynamic manner (21, 23). We emphasize that the lo-
calization of active Mps1 to the kinetochore is compatible with the
incorrect MT attachment (e.g., monastrol treatment; Fig. S4E and
Fig. S6B). In our opinion, the competition between Mps1 and MT
for binding with Ndc80C would not be sufficient to discriminate
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between correct and incorrect attachment (54, 55). Upon the es-
tablishment of proper bioriented kinetochore–MT attachment,
maximal intrakinetochore tension pulls aurora B away from outer
kinetochores (61). Together with the localized feedback loop
between PP1 and PP2A-B56 (62), this event leads further to the
liberation of Mps1 from kinetochores (checkpoint satisfaction)
and stable MT attachment concurrently with the dephosphory-
lated Knl1–Mis12–Ndc80 network. Alternatively, end-on MT
attachment separates Mps1 from KNL1/Spc105 and enables
SAC silencing (63). The dynamic association of Mps1 with
Ndc80C provides exquisite temporal regulation to prevent pre-
mature stable association between Hec1/Nuf2 and MT at early
prometaphase, and prompt activation of Mps1 promotes its re-
lease for an accurate kinetochore–MT attachment (Fig. 6E).
Thus, the task ahead is to delineate the mechanism of action
underlying the conformational changes of Mps1 molecules at
the kinetochore.
In summary, we have identified a dynamic, hierarchical in-

teraction between Mps1, Ndc80C, and MT at kinetochores that
orchestrates accurate mitosis. The persistent association of in-
active Mps1 with Ndc80C via the IRK perturbs faithful kineto-
chore–MT attachment and mitotic progression. Our results provide
a novel mechanistic insight into the spatiotemporal dynamics of
Mps1 activity at the kinetochore and in accurate mitosis.

Methods
Cell Culture and Drug Treatments. HeLa cells were routinely maintained in
DMEM (Invitrogen) supplemented with 10% (vol/vol) FBS and penicillin-
streptomycin (100 IU/mL and 100 mg/mL, respectively; GIBCO). BAC Trans-
geneOmics LAP–Mps1 stable HeLa cells were kindly provided by A. Hyman
(Max Planck Institute, Dresden, Germany) and were maintained in DMEM
containing G418 (0.5 μg/μL) (64). hTERT-RPE1 cells were maintained in
DMEM/F12 medium containing 0.01 mg/mL hygromycin supplemented with
10% FBS. Thymidine was used at 2 mM, nocodazole at 100 ng/mL, the Eg5
inhibitor monastrol at 100 μM, the Mps1 inhibitor reversine at 0.5 μM,
AZ3146 at 2 μM, the aurora B inhibitor ZM447439 at 2.5 μM, and MG132 at
20 μM. In some cases, the CENP-E inhibitor syntelin was used at 1 μM (51).

Plasmids, RNAi, and Transfection. Wild-type and kinase-dead LAP–Mps1
constructs and pSuper-Mps1 (shMps1-1) and pSuper-Mock shRNA constructs
were described previously and were a kind gift from G. Kops, University
Medical Center Utrecht, Utrecht, The Netherlands (33). pSuper-BubR1 and
pSuper-Mps1-2 (shMps1-2) were constructed as described (65) by using the
target sequences 5′-ATGAGACTTCAGAAAACCC-3′ and 5′-GAACAAAGTGA-
GAGACATT-3′, respectively. To construct plasmids coexpressing shRNA and
mCherry, pmCherry-C2 plasmid (based on pEGFP-C2) was cut by BglII and
BamHI and then was ligated again to eliminate the multiple restriction en-
zyme sites. The PCR-amplified fragment encompassing the whole mCherry
expression cassette, including the CMV promoter, mCherry cDNA, and pol-
yadenylation sequence, was inserted into the pSuper vector via BamHI and
EcoRI sites. GFP-tagged Mps1 and truncation Mps1KD-Δ60, Mps11–61, and
Mps11–303 were generated by inserting the corresponding PCR-amplified
fragments into the pEGFP-C1 vector via BglII and SalI sites. The GFP-tagged
Mps1 deletion construct Mps1ΔTPR was generated by inserting Mps1192–857

PCR-amplified fragments into the GFP-Mps11–61 plasmid via SalI and BamHI
sites. The other deletion constructs, Mps1Δ62–220, Mps1Δ62–260, Mps1Δ62–276, and
Mps1Δ62–300, were generated similarly.

Mutagenesis was performed using Mut Express II fast mutagenesis kits
(Vazyme Biotech Co. Ltd) according to the manufacturer’s instructions. All
constructs were verified by sequencing. The target sequences of different
siRNAs are siBubR1 (GGAGATCCTCTACAAAGGG, nucleotides 1126–1144),

siMps1-1 (CTTGAATCCCTGTGGAAAT, nucleotides 2627–2646), and siMps1-2
(CGGAATTCATTGAGACAAA, nucleotides 766–784), which have been de-
scribed previously and synthesized by Qiagen (48, 66). All the plasmids and
siRNAs were transfected into cells using Lipofectamine 2000 (Invitrogen)
according to the user’s manual. To enrich mitotic cells, cells were treated
with thymidine for 14–16 h, starting 8 h after transfection. Then cells were
released into normal DMEM. At 10 h after release, cells were treated with
the Eg5 motor inhibitor monastrol for 2 h and then were fixed for immu-
nofluorescence staining. For rescue experiments, Mps1 shRNA was cotrans-
fected with different rescue plasmids (or empty vector) at a 3:1 ratio.

Antibodies.Monoclonal anti–hMps1-N1 (8), anti-BubR1 (66), and anti-Mad2 (67)
antibodies have been described previously. Anti–α-tubulin (DM1A; Sigma), anti-
aurora B (anti–AIM-1; BD), and anti-centromere antibodies (ACA; Immuno-
Vision) were obtained commercially. For all Western blotting, signals were
detected using HRP-conjugated anti-mouse or anti-rabbit antibodies (Pierce).

Immunofluorescence Microscopy, Image Processing, and Quantification. HeLa
cells grown on coverslips were fixed and permeabilized simultaneously with
PTEMF buffer [50 mM Pipes (pH 6.8), 0.2% Triton X-100, 10 mM EGTA, 1 mM
MgCl2, 4% formaldehyde] at room temperature and were processed for
indirect immunofluorescence microscopy. Samples were examined on a
DeltaVision microscope (Applied Precision) with a 60× objective lens, NA =
1.42, with optical sections acquired 0.2 μm apart in the z axis. Deconvoluted
images from each focal plane were projected into a single picture using
Softworx (Applied Precision). Images were taken at identical exposure times
within each experiment and were acquired as 16-bit gray-scale images. After
deconvolution, the images were exported as 24-bit RGB images and pro-
cessed in Adobe Photoshop. Images shown in the same panel have been
identically scaled. Kinetochore intensities were measured in ImageJ (rsb.info.
nih.gov/ij/) on nondeconvoluted images. The levels of kinetochore-associ-
ated proteins were quantified as described previously (19). In brief, the av-
erage pixel intensities from at least 100 kinetochore pairs from five cells
were measured, and background pixel intensities were subtracted. The pixel
intensities at each kinetochore pair then were normalized against ACA pixel
values to account for any variations in staining or image acquisition. Unless
otherwise specified, the values for treated cells then were plotted as a
percentage of the values obtained from cells of the control groups.

Live-Cell Imaging. HeLa cells were cultured in glass-bottomed culture dishes
(MatTek). During imaging, cells were cultured at 37 °C in CO2-independent
medium (Invitrogen) containing 10% FBS and 2 mM glutamine and were
observed with the DeltaVision RT system (Applied Precision). Images were
prepared for publication using Adobe Photoshop software.

GST Pull-Down Assay. GST-Ndc80CBonsai and GST-Ndc80CBonsaiΔN fusion pro-
teins were purified as previously described (68). GST-tagged Ndc80CBonsai

or Ndc80CBonsaiΔN fusion protein-bound glutathione beads were incubated
with 293T cell lysates expressing GFP-Mps1251–300 fusion proteins in Hepes lysis
buffer containing 0.1% Triton X-100 for 2 h at 4 °C. After the incubation, the
beads were washed three times with PBS containing 0.1% Triton X-100 and
once with PBS and were boiled in SDS/PAGE sample buffer. The bound
proteins then were separated on 10% SDS/PAGE.
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