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We investigate the impact of contact structure clustering on the
dynamics of multiple diseases interacting through coinfection of a
single individual, two problems typically studied independently.
We highlight how clustering, which is well known to hinder
propagation of diseases, can actually speed up epidemic propaga-
tion in the context of synergistic coinfections if the strength of the
coupling matches that of the clustering. We also show that such
dynamics lead to a first-order transition in endemic states, where
small changes in transmissibility of the diseases can lead to explosive
outbreaks and regions where these explosive outbreaks can only
happen on clustered networks. We develop a mean-field model of
coinfection of two diseases following susceptible-infectious-
susceptible dynamics, which is allowed to interact on a general
class of modular networks. We also introduce a criterion based on
tertiary infections that yields precise analytical estimates of when
clustering will lead to faster propagation than nonclustered net-
works. Our results carry importance for epidemiology, mathematical
modeling, and the propagation of interacting phenomena in general.
We make a call for more detailed epidemiological data of interacting
coinfections.
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Individuals are at constant attack from infectious pathogens.
Coinfection with two or more pathogens is common and can

seriously alter the course of each infection from its own natural
history. Infection with HIV increases susceptibility to many patho-
gens, especially tuberculosis, where coinfection worsens outcomes
and increases transmission of both pathogens (1). Recent studies
have examined epidemiological case counts to highlight the im-
portance of upper respiratory infections (e.g., rhinovirus, influenza
virus, respiratory syncytial virus [RSV]) and Streptococcus pneu-
moniae carriage leading to increased risk of pneumococcal pneu-
monia (2–5), although there are few dynamic transmission models
of pneumococcus (PC) and other viral infections.
Models of disease transmission in structured populations have

remained a main focus of network theory for over a decade as
realistic descriptions of contact structures are necessary to un-
derstand how diseases are transmitted between individuals (6–
11). Typically, specific structural properties (average degree,
network size, clustering) are explored in isolation. It remains
a strong (and potentially dangerous) assumption that results
obtained with different models exploring distinct structural
properties will give the same results when combined with other
models exploring different properties. Disease transmission is a
nonlinear problem with features of the propagation itself inter-
acting in complex ways. In this paper, we focus on combining
two much studied phenomena—realistic clustering of contact
structure and the interaction of respiratory pathogens (in-
fluenza and PC pneumonia)—and show that a combination of
these two phenomena leads to behavior that is unexpected
given previous studies.
An impressive amount of research has focused on the impact

of clustering on disease dynamics (12–19). Clustering is often
simply described as the number of triangles (where the friend of
my friend is also my friend) in a network, but usually also implies

that links between nodes tend to be aggregated in well-connected
groups. This aggregation tends to hinder the spread of the disease
by keeping it within groups where links are more likely to connect
to already infected (immune) nodes (18). Clustering plays an
important role in Ebola virus transmission (20), respiratory in-
fections (21, 22), and sexually transmitted infections (23, 24).
On the other hand, the interaction of two spreading agents has

received a great amount of attention mostly due to the generality
of such models (25, 26). These spreading agents can represent
two different, but interacting, diseases (such as sexually trans-
mitted infections) (26, 27); the propagation of awareness cam-
paigns trying to stop the spread of an epidemic (25); or even the
competition between a mutated strain of influenza and the
original strain (10, 11, 28). These dynamics can by themselves
exhibit complex behaviors; however, we will see here that they
can be further influenced in equally complex ways by the struc-
ture imposed on the underlying network.
Here we describe a susceptible-infectious-susceptible (SIS)

network model incorporating variable clustering strength and
two interacting pathogens and provide a mean-field formalism
to follow its dynamics. We find that synergistic coinfections can
lead to faster disease spread on clustered networks than on an
equivalent random network, contrary to previous studies con-
sidering single infections (18). We introduce a criterion based on
tertiary infections (or two-step branching factor), which allows
analytical prediction of whether a clustered or random network
propagates infections most efficiently. Finally, we observe a first-
order phase transition in epidemic final size, meaning that a mi-
croscopic change in transmissibility can lead to a macroscopic (and
discontinuous) increase in disease prevalence. We also identify a
dangerous parameter region where an infection would propagate
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in a clustered network but not in a random network, indicating
that movement of coinfected individuals into new clustered net-
works of susceptible individuals could cause explosive outbreaks.

Network Structure and Epidemic Dynamics
We extend a recent description of propagation dynamics on a
highly clustered network using overlapping community structure
(18). This particular arrangement of nodes leads to the aggre-
gation (or clustering) of nodes into well-connected groups, rep-
resenting for example a person’s family or workplace. Every
connection in this structure can be decomposed in terms of
groups, where even single links between two individuals can be
considered as a group of size two. Assuming that we know the
distribution of group sizes (number of nodes per group) and of
node memberships (number of groups per node), we can define a
maximally random ensemble of clustered networks with a fixed
community structure by randomly assigning nodes to groups (Fig. 1).
Hence, the entire network structure is solely defined by two
probability distributions, fpng and fgmg, respectively, which are
the probabilities that a randomly selected group will contain n
members (size n) or that a randomly selected individual will
participate in m groups (m memberships).
The dynamics of a single disease on this community structure

model was studied in ref. 18. Using a mean-field description, it
was shown how the clustering of links in groups slowed down
propagation as links are wasted on redundant (immune) con-
nections instead of reaching new (susceptible) individuals. Expand-
ing this study, we now study the effects of having two diseases
interacting on these clustered networks.
To highlight the effects of community structured (CS) vs. ran-

dom networks (RNs), both topologies will be studied analytically
and numerically. The CS network will be compared with its
equivalent random network (ERN): a network with exactly the
same degree distribution but with randomly rewired links. This
rewiring is done by setting fpng= δ2,n so that all groups are of size
two (i.e., regular links) and then setting the membership distri-
bution as equal to the initial degree distribution of the CS (18).
On these networks, we study the dynamics of two diseases

exhibiting SIS dynamics. Without interaction with the other
disease, an infectious individual would infect its susceptible
neighbors with disease i at rate βi and recover at rate ri. To keep
track of both diseases simultaneously, we distinguish nodes by
their state ½XY �m, where m is their membership number, X ∈ fS1, I1g

corresponds to the first disease, and Y ∈ fS2, I2g corresponds to
the second disease.
Similarly, we will distinguish groups by their size n and the

states of the nodes they contain. Thus, ½ijk�n is the fraction of
cliques that are of size n with i individuals in state ½I1S2�, j in state
½S1I2�, and k in state ½I1I2�, such that n− i− j− k yields the number
of ½S1S2� individuals. Both the infector and the infectee can
modify transmission rates: a coinfected individual may have in-
creased symptoms, such as coughing or sneezing or higher bac-
terial or viral loads of each pathogen, which may increase the
transmission, and the infectee susceptible to one of the patho-
gens (disease i) may have a compromised immune response due
to infection with the other pathogen (disease j). To quantify this,
we say that in the presence of disease j, βi is increased by a factor
α. For parsimony, we consider symmetric interactions where
presence of disease j affects transmission of disease i in the same
magnitude as i affects j. Assuming symmetry is reasonable due to
the lack of detailed within host study of interacting infections
and does not imply the diseases are identical. The parameters of
the model are summarized in Table 1.
A mean-field description of the time evolution can be written in

the spirit of existing formalisms (18, 29). Here we give a brief
description of how the mean-field equations are obtained and
provide the full system in SI Appendix. The mean-field description
of the dynamics follows the rates that individuals move from one
state to another. For instance, the fraction of individuals infected
by disease 1 and susceptible to disease 2 will change as

d
dt
½I1S2�m = r2½I1I2�m − r1½I1S2�m

+m
�
β1B

ð1Þ
SS ½S1S2�m − β2B

ð2Þ
IS ½I1S2�m

�
,

[1]

where the BðiÞ
UV are mean-field interactions (i.e., the average in-

teraction on disease i per membership for a node in state ½UV �).
Notice that in the equation, the first row of terms is the recovery
events, and the second row is the infection events. The challenge
in correctly writing the equation is thus solely to correctly iden-
tify to which state each event transfers some population density.
The evolution of group states can be followed by a single,

albeit more complicated, equation. This equation governs the
rate of change in ½ijk�n. It involves recovery terms of the form

ðk+ 1Þr1½iðj− 1Þðk+ 1Þ�n,

for cliques with one more individual in state ½I1I2� which recovers
from disease 1 (½iðj−1Þðk+ 1Þ�n → ½ijk�n). Notice that recoveries
can increase the numbers i or j when one of the k coinfected
individuals recovers from disease 2 or 1. Infection terms are
similarly generalized, for example

β2ðn− i− j+ 1− kÞ
n
ðj− 1Þ+ kα+ ~B

ð2Þ
SS

o
½iðj− 1Þk�n,

for cliques with one less individual infected only with disease 2,
such that the remaining ½S1S2� individuals (in parentheses) can be
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Fig. 1. The effects of clustering on disease propagation (18). Schematization
of the network topologies studied in this paper: we start with a random as-
signment of nodes to groups (Upper), from which we obtain a highly clustered
network (Left) that can then be randomized for comparison (Right). The
random network is obtained by randomly rewiring the clustered network,
thereby preserving node degree. This rewiring allows the diseases to reach
more nodes, but separates their paths of spread, lessening the effects of the
synergism. In this cartoon, red and blue nodes correspond to individuals in-
fected with a single disease, whereas purple nodes are coinfected.

Table 1. Description of parameters used in the model

Symbol Definition

fgmg Distribution of groups per node (memberships)
fpng Distribution of nodes per group (sizes)
βf1,2g Transmission rate of diseases 1 and 2, respectively
rf1,2g Recovery rate of diseases 1 and 2, respectively
α Factor of βi in the presence of the other disease
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infected from within (first two terms in braces) or without (last
term in braces).
Combining all possible recovery and infection terms yields the

full equations as provided in SI Appendix. This new set of equa-
tions is coupled to the previous one through the mean-field of
excess interactions ~B

ðxÞ
UV (interactions with outside groups)

~B
ðxÞ
UV =

(P
mmðm− 1Þ½UV �mP

mm½UV �m

)
BðxÞ
UV . [2]

Finally, to close the model, we simply write the basic interaction
mean-fields (average interaction within a given group) with the
available information. For example, we find for disease 1

Bð1Þ
SS =

P
½ijk�nðn− i− j− kÞði+ kαÞ½ijk�nP

½ijk�nðn− i− j− kÞ½ijk�n
, [3]

Bð1Þ
SI =

P
½ijk�n jði+ kÞα½ijk�nP

½ijk�n j½ijk�n
. [4]

Intuitively, for Bð1Þ
SS , the susceptible individual is two times

more likely to be part of a clique with two times more susceptible
nodes: this is the ðn− i− j− kÞ factor. We then just average the
infection terms of each possible clique, i.e., iαISSS + kαIISS, over this
biased distribution of cliques. Note that one interesting type of
correlation is not taken into account: the difference between in-
dividuals in the ½I1S2� state that were infected from the ½S1S2� state

and those that relaxed from the ½I1I2� state. This difference could
potentially inform us on the cliques to which an individual belongs,
some transitions being more likely to be found in the vicinity of
coinfections, but this would break the Markovian behavior of the
mean-field model and only appear to be relevant at high coupling
strength beyond what we consider here (SI Appendix).

Results
We validate our mean-field formalism with simulations of
coinfections on highly clustered networks. We will focus on two
diseases that can interact synergistically with their respective
propagation, i.e., with α≥ 1. Here, we focus on PC pneumonia
with upper respiratory viral infections [e.g., influenza (3, 30) or
RSV (5)]. As our baseline scenario, we use α= 4; which, although
strong, represents an interaction well within the range of in-
teraction observed for PC pneumonia and influenza, where es-
timates of increased acquisition of PC range from 2-fold to
100-fold (4, 30). Similarly, we use a very modular network where
every node belongs to two cliques of size 10. These networks are
chosen for two reasons: first, to avoid degree-degree correla-
tions, where the effect of clustering will be the main structural
effect (18); second, to feature a realistic local clustering co-
efficient (the ratio of triangles to pairs of links around a given
node, here, C ’ 0.47) (31).
Fig. 2A presents the effects of clustering with noninteracting

diseases and the same scenario in the presence of synergistically
interacting diseases. We find that although clustering slows down
the propagation of noninteracting diseases, it speeds up the
propagation of synergistically interacting diseases. This result is
important for network models of disease: random networks are
considered worst case scenarios for the speed of disease propa-
gation (18, 21), implying that models can justify working in a
random network paradigm. However, this is clearly not always the
case in the presence of interacting diseases with synergistic effect.

Clustering Threshold. We are now interested in identifying a simple
analytical criterion, as a function of the clustering coefficient C, and
the disease interaction parameters α, to determine when a clustered
network structure is more efficient at synergistic disease trans-
mission than a random structure. Because we are interested in the
relative speed at which a pair of diseases move through a
population, we can generalize the idea of the basic reproductive

A

B

Fig. 2. Example of infection dynamics on clustered and random networks.
(A) Synergistic coinfections in a population where nodes all belong to two
groups of 10. Markers represent median results of Monte Carlo simulations
with error bars representing the 75% intervals over multiple runs on networks
of 250,000 nodes. Solid curves are obtained by integrating the mean-field
formalism. The dynamics follow r1 = 1=4 d−1, r2 = 1=10 d−1, and transmission
rates fixed to set reproductive numbers R0 = 1.8 for both diseases, with α= 1 for
the noninteracting case and α= 4 for the interacting case. (B) Speed of ran-
domized networks vs. two networks with different clustering: each node has
18 links divided in two groups of 10 (black, C ’ 0.47) or 9 triangles (red,
C ’ 0.06). The results represent the ratio of time to get within 10−6 of the
endemic steady state between the community structured (CS) network and the
ERN for various coupling strengths and βi = βj = 10ri, evaluated using the mean-
field ODE system. The vertical lines indicate the prediction for the coupling
strength when the CS begins spreading faster than the ERN, as given by Eq. 10.
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Fig. 3. Effects of clustering hold over a broad range of parameters. The clus-
tering criterion is used to investigate which network—a clustered structure
(blue) or its equivalent random network (white)—propagates faster in varying
interaction strength and clustering. The other parameters are set to those of
Fig. 2. The shaded region is used to indicate a range of possible realistic sce-
narios for influenza and PC pneumonia.
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number, R0 (32), to identify this clustering threshold. R0 corre-
sponds to the expected number of secondary infections caused by
a single infected individual in an entirely susceptible pop-
ulation. The higher the R0, in general, the faster a disease can
spread. However, clustering is not taken into account for R0, as
it is a one-step branching factor: how many first neighbors will
be infected during an individual’s infectious period. Clustering
reflects how your neighbors might also be second neighbors,
occurring on the second step of the branching process. We thus
turn toward a generalized branching factor, R1, equal to the
number of tertiary infections caused by one coinfected indi-
vidual (i.e., the number of second neighbors infected).
As the calculation of R1 depends on the scenario of interest,

we consider the case of equivalent diseases (β1 = β2 = β and
r1 = r2 = r). See SI Appendix for a treatment of the general case.
The first step is to calculate R0 taking into account which neighbors
receive disease 1, disease 2, or both. A coinfected individual can
transmit both diseases in two ways: by transmitting both while
coinfected or by transmitting one, recovering, and transmitting the
second. Summing the contribution of both possibilities gives the
probability T2 of transmitting both diseases

T2 =
2αβ

2αβ+ 2r

�
αβ

αβ+ 2r
+

r
αβ+ 2r

αβ

αβ+ r

�
. [5]

From this expression, it is straightforward to also write the proba-
bility T1 of transmitting only one disease

T1 =
2αβ

2αβ+ 2r

�
1−

αβ

αβ+ 2r
−

r
αβ+ 2r

αβ

αβ+ r

�
+

2r
2αβ+ 2r

β

β+ r
,

[6]

whose terms represent blocking the second transmission in T2 or
recovering before transmitting. We now want to calculate how
many infections will be caused by each of these z1ðT1 +T2Þ new
infectious individuals (z1 being the average excess degree).
The effect of this clustering coefficient is twofold: first, further

infections are conditional on links not wasted with infected
neighbors of the root node, and second, in the event of a single
infection (probability T1), the other disease can be received from
these wasted links and boost the transmission rate for the non-
wasted links. Considering that, on average, a node infected
through the T1 scenario, and now trying to infect a susceptible
node, also has n= ðz1 − 1ÞCðT2+T1=2Þ neighbors already in-
fected with the other disease, the probability of a coinfection oc-
curring is thus 1− ½2r=ð2r+ αβÞ�n. This discrete probability can be
converted to an effective continuous rate of coinfection through
triangles (SI Appendix)

x= r
��

2r
2r+ αβ

�−n

−
�

2r
2r+ αβ

�n�
. [7]

With this in mind, we can write the probability of a tertiary
infection caused by a secondary infection of only one disease

T1′= ½1−CðT1+T2Þ�

×
�

β

β+ r+ x
+

x
β+ r+ x

�
2αβ

2αβ+ 2r
+

2r
2αβ+ 2r

β

β+ r

��
,

[8]

which counts transmissions of a single or both diseases. The
equivalent probability in the T2 scenario is more straightforward
if we neglect the probability of recovering and being reinfected
(which is the standard way of calculating reproductive numbers).
We thus write

T2′= ½1−CðT1+T2Þ�
�

2αβ
2αβ+ 2r

+
2r

2αβ+ 2r
β

β+ r

�
. [9]

Finally, R1 is given by

R1 = z21ðT1T1′+T2T2′Þ, [10]

and comparing R1 obtained with a given C or with C= 0 (ERN)
will determine which network (clustered or not) spreads the
diseases faster.
This approach is validated on Fig. 2B. Once again, we use

networks constructed from cliques of size 10, such that clustering
not only comes through the root node but also from other newly
infected nodes. We also examine another clustered network, with
the same degree distribution, but composed only of triangles,
leading to a clustering coefficient around 0.06. We can see that
our approach is able to give precise estimates of the coupling
strength for which both clustered networks start spreading faster
than their equivalent random networks.
Fig. 3 demonstrates this over a broad range of parameters. For

realistic ranges of clustering and disease interaction, we find faster
propagation on clustered networks than random. Of course, for
very clustered networks (i.e., when C→ 1), there is no interaction
parameters that can compensate the clustering. For intermediate
values of C, the range of α leading to faster propagation on
clustered networks gets narrower. For very strong coupling, the
diseases end up using the same pathways and thus follow each
other whether the network is clustered or not. Hence, we see a
second switch in optimal network structure as we increase α.

A

B

Fig. 4. First-order phase transition and epidemic latent heat. (A) Emergence
of an endemic steady state for a scenario where equivalent diseases are
either noninteracting (α= 1) or interacting (α= 4Þ on the community struc-
ture (again, cliques of size 10) and its equivalent random network. Their
transmission rates β1 = β2 are given as a fraction of the recovery rate r1 = r2.
The shaded region highlights a parameter region where interacting diseases
on CS networks can spread explosively, whereas they cannot on the ERN.
(B) Time evolution of the interacting diseases at the value β1 = β2 =0.056
(indicated with an arrow in A). The markers give the median state of the
Monte Carlo simulations with error bars corresponding to the 75% interval,
whereas the curves give the prediction of our mean-field formalism. Note
that the epidemics die out on the ERN and not on the CS, despite the heavy
stochasticity caused by the nearby discontinuity (as seen in A).
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First-Order Transitions and Outbreak Risk. We have thus far in-
vestigated the impacts of varying the coupling α between the two
diseases. However, impact of clustering is expected to be stron-
ger for more transmissible diseases (larger βi=ri). In fact, clus-
tering should barely matter around the epidemic threshold where
the endemic steady state goes to zero. One can understand this
phenomenon by thinking of the probability that a triangle is
actually explored by the diseases, which falls as the probability of
transmission to the third power.
This standard assumption is not always justified, however. Fig. 4

presents endemic steady states for clustered and random networks
over a range of transmission rates βi, with and without coinfection
synergism. We find two major results: One, clustering can lower
the epidemic threshold; and two, strong synergy between diseases
modifies the dynamics and leads to a first-order discontinuous
transition. Typically, first-order phase transitions are the result of
a build-up of latent heat, here corresponding to an epidemic po-
tential. Just before the discontinuity both diseases are waiting for
the other to prime the outbreak, which is similar to other recent
observations of first-order transitions in disease spread requiring
pathogen mutation (11) or multiple exposures (33).
Coupling these two surprising results, we see that for a critical

range of parameters, a microscopic increase in transmissibility can
cause a macroscopic difference in the expected epidemic size on a
clustered network but not on an otherwise equivalent random net-
work. This conclusion is confirmed in the shaded region of Fig. 4A:
the diseases spread to around 90% of nodes in the clustered net-
work, whereas the outbreak is unnoticeable in the random network.
In the context of diseases that spread heavily in daycares and

schools, this means that a small difference in the clustering of
contacts could translate to a difference between no outbreak and
a complete contagion for interacting pathogens such as influenza
and PC pneumonia.

Discussion
Here we demonstrated that synergistic coinfections, such as pneu-
monia caused by S. pneumoniae and influenza, may actually spread
faster and farther on clustered networks than on random networks.
This result is similar to the recent observation that behaviors or
opinions can propagate more rapidly in clustered social networks
than in their random equivalent due to social reinforcement (34,
35). Our model thus suggests that we could also expect to see faster
transmission on clustered networks in the context of diseases re-
quiring multiple exposures before infection, which can also lead to
discontinuous phase transitions (33).

We identified a threshold above which a clustered network
structure will enhance the spread of synergistic coinfections.
Finally, we demonstrated a first-order phase transition in final
epidemic size and identified regions where coinfected individuals
can start large outbreaks on clustered networks where they
wouldn’t on random networks. Our results provided here have
clear implications for understanding transmission dynamics of
interacting diseases on realistic contact networks and for net-
work based modeling of infectious disease transmission.
Understanding how diseases interact within host and between

hosts in populations with realistic contact structure is of key
importance to epidemiologists working to limit the transmission
of diseases in these populations. Pneumococcal carriage rates
in children under five years old interacting in highly clustered
communities (daycares and households) can exceed 80% (36),
and influenza infections are common. According to our results,
transplanting a child coinfected with PC and influenza into a new
clustered setting with susceptible hosts could result in an un-
expectedly large outbreak. Similar outbreaks of sexually trans-
mitted diseases could occur if individuals coinfected with syphilis
and HIV (27), for example, entered into a clustered network of
susceptible individuals, such as prostitution networks (24).
Our results are of importance to the field of epidemic mod-

eling in general. Common practice is to run epidemic dynamics
on random networks or mass action models, as these are con-
sidered worst case scenarios for transmission. We showed that
network clustering facilitates synergistically interacting diseases
because tight clustering keeps the diseases together. Our clus-
tering threshold can be used by modelers to test whether they
should be considering random or clustered network dynamics
when trying to identify pessimistic transmission scenarios.
Our study has implications for epidemiology, mathematical

modeling, and for the understanding the propagation of inter-
acting phenomena in general. However, as illustrated by the
problems encountered in trying to identify ranges of realistic
parameters (Fig. 3), there is a dire need for data in the context of
interacting epidemics. Not only is it hard to estimate realistic
contact network properties, but one would also need to be able
to estimate the transmissibility of a pathogen in both the absence
and presence of other possible interacting diseases. Therefore,
although this work is a step forward in terms of theory, it should
also be taken as a call for better data.
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