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ABSTRACT Knowledge of membrane receptor organization is essential for understanding the initial steps in cell signaling and
trafficking mechanisms, but quantitative analysis of receptor interactions at the single-cell level and in different cellular compart-
ments has remained highly challenging. To achieve this, we apply a quantitative image analysis technique—spatial intensity
distribution analysis (SpIDA)—that can measure fluorescent particle concentrations and oligomerization states within different
subcellular compartments in live cells. An important technical challenge faced by fluorescence microscopy-based measurement
of oligomerization is the fidelity of receptor labeling. In practice, imperfect labeling biases the distribution of oligomeric states
measured within an aggregated system. We extend SpIDA to enable analysis of high-order oligomers from fluorescence micro-
scopy images, by including a probability weighted correction algorithm for nonemitting labels. We demonstrated that this fraction
of nonemitting probes could be estimated in single cells using SpIDA measurements on model systems with known oligomer-
ization state. Previously, this artifact was measured using single-step photobleaching. This approach was validated using
computer-simulated data and the imperfect labeling was quantified in cells with ion channels of known oligomer subunit count.
It was then applied to quantify the oligomerization states in different cell compartments of the proteolipid protein (PLP) expressed
in COS-7 cells. Expression of a mutant PLP linked to impaired trafficking resulted in the detection of PLP tetramers that persist in
the endoplasmic reticulum, while no difference was measured at the membrane between the distributions of wild-type and
mutated PLPs. Our results demonstrate that SpIDA allows measurement of protein oligomerization in different compartments
of intact cells, even when fractional mislabeling occurs as well as photobleaching during the imaging process, and reveals
insights into the mechanism underlying impaired trafficking of PLP.
INTRODUCTION
A quantitative description of protein interactions and orga-
nization is key to understanding cell signaling mechanisms,
but measuring such interactions directly within intact
cellular environments has remained a daunting challenge
due to the molecular scale of these events and the light
diffraction resolution limit of conventional optical micro-
scopy. Standard in vitro methods used to study protein
interactions typically involve the separation of proteins
obtained by cell lysis, via gel electrophoresis and Western
blot analysis, but these approaches ignore many aspects of
protein organization within cells. Important local changes
(e.g., within subcellular compartments) inside cells,
involving a small fraction of the total protein expressed by
these cells, can be diluted and missed by such averaging
assays. Additionally, conventional biochemical approaches
ignore much of the dynamics of molecular events within
cells. Yet, changes in the oligomerization state of many clas-
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ses of receptors are directly linked to their function and acti-
vation in cellular signaling (1–3), so the ability to follow
such changes in space and time is a prerequisite to building
accurate models that reflect the molecular mechanisms
that regulate signaling. Furthermore, receptor protein distri-
bution and clustering state vary spatially and temporally
throughout the cell during intracellular trafficking, mem-
brane residency, and finally internalization (turnover) from
the plasma membrane. It is essential to be able to concur-
rently measure these processes in different cellular compart-
ments and, ultimately, to measure the effect of a stimulus
on the distribution of receptors and their interactions in a
given compartment within intact cells.

Spatial intensity distribution analysis (SpIDA) (4–11) can
measure protein oligomeric size (in subunit counts) and den-
sity distributions from the intensity information recorded in
individual conventional laser scanning fluorescence micro-
scopy images. SpIDA was previously used to quantify the
density of spatially mixed monomeric and dimeric popula-
tions of receptors localized on the plasma membrane of
intact cells. The method is based on fitting fluorescence
intensity histograms obtained from regions of interest
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(selected within single images) to obtain density maps of
fluorescent molecules and molecular aggregates along
with their quantal brightness, which indicates their oligo-
meric state. Because distributions are measured from single
images, this analysis can be applied to both live and chem-
ically fixed cells and tissues (4,5,9).

SpIDA was previously applied to detect and follow the
temporal activation of the epidermal growth factor receptors
(4,5,10) and the heterodimeric structure of the metabotropic
transmembrane receptors for g-aminobutyric acid GABAB

receptor in the rat spinal cord (4). SpIDA was also used
to quantify the receptor tyrosine kinase activation and trans-
activation by G-protein-coupled receptors (5–8) and to map
the density of dimers of the KþCl� cotransporter, isoform 2
(KCC2), along the dendrites of neurons in culture as well as
to compare the oligomerization states of the electrogenic so-
dium bicarbonate cotransporter NBCe1-A both in cells lines
and in rat kidney (9).

SpIDA also provided what we believe to be the first in-
sights into the organizational structure of Robo1, a large sin-
gle transmembrane domain polypeptide and the prototypic
member of the Robo receptor family of guidance receptors
(10). More recently, SpIDA was compared with alternative
techniques to examine the intracellular accumulation of
CellTrace calcein red-orange (Life Technologies, Carlsbad,
CA) in a colorectal adenocarcinoma cell line and bovine
aortic endothelial cells (12), demonstrating that SpIDA is
a user-friendly tool compatible with conventional confocal
microscopy that can be rapidly applied to obtain quantitative
information on intracellular concentration and kinetics of
fluorophore uptake. It was also proposed to use SpIDA as
a rapid prognostic tool that can be used on biopsy tissue
(13), given its full compatibility with immunofluorescence.
SpIDA also revealed new insights, to our knowledge, into
the receptor quaternary structure of the serotonin 5-HT2C
receptor (11). The serotonin 5-HT2C receptor was shown
to be present as a mixture of monomers, dimers, and
higher-order oligomers and that these serotonin 5-HT2C re-
ceptors became predominantly monomeric upon antagonist
treatment. SpIDA indicated that the 5-HT2C receptor exists
as mixtures of forms that are regulated in an antagonist-
dependent manner.

In this article, we present an extension of SpIDA to
analyze higher-order oligomers from fluorescence micro-
scopy images. An important technical challenge faced by
all fluorescence microscopy-based oligomerization mea-
surement techniques is the fidelity of receptor labeling,
where, ideally, every subunit is being labeled with a single
emitting and detectable fluorophore. In practice, imperfect
labeling, photobleaching, or intermittent emission (blink-
ing) of the fluorophore introduces systematic errors, which
biases the measured distribution of oligomeric states. For
example, in a cellular system with uniform expression of
tetramers, fractional labeling of the receptor subunits will
entail the presence of fluorescent monomers, dimers, and
trimers (respectively clustered with three, two, or one unla-
beled subunit(s)) along with fully labeled tetramers that will
each be detected with different probabilities. This labeling
artifact will generate a discrepancy between the true under-
lying biological and the observed fluorescent oligomeric
distributions. This phenomenon is not only present with
immunocytochemical labeling, but can also be observed
when using genetically encoded fluorescent proteins to
reveal receptors, as it has been reported that ~20% of fluo-
rescent proteins misfold and do not emit any fluorescence
(14,15). We present a correction in SpIDA for stochastic
mislabeling artifacts, allowing unbiased measurement of
the oligomerization state of receptors that are organized in
higher oligomeric states.

We begin by describing the theoretical approach and
explain how the technique can resolve different oligomer-
ization mixtures even in the presence of complex distribu-
tions of receptors (e.g., higher-order oligomers). We then
discuss the impact of mislabeling and photobleaching on
the study of oligomerization and suggest a correction to
circumvent this artifact. Finally, we use SpIDA to quantify
proteolipid protein (PLP) trafficking in COS-7 cells. A
large number of mutations in the human PLP gene lead
to abnormal myelination and oligodendrocyte death in
Pelizaeus-Merzbacher disease. These established gene
mutations lead to abnormal protein cross links and result
in defective protein trafficking and retention in the
endoplasmic reticulum (ER) due to the formation of
abnormal protein cross linkages (16,17). In this article,
we apply the newly developed SpIDA algorithm to
study the spatial distributions of wild-type PLP in single
cells and compare the oligomerization states of a mutant
protein (PLPD202N) that accumulates in the ER. We
found that a large significant population of tetramers
accumulated in the ER for the mutant protein, while the
normal oligomerization state was measured for the smaller
fraction of the receptor population that reached the
membrane.
MATERIALS AND METHODS

Theoretical background: spatial intensity
distribution analysis

In this section, a brief overview of spatial intensity distribution analysis

(SpIDA) is given while the theory and derivation of SpIDA is explained

in full detail in previous publications (4–7). The first step in SpIDA is the

calculation of an intensity histogram from pixels within a region of interest

(ROI) from a single fluorescence microscopy image of a cell (4,5). The in-

tensity histogram of an image ROI is calculated by counting the number of

pixels present for each intensity value or intensity bin within the selected

ROI. The intensity of each pixel in a confocal laser scanning microscope

(CLSM) image is the integrated fluorescence intensity collected and de-

tected from fluorescence originating within the region of the sample excited

by the laser beam focal volume (i.e., as defined by the optical point-spread

function, PSF). For a standard CLSM with analog detectors, the intensity is

not a photon count.
Biophysical Journal 109(4) 710–721
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The pixel intensity histograms for different ROIs are then fitted

with super-Poissonian distributions defined as the intensity distribution of

randomly (Poisson) distributed particles in space convolved with the optical

PSF of the microscope. Fitting parameters in the analysis are the densities

of the underlying fluorescent molecules and their quantal brightness values.

In SpIDA, the quantal brightness is defined as the average intensity unit

collected over the whole effective volume of the PSF for a distinct fluores-

cent entity (monomer or oligomer). SpIDA was inspired by the temporal

photon counting histogram method (18), but the key difference is that it

is applied in the spatial domain, enabling measurements on subregions

within single images collected on conventional fluorescence microscopes

equipped with analog photomultiplier tube (PMT) detectors (but it does

require characterization and correction of the detector noise response, see

below).

The one-population SpIDA model describes imaged regions that

contain particles with the same (i.e., uniform) oligomeric state (Eq. 1).

The histogram fitting functions of SpIDA are numerically calculated

in an iterative manner. The first step is to calculate the intensity (k) dis-

tribution probability when exactly one single emitter of quantal bright-

ness ε is randomly positioned in the PSF-defined focal volume. Then,

the intensity distribution probability rn(ε;k), where exactly n emitters,

each of brightness ε, are randomly positioned in the PSF focus is deter-

mined recursively from r1(ε;k), in n�1 iterations. In other words, the

fluorescence intensity distribution of all possible configurations of n par-

ticles of quantal brightness ε, in the beam focal volume is calculated

from r1(ε;k).

The intensity distribution for a single population in the ROI, with on

average N particles per focal volume and quantal brightness ε, can be

then calculated by adding all the n-particle distributions, rn(ε;k),

weighted by their respective probabilities of having n particles in the

focus, assuming a Poisson distribution of particles in space with mean

N (Eq. 1). Combining the probability of observing an intensity of fluores-

cence k when exactly n particles are present in the focal volume, rn(ε;k),

and the probability of having exactly n particles in the focal volume

(Poisson distribution poi(n,N)), one can recover the fitting function for

one population SpIDA,

Hðε;N; kÞ ¼
X

n

rnðε; kÞ , poiðn;NÞ with r0ðε; kÞ ¼ dk;0;

(1)

where dk,0 is the Kronecker delta function, which equals 1 if k ¼ 0 and

0 otherwise. Using this model, an intensity histogram of a single population

in a ROI can be used to recover its density and quantal brightness, assuming

that the intensity is proportional to the number of photons emitted by each

of the distinct moieties in the population. In reality, labeling and emission

artifacts will lead to a distribution of measured quantal brightness value that

influences the accuracy of SpIDA measurements (4).

Oligomer-populations mixtures

When two different oligomer populations are mixed within the same region

in space, the total histogram simply becomes the convolution of the two in-

dividual distributions,

H2 popðε1;N1; ε2;N2;A; kÞ ¼ A ,Hðε1;N1; kÞ5Hðε2;N2; kÞ;
(2)

where A is the number of pixels in the ROI. Once the monomeric quantal

brightness has been defined, Eq. 2 is used to analyze the samples (assuming

a mixture of two oligomerization states). If only one oligomerization state

is present, the fitting routine simply yields a negligible density value for

the other oligomerization state. A simplification of this model can be

used if the oligomerization states present in the sample are known a

priori. For example, if a sample is composed uniquely of monomers and
Biophysical Journal 109(4) 710–721
dimers, then Eq. 2 can be simplified by assuming that ε2 ¼ 2 * ε1, which

yields Eq. 3:

H2 popðε1;N1;N2;A; kÞ ¼ A ,Hðε1;N1; kÞ5Hð2 , ε1;N2;; kÞ:
(3)

Similarly, this model can further be simplified by using a known control

sample to measure the monomeric quantal brightness (4,5,7,19). In this

case, Eq. 3 only contains two nonlinear fitting parameters, the density vari-

ables N1 and N2.

Similar to the two-population case, if three oligomer populations are

present, the final histogram will be the convolution of the three individual

population distributions:

H3 popðε1;N1; ε2;N2; ε3;N3;A; kÞ
¼ A ,Hðε1;N1; kÞ5Hðε2;N2; kÞ5Hðε3;N3; kÞ: (4)

In practice, Eq. 4, with its seven variables, does not converge readily. But

here again, if the oligomeric states of the populations composing the

mixture in the biological sample are known, then the model can be simpli-

fied and accurate densities can be recovered for the three populations.

Effect of mislabeling in SpIDA

The phenomenon of subunit mislabeling will introduce a systematic error

when measuring densities and oligomerization states by SpIDA if not

considered. We assume here that the sample consists of a uniform popula-

tion of oligomers, nmer, and that each of the subunits in an oligomer has a

probability p of being fluorescent (and hence emitting). A binomial distri-

bution is expected as we assume that each subunit has an equal probability

of being fluorescent (p). Then, the intensity histogram distribution of the

oligomer population will simply be the convolution of oligomer contribu-

tions for integer increments of emitting (labeled) subunits from monomer

up to nmer,

Hpðnmer , ε0;N; kÞ ¼ Hðεnmer
1 ;Nnmer

1 ; kÞ5.

5H
�
ε
nmer
nmer�1;N

nmer
nmer�1; k

�
5H

�
ε
nmer
nmer

;Nnmer
nmer

; k
�
;

(5)

where εnmer

l ¼ l,ε0 and Nnmer

l ¼ ðnmer!=ðl!,ðnmer � lÞ!ÞÞ,pl,ð1� pÞnmer�lN.

The theoretical distribution for two or three oligomer population mix-

tures can be obtained by convolution as for Eqs. 2 and 4, but with replace-

ment of the one-population distribution (Eq. 1) by the one-population

histogram with mislabeling (Eq. 5).
Confocal microscopy imaging

All images were obtained with a No. FV300-IX71 (Olympus America, Mel-

ville, NY) CLSM with a 60� plan-apochromatic oil immersion objective

(NA 1.4), using laser excitation with the 488 nm line of an Argon ion laser,

a dichroic filter FV-FCBGR 488/543/633, and a BA510IF long-pass emis-

sion filter (Chroma Technology, Rockingham, VT). For each experiment,

optimal laser power and PMT voltage settings were chosen to maximize

signal while avoiding pixel saturation and minimizing photobleaching.

The CLSM settings were kept constant for all samples and controls (laser

power, filters, dichroic mirrors, polarization voltage, scan speed) so that

valid comparisons could be made between SpIDA measurements from

different images taken over the course of a given experiment. Acquisition

parameters were always set within the linear range of the detector (as deter-

mined by calibration (4,7)).
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Determination of analog detector signal
broadening

Ideally, SpIDA measures the fluorescence intensity fluctuations of the true

signal in the image to return information on the number of particles and

their quantal brightness values. Therefore, it is important to consider only

the fluctuations that originate from true fluorescence signal variations of

the labeled proteins in the sample and exclude noise fluctuations inherent

to the detector. Analog PMT detector variance can be empirically deter-

mined using either back reflection of the laser from a mirror placed at focus

or a bright fluorescent sample (e.g., a solution containing an extremely high

concentration of fluorophores or a commercial fluorescent slide). This

determination must be done with the same collection settings (PMT

voltage, filter sets, scan speed), which will be used for imaging measure-

ments of the actual samples. By performing this empirical characterization,

a Gaussian noise distribution can be obtained for each mean pixel intensity.

Further details on the calibration protocol can be obtained from Godin et al.

(4), Barbeau et al. (6), and Zakrys et al. (10).
Computer simulations

All of the simulated images were generated and analyzed with custom-writ-

ten routines in the software MATLAB (The MathWorks, Natick, MA) using

two toolboxes (Image Processing Toolbox and Optimization Toolbox).

For single-population simulations, N particles were randomly distributed

across a two-dimensional matrix. More than one particle can occupy the

same matrix element and each particle contributes a value of 1. The quantal

brightness is defined as the mean number of intensity counts detected from a

particle within a focal volume, so each value in this integer matrix was

multiplied by the product of the particle brightness, ε, and the area of a

disk of radius, u0, where u0 is the e
�2 radius of the Gaussian convolution

function used in the simulations. The final image matrix was obtained by

convolution with a Gaussian function of user set e�2 radius, which simu-

lated integration with a TEM00 laser beam of radius u0 (simulating a

Gaussian intensity profile PSF in two dimensions). If not stated otherwise,

for the simulations, the monomeric quantal brightness was set to 20 iu and

the e�2 convolution radius to 3 pixels.

For simulations of mixed populations, single-population images of the

same dimensions were independently generated with their corresponding

densities and quantal brightness values, and then all images were convolved

with the same Gaussian function. The image matrices were then summed to

generate a single image matrix containing the mixed populations. To model

real systems, detector shot noise was simulated by adding white noise to all

simulation images. For every pixel in the image, we simulated noise with a

Gaussian probability distribution centered at the pixel intensity hii and with
variance equal to 10 iu , hii (4,7–9). This value was measured from the cali-

bration of our confocal microscope under the experimental conditions used

to acquire our images.

We simulated mislabeling in samples by assuming that each emitting

point particle had an emission probability p. This operation was applied

to the image matrix of particles followed by the Gaussian (PSF) convolution

and the addition of noise, as described previously.
Image analysis

The ROI sizes for SpIDA analysis were carefully set by establishing an

optimal tradeoff between sampling different subcellular compartments in

the real samples (smaller ROI) and increasing the fluctuation sampling sta-

tistics (larger ROI) needed to obtain reliable results. The fitting procedure

times varied from<1 to 10 s, depending on the model used and the bin size.

For PLP analysis in COS-7 cells, an intensity mask using the Otsu

threshold (20) was used to segment and identify the endoplasmic reticulum

and the cytoplasmic membrane regions within the images. A contiguity pro-

cess using dilatation and erosion was applied for spatial consistency of the
masks. Then, a three-population analysis including mislabeling was applied

to each of the regions independently (the probability of labeling each recep-

tor is set to p ¼ 80%, if not stated otherwise, as determined in calibration

experiments).
Glutamate receptor transfection of human
embryonic kidney cells

Human embryonic kidney (HEK) cells were grown in cultures in MEM

a Medium 1X (Cat. No. 12571; Gibco, Life Technologies), supplemented

with 4 mM L-glutamine, 10% fetal bovine serum, 100 units/mL penicillin,

0.1 mg/mL streptomycin, and 4500 mg/mL D-Glucose. The cells were

passaged twice per week, and maintained in a humidified, 5% CO2 atmo-

sphere at 37�C. Cells were transfected with GluR1/R2 subunits (glutamate

receptor (GluR)) using Lipofectamine LTX (Cat. No. 508857; Invitrogen,

Life Technologies) together with the corresponding plus reagent (Cat.

No. 501787; Invitrogen, Life Technologies) as described by the manufac-

turer. Cells were plated in petri dishes with a bottom coverslip insert

(Cat. No. 1.5; MatTek, Ashland, MA). The coverslips were precoated

with poly-D-lysine (0.2 mg/mL in phosphate-buffered saline (PBS) 7.4,

Cat. No. F7886; Sigma-Aldrich, St. Louis, MO) by adding 1.5 mL of the

substrate solution to completely coat the bottom of a MatTek dish. Cells

were fixed in 4% paraformaldehyde for 1 h and then rinsed twice in PBS

before imaging.
PLP transfection of COS-7 cells

COS-7 cells were transfected to express PLP as described in Dhaunchak

et al. (17). Cells were maintained on untreated tissue-culture dishes

(Falcon; VWR, Radnor, PA) in DMEM with 10% fetal bovine serum, at

37�C in a 5% CO2 atmosphere, with the medium changed every third

day. For passaging cells, confluent plates were washed once with PBS, fol-

lowed by a short trypsination with 0.05% trypsin-EDTA (Sigma-Aldrich).

Molecular cloning

The plasmid pPLP–EGFP was generated to encode a fusion of the enhanced

green fluorescent protein at the C-terminus of PLP (16,17). The product was

cloned into vector pEGFP–N1 using EcoRI/NotI sites.

DNA transfection

One day before transfection, COS-7 cells were seeded on poly-L-lysine-

coated cover glasses at 50% confluency and transfected using either Fugene

6 (Roche, Indianapolis, IN) or Lipofectamine 2000 (Invitrogen, Life Tech-

nologies) according to manufacturers’ protocols. Cells were then fixed in

4% paraformaldehyde for 1 h and then rinsed twice in PBS before imaging.
RESULTS AND DISCUSSION

Limits of SpIDA for a single population and for
mixtures of monomer and dimers

The accuracy and precision of SpIDA for a single population
and for a two-population mixture of monomers and dimers
have been discussed previously in Godin et al. (4). Here,
we focus on mixtures containing multiple populations. In
summary, assuming reasonable signal/noise (~3:1) for a sin-
gle oligomer population and a mixture of monomers and di-
mers, if the image ROI is large enough to provide sufficient
sampling of fluorescence fluctuations (~50 beam-focus areas
(BAs) or ~6 mm2 for our confocal microscope with a 1.4 NA
objective), SpIDA can give accurate results (<20% error on
Biophysical Journal 109(4) 710–721
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all fit parameters). Autofluorescence can be assessed by
imaging the sample without the fluorescent probe; however,
for many applications, autofluorescence can be neglected
(<5% error in a single population SpIDA fit) if the signal/
background > 3 (4). This condition was met in the samples
measured in this study.
Measuring three populations of oligomers in
single cells

To test whether SpIDA can be applied to resolve three-pop-
ulation mixtures of oligomers, we generated large simulated
images containing different numbers of dimers and tetra-
mers and we varied the number of monomers. To generate
realistic images, white noise was added to all simulated
images (see Materials and Methods for details). To generate
Fig. 1, we assumed that the oligomeric states of the pop-
ulations present are known a priori (e.g., only monomers, di-
mers, and tetramers can be present) so only the population
densities are fit in this case. We considered the assembly
hierarchy scheme where monomers form dimers and then
dimers group together to form tetramers because it is com-
mon in cell biology (e.g., Glutamate (21,22) and GABAB

(23) receptors). Fig. 1, A–C, shows that when we apply a
three-population fitting model (Eq. 4) for cases where
only two populations were actually present, SpIDA still con-
verges to give reliable results (<20% error on all fit param-
eters), demonstrating that the analysis reveals whether an
over-complete model is used (e.g., a three-population model
when only two populations are present). However, as shown
in Fig. 1, C and D, the results are not precise for the mono-
meric population, because the monomers in this case corre-
spond to a small proportion of the total integrated intensity.
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Nevertheless, the accuracy is preserved; one only needs to
acquire more data points in these cases to achieve good
precision. The same explanation holds for the fit of the
monomeric population in Fig. 1 D where the numbers of
dimers and tetramers are higher than the number of mono-
mers. For this reason, for each fitted distribution, it is impor-
tant to consider the density-weighted contribution of each of
the oligomer populations to the total intensity.

A single-population SpIDA fit model used on images in
which both monomer-dimers are present will either fit a
quantal brightness that is in between monomers and
dimers or will inaccurately fit if the quantal brightness is
fixed to that for either the monomer or dimer, indicating
that another model should be used. However, applying the
two-population SpIDA fit model with fixed quantal bright-
ness (monomers and dimers) on images containing a single
population of either monomers or dimers will produce an
analysis that is still accurate and reveal the presence of
just a single population. These three-population simulation
results also demonstrate that SpIDA can still yields accurate
results when mixtures of three oligomer populations are pre-
sent in single images, if the signal/noise is sufficiently high
(~3:1 (4)) and there is sufficient spatial sampling in the ROI.
Therefore, this more general model could be applied to all
the two-population cases, providing a test for the presence
of higher-order oligomers, while only increasing the
computing time and data points requirements.
Nonfluorescent subunits in higher-order
oligomers

An underlying assumption of SpIDA is that the oligomeriza-
tion state is assumed to be proportional to the integrated
6 8 10
 density (/BA)

6 8 10
 density (/BA)

FIGURE 1 Three-population SpIDA analysis.

SpIDA analysis was applied to simulated images

containing three distinct populations (monomers,

dimers, and tetramers). Here, the results are for

cases where we set the density of dimers (N2) and

tetramers (N4) and varied the density of monomers

(N1) in the image from 0 to 10 per BA. The results

here were obtained using Eq. 4. (A) N2 ¼ 1 dimer/

BA, N4 ¼ 0 tetramer/BA; (B) N2 ¼ 5 dimers/BA,

N4 ¼ 0 tetramer/BA; (C) N2 ¼ 0 dimer/BA,

N4 ¼ 5 tetramers/BA; and (D) N2 ¼ 5 dimers/

BA, N4 ¼ 3 tetramer/BA. All the values in the

graphs correspond to an average of 20 images.

The lines correspond to the set values and the

data points to the experimentally measured values.

The ROI size was 500 � 500 pixels. The error bars

correspond to SDs.
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fluorescence intensity per oligomer. In other words, if
quenching between fluorophores on adjacent subunits is
negligible and the detectors are in the linear regime, a dimer
will be twice as bright as a monomer and, iteratively, an
oligomer, made of n subunits (an nmer), will be n-fold
more intense than a monomer. Mislabeling of receptors or
nonideal emission will always introduce a systematic
perturbation because the integrated intensity will not repre-
sent the underlying subunit composition. This effect was
previously demonstrated in studies of the oligomerization
of ion channels using single-molecule-step photobleach-
ing experiments (14,15). The effect of photobleaching of
FPs labeling subunits contributes in an analogous manner
to mislabeling, but in a time-dependent manner (24). Photo-
bleaching can also have an impact on image correlation
spectroscopy measurements and in certain cases can be cor-
rected (25,26). It was elegantly shown that the effect on the
degree of aggregation and cluster density of a sample
evolves differently in an image time series undergoing pho-
tobleaching, depending on its oligomerization state, as the
fraction of emitting fluorophores decreases (24). For a
population of monomers, the recovered concentration will
decrease while the degree of aggregation will remain con-
stant as a function of time. Whereas, for a population of
high-order oligomers, the recovered concentration will, to
some extent, remain constant while the degree of aggrega-
tion will gradually decrease (24).

When studying higher-order oligomers with any biophys-
ical fluorescence-based approach, nonfluorescent proteins
(i.e., when a misfolded fluorescent protein does not emit)
or proteins that are mislabeled (i.e., when the targeted pro-
tein is not labeled and revealed by a fluorescent probe) intro-
duce a systematic error because only fluorescent/labeled
species are observed and the true underlying distribution
of subunits is not fully represented in the integrated signal.
For a single population of dimers, some fluorescent mono-
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mers will be detected (Fig. 2, A–C) because some of the
dimers have nonemitting subunits. Fig. 2 C shows the bino-
mial distribution prediction for measuring monomers and
dimers for the simulated image presented in Fig. 2 B. A
binomial distribution is expected if the probability of any
subunit being labeled is the same (p). We assume this to
be the case in the remainder of the article. The correction
to SpIDA functions to include mislabeling in the model is
presented in Theoretical Background: Spatial Intensity Dis-
tribution Analysis, and can be summarized with Eq. 5.

The phenomenon of subunit mislabeling will introduce a
systematic error when measuring densities and oligomeriza-
tion states by SpIDA if not properly accounted for and
corrected. Assuming an incorrect mislabeling probability
will introduce a systematic error on the measured density
of each population that is, to first-order, proportional to
the error on the assumed probability. Conversely, using the
appropriate emission probability, p, enables correction for
the nonemitting fluorophores and reveals the true under-
lying distribution of labeled molecules. As photobleaching
is associated with a decrease in the probability p of
being fluorescent, adjusting the p value along the time
sequence, using the mean intensities of each image (i.e.,
pðt ¼ 2Þ=pðt ¼ 1Þ ¼ hiit¼2= hiit¼1), will compensate for
photobleaching effects and, assuming sufficient signal,
will provide accurate information on the real underlying
distribution of labeled molecules.

Fig. 2 shows a computer-simulated example of randomly
distributed dimers and tetramers with perfect labeling
(Fig. 2, A and D) and with fractional labeling where p ¼
80% (Fig. 2, B and E). The corresponding distributions for
the two cases are shown in Fig. 2, C and F.

Fig. 3 presents results from computer simulations to
demonstrate the effect of fractional labeling on the detected
distributionwhenonlya singleuniformoligomerpopulation is
present (e.g., only dimers, trimers, tetramers, or pentamers).
2 3 4

l observed p =80%
mial distribution
etramers

2

 observed p =80%
mial distribution
imers

ligomers

FIGURE 2 Effect of subunit mislabeling on the

measured oligomeric distribution. Computer-simu-

lated images showing the impact of mislabeling

on sparse oligomers. Twenty-five dimers were

randomly distributed in the image. Two cases are

presented: (A) p ¼ 100% particles labeling percent-

age; (B) p ¼ 80% particle labeling percentage. The

set oligomer distribution (A) and observed distribu-

tion when mislabeling occurs (B) are presented in

(C). Computer-simulated images in which 25

tetramers are randomly distributed in the image

are presented for p ¼ 100% labeling (D) and p ¼
80% labeling (E). The set oligomer distribution

(D) and the observed distribution when mislabeling

occurs (E) are presented in (F). The monomeric

quantal brightness was set to 20 iu, the e�2 convo-

lution radius was set to 50 pixels, and the ROI size

was 1500 � 1500 pixels.
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A B C FIGURE 3 Effect of subunit mislabeling on

SpIDA measurement of a uniform oligomeric state.

(A) SpIDA results for simulated images containing

only dimers as a function of labeling probability.

Ten dimers where labeled with a subunit labeling

probability p, and the distribution of observed fluo-

rescent monomers and dimers was measured via

SpIDA. This step was repeated 1000 times and the

distribution of monomers and dimers as a function

of the labeling probability is shown. The error bars

correspond to SDs. The effect on the density (B)

and quantal brightness (C) fits recovered with one-population SpIDA (Eq. 1) when only p ¼ 80% of the oligomers are fluorescently labeled for different

types of oligomers (nmer ¼ 2–5). Here, we deliberately applied the wrong one-population SpIDA model without accounting for mislabeling (i.e., p ¼
100% is forced in the fit). The images generated for those simulations were 250 � 250 pixels, the oligomer density was set to 10 oligomers/BA, and

p ¼ 80%. (Box and whiskers) Tukey method; (dot) outliers.
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However, it is possible to measure the labeling probability via
SpIDA by using samples that are known to contain only a sin-
gle uniform oligomer population. The recovered monomer
and dimer distributions for a systemwith only true dimers pre-
sent is shown in Fig. 3 A as a function of the subunit labeling
probability p. This situation is conceptually analogous to pho-
tobleaching. As the fraction of fluorophores that are photo-
bleached increases (i.e., p decreases), the amount of dimers
that are seen as falsemonomers increases,which directly leads
to anunderestimationof the trueoligomeric state of the system
(Figs. 2, A–C, and 3 A). Similarly, if higher-order oligomers
are mislabeled or photobleached (Fig. 2,D–F), the one-popu-
lation SpIDA analysis (Eq. 4) will not provide the exact den-
sities (Fig. 3 B) nor oligomeric states (Fig. 3 C), and the
recovered values will be systematically underestimated.
Measuring the labeling probability using SpIDA

In the previous section, we showed the effect of mislabeling
on the accuracy of SpIDA. Here, we now show that we can
recover the density and the labeling probability from single
images containing labeled species of known oligomeric
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state. For this, we generated computer-simulated images
with 10 tetramers/BA with subunits randomly labeled with
p ¼ 80%. It can be seen in Fig. 4 that using one-population
SpIDA, taking into account mislabeling (Eq. 2 with the mis-
labeling correction proposed in Eq. 5) on simulated images
with varying size, it is possible to recover the set densities
(Fig. 4 A) and the set labeling probability (Fig. 4 B), even
if detector noise is present (see Materials and Methods). A
precision of 20% can be obtained when analyzing images
that have >100 BAs (~12 mm2). Example images in which
all subunits are labeled (Fig. 4 C) and with mislabeling
(Fig. 4 D) are shown, along with their intensity histograms
(Fig. 4 E). Our results suggest that, if one can prepare a
sample with known fixed oligomers tagged with the label
of interest (e.g., GFP), then the labeling constant p can be
experimentally measured with SpIDA.
Measuring three-oligomer populations in single
images including mislabeling

To verify that three-population SpIDA could accurately
resolve a complex distribution of monomers, dimers, and
1000
 (# BAs)

1500 2000 2500

p=80%
p=100%

ity (iu)

FIGURE 4 Measuring densities and mislabeling

probability by applying SpIDA to a single oligomer

population. Twenty-five simulated images of vary-

ing size containing 10 tetramers/BAwere generated

to measure the accuracy of one-population SpIDA

in the presence of mislabeling (Eq. 5). The set den-

sity (solid line), SpIDA recovered densities (A), set

labeling percentage p¼ 80%, and measured p value

(B) are presented as a function of the size of the

image. The error bars correspond to SDs. Example

images where all subunits are labeled (p ¼ 100%)

(C), and then mislabeled (p ¼ 80%) (D), with the

corresponding intensity histograms (E). The image

size was 300 � 300 pixels.
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tetramers in the presence of mislabeling, we simulated
images of varying size containing 10 monomers/BA, 3 di-
mers/BA, and 1 tetramer/BA (Fig. 5, A–C). The effect of
the mislabeling can be seen in Fig. 5, A and B. These simu-
lations show that three-population SpIDA, using a measured
labeling probability, accurately converges when there is
mislabeling and that the precision improves as the ROI
increases (Fig. 5 C).

Images formed of different densities of dimers and tetra-
mers were generated to test the accuracy of three-population
SpIDA in the presence of mislabeling (Fig. 6, A–D). The
analysis was done for a range of monomer densities. Again,
if only two populations are present, the three-population
SpIDA model can still recover the set densities of the two
populations present and indicates the absence of the third
one (Fig. 6, A and B).

This demonstrates that SpIDA can resolve the densities of
mixtures of three-oligomer populations in the presence of
mislabeling (Fig. 6 D) and that the fit parameter precision
decreases for a population as a function of its decreasing
density contribution.

As the number of distinct oligomer populations increases,
the number of fitting variables necessarily increases and the
fit model will not converge to unique solutions. For this
reason, reducing the number of variables in a fit is essential
for the accuracy of the analysis. For example, if only a frac-
tion of the subunits forming a population of tetramers emits
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FIGURE 5 Effect of spatial sampling on measuring densities in images

containing three population mixtures. Simulated images containing 10

monomers/BA, 3 dimers/BA, and 1 tetramer/BA were generated. The size

of the images was varied to study the impact of spatial sampling on the

recovered densities. The oligomer distributions when all (A) and when

only p ¼ 80% (B) of the subunits are labeled are shown. The recovered

fit values for three-population SpIDA when there is mislabeling are pre-

sented in (C) as a function of the image size. In the fit function, the oligomer

distribution (monomers, dimers, and tetramers) and the labeling percentage

was set (p ¼ 80%). The results presented here were obtained using Eq. 4.

The error bars correspond to SDs.
fluorescence, then fluorescent monomers, dimers, trimers,
and tetramers will be detected and contribute to the result-
ing intensity histogram with different probability weights.
Fitting for the densities of the monomers, dimers, trimers,
and tetramers independently will not yield accurate results
(five variables: four densities and one quantal brightness).
However, by employing a simpler model that fits only for
the number of tetramers and the probability that a single
subunit will be fluorescent (three variables: one density,
one quantal brightness and a subunit emission probability),
the method can provide more accurate results. Therefore,
we can also reduce the number of fitting variables when
there is mislabeling for all of the cases previously discussed
(Eqs. 1, 2, and 4).
Measuring higher-order oligomerization states
with the single-population model

To experimentally assess the impact of subunit mislabeling
on SpIDA measurements of higher oligomerization states
in cells, we expressed the tetrameric (21) AMPA receptor
(composed of 2 GluR1 and 2 GluR2 subunits) in HEK293
cells. Cells were transfected with different combinations
of the receptor subunits with or without an mGFP label
(the monomeric form of GFP (27)) to obtain samples with
different distributions of fluorescent subunits: 2*(GluR1-
GFP/GluR2), 2*(GluR1/GluR2-GFP), or 2*(GluR1-GFP/
GluR2-GFP) (Fig. 7 A).

We applied one-population SpIDA analysis (Eq. 1) to
these samples. When only one of the two AMPA subunits
was GFP-tagged, the measured quantal brightness ob-
tained was close to two times that of the monomeric GFP
control brightness, but 16% below the expected value for di-
mers (Fig. 7 B), corresponding to a labeling probability p of
67 5 7%. The same value of quantal brightness was
measured for both GluR1-GFP/GluR2 and GluR1/GluR2-
GFP samples, indicating a preferred stoichiometry of 2:2,
consistent with previous reports in Mansour et al. (28).

When both GFP-tagged subunits were expressed, labeling
all four subunits in an oligomer, the quantal brightness
measured was nearly four times that of the monomeric
control GFP brightness (28), but 12% below the expected
value for tetramers (Fig. 7 B), which corresponds to a label-
ing probability p of 84 5 5%. The difference between the
measured and expected theoretical brightness values for di-
mers and tetramers is unlikely due to quenching or energy
transfer between GFPs, because previous experiments on a
similar channel expression system showed that step-photo-
bleaching of individual GFPs within tetrameric ionotropic
receptors occurred with constant intensity drops indepen-
dent of the number of remaining unbleached GFPs (14).
The variability between the two experimental paradigms
detailed here could be explained by experimental errors re-
sulting from differences in maturation in the ER due to the
additional GFP tags (two versus four tags) or differences in
Biophysical Journal 109(4) 710–721
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FIGURE 6 Three-population SpIDA analysis

with subunit mislabeling (p ¼ 80%). SpIDA anal-

ysis was applied to simulated images containing

three distinct populations (monomers, dimers, and

tetramers) with 80% labeling of subunits. Here,

the SpIDA results for many different cases where

we set the density of dimers (N2) and tetramers

(N4) and varied the number of monomers (N1) in

the image from 0 to 10 per BA are shown. The re-

sults were obtained using Eq. 4 including mislabel-

ing described in Eq. 5. (A) N2 ¼ 1 dimer/BA, N4 ¼
0 tetramer/BA; (B) N2 ¼ 5 dimers/BA, N4 ¼
0 tetramer/BA; (C) N2 ¼ 0 dimer/BA, N4 ¼ 3 tet-

ramers/BA; and (D) N2 ¼ 5 dimers/BA, N4 ¼ 3

tetramers/BA. All the data points in the graphs

correspond to averages of results from 20 images.

The image size was 500 � 500 pixels. The error

bars correspond to SDs.
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pre-photobleaching. Nevertheless, the differences obtained
between the measured and theoretical values are in agree-
ment with what is expected given a 15–25% proportion of
nonfluorescent GFPs as previously reported in Ulbrich and
Isacoff (14) and Durisic et al. (15).
Impaired trafficking of PLP is linked to its
oligomerization state in the ER

We next applied SpIDA to a biological model involving
protein oligomerization, namely the proteolipid protein
(PLP). A large number of mutations in the human PLP
gene, encoding the major integral membrane protein of cen-
tral nervous system myelin, leads to abnormal myelination
and oligodendrocyte death in Pelizaeus-Merzbacher disease
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(OMIM No. 312080). A major subgroup of Pelizaeus-Merz-
bacher disease mutations that map to the extracellular loop
region of PLP leads to the failure of oligodendrocytes to
form appropriate intramolecular disulfide bridges. This
leads to abnormal protein cross links and retention of PLP
protein in the ER (16,17). As most PLP mutations are lethal,
they are commonly studied using cell lines where an exog-
enous PLP gene is expressed. Misfolded proteins in the ER
can induce the unfolded protein response, which includes
ER growth and transcriptional activation of genes encoding
chaperones. In mammalian cells, unfolded protein response
can also trigger apoptosis (29). Using Western blots of
whole cells, Harding et al. (29) found that the PLP protein
is mostly present in monomeric and dimeric forms but
also noticed the abnormal presence of a band that would
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Monomers
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FIGURE 7 SpIDA analysis of tetrameric gluta-

mate receptor (GluR). (A) A subregion of an image

of a cell transfected with GFP-R1 and GFP-R2

plasmids. The image size is 1024 � 1024 pixels

with pixel size of 0.092 mm. (Rectangle) A sample

analyzed ROI. (B) Plot showing the mean fitted

quantal brightness and the standard error for

the three cases (GluR1-mGFP/GluR2 (N ¼ 92),

GluR1/GluR2-mGFP (N ¼ 91), and GluR1-
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correspond to tetramers for some of the mutations (17). We
studied the PLPD202N mutation, which is located in the
extracellular loop 2 of the protein, critical for folding.
A large proportion of this mutant protein failed to reach
the plasma membrane, and accumulated in the ER in a
higher oligomer form (16,17).

To compare the oligomerization state in intact cells,
we measured the state (due to protein cross linking) of
the PLP protein in COS-7 cells expressing either the wild-
type protein PLPWTor the D202Nmutant protein, both fused
to mGFP. We first measured the monomeric brightness
of mGFP to use as a standard in our SpIDA analysis. For
this, we transfected COS-7 cells with mGFP fused with a
farnesyl group (mGFP-f) that targets it to the plasma mem-
brane (27). We then used a one-population model (Eq. 1)
to recover the quantal brightness. We obtained 3.9 5
0.1 Miu/s (Miu/s: 106 intensity units per s) and set that as
the monomeric population quantal brightness for the rest of
the analysis. For this last step, we corrected for the intensity
broadening due to inherent noise of the analog photodetector
as described in previous publications (4,5,7–9). As the
analog detector noise calibration depends on many variables
(dwell time, PMT voltage, scan speed, temperature, etc.), it
was characterized for each set of imaging parameters.

Examples of images acquired for wild-type and mutant
PLP are shown in Fig. 8, A and B, respectively. For this anal-
ysis, we assumed that initially the emission probability for
each fluorescent protein was p ¼ 80% as indicated in previ-
ous published reports for GFPs (14) and confirmed by
our results of GluR1-mGFP/GluR1-mGFP2. As previously
A B
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mentioned, an error in this estimate leads to a linear error
in the measurements (e.g., a 10% error on p leads to 10%
error in the fitted densities). For the wild-type, whole subre-
gions were analyzed using three-population SpIDA with
mislabeling correction (Eq. 4 with the mislabeling correc-
tion proposed in Eq. 5). To test the effect of photobleaching
on the three-population SpIDA analysis, a confocal time se-
ries of five images was acquired. The fluorescence intensity
decreased by roughly 30% during the whole imaging
process. We analyzed each acquired image with SpIDA
(Eq. 4 with the mislabeling correction proposed in Eq. 5)
by iteratively adjusting the emission probability, p, using
the mean intensity of each image pðnÞ ¼ 80%,ðhiin=hii1Þ.
The intensity histograms of the selected region in Fig. 8 A
for the five images are presented in Fig. 8 C with the corre-
sponding fits. The SpIDA results of the cell region shown in
Fig. 8 A as a function of time are presented in Fig. 8 D. As
expected, when adjusting for the appropriate p value, the
recovered densities for each oligomeric state, as a function
of the image number n, remain constant within error. This
suggests that SpIDA, together with the mislabeling correc-
tion presented, can potentially be used to measure the evo-
lution of oligomeric states of complex mixtures in single
cells, even in the presence of unavoidable photobleaching,
if the bleaching rate can be accurately followed by calcu-
lating intensity ratios through the time series.

For the mutant protein, there is a clear distinction between
the ER and membrane compartments. We used a threshold-
based algorithm to separate the two compartments in the im-
ages: we forced contiguity to ensure that isolated single
20.9, 24.8) μm-2

-2

ER

0 iu

FIGURE 8 Impaired trafficking of PLP. Example

images of wild-type PLP (A) and PLP with the muta-

tion D202N (B). Images are 1024� 1024 pixels with

pixel size of 0.058 mm with a pixel dwell time of

9.2 ms. Selected rectangle regions for the three-

population SpIDA with mislabeling analysis are

also shown. In (B), themask of the endoplasmic retic-

ulum is presented (red) and the membrane mask

(blue). Five consecutive images of the cell presented

in (A) were acquired. (C, Inset) The histograms

and corresponding fits of the region that were pre-

sented in (A). The fit values for the first image mem-

brane analysis of the cell expressing wild-type PLP

was 106 monomers/mm2, 13.3 dimers/mm2, and

5.1 tetramers/mm2. Along the time trace, the set

value of p for the nth image SpIDA analysis was

adjusted to compensate for photobleaching

ðpðnÞ ¼ pð1Þ,ðhiin=hii1ÞÞ. SpIDA results compen-

sating for photobleaching are presented in (D). For

each oligomer, the three lines correspond to the

mean5 SD. The two histograms from masked sub-

regions of cell in (B) are shown in (E). (Insets) Masks

of the bright region (ER) and dim region (membrane).

The fit values for the membrane analysis were

24.7 monomers/mm2, 0.3 dimers/mm2, and 0.1 tetra-

mers/mm2. The fit values for the ER analysis were

42.6 monomers/mm2, 20.9 dimers/mm2, and 24.8 tet-

ramers/mm2. To see this figure in color, go online.
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pixels were not present in either of the masks. After segmen-
tation, we removed the transitions between the two masks
by eroding both masks, which allowed us to obtain two
true super-Poissonian distributions that are not clipped
around the set threshold value. Examples of the threshold
procedures and the fit of each mask region are presented
in Fig. 8, B and E.

The results obtained using a three-population SpIDA for
the membrane and the ER are shown in Fig. 9, A and B,
respectively. The results reveal a different oligomerization
state of PLP protein in the ER for the mutant compared to
that in the membrane. Fig. 9 C shows a significant decrease
in the total density of proteins that reach the membrane for
the mutant (pt-test ¼ 0.035) with a significantly higher den-
sity retained in the ER compared to the wild-type (pt-test ¼
0.047). A more detailed analysis of each population reveals
that there is no significant difference between the distribu-
tions of the wild-type and the mutant protein in the
membrane for monomers (Fig. 9D). Within the ER, a signif-
icant population of tetramers for the mutant is observed
(Fig. 9 D) (pt-test < 0.001). Together with the dominant
tetramer population, high densities of monomers and dimers
were detected in the analysis of the ER region. Given the
resolution limits of optical microscopy (30) in the axial
direction, we cannot be certain that those monomers and di-
mers are really part of the ER as they could correspond to
portions of the plasma membrane lying just below the ER
region. Subtracting the distributions measured at the plasma
membrane to the analysis obtained from the ER masked re-
gion reveals that the PLP proteins retained in the ER
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are virtually all present as tetramers. Our findings are in
agreement with those in previous reports using traditional
biochemical methods that involve extraction and isolation
of cellular components (16,17), but here SpIDA allowed
quantification of the impact of this mutation on protein olig-
omerization in different subcellular compartments in single
intact cells using a nondestructive imaging method.
CONCLUSIONS

In this article, we showed how SpIDA can be used to concur-
rently map the distribution and oligomerization state of
receptors in different compartments of intact cells, even in
the presence of mislabeling or nonfluorescent proteins.
Using computer simulations, we set the basis for interpreta-
tion and determined the limits of this approach. We first
validated the approach and showed that the new SpIDA
algorithm permitted measurement of the mislabeling/emis-
sion fraction for GFPs in single cells when applied to the
AMPA receptor system where we have a priori knowledge
of the oligomerization distribution. We then applied the
method to analyze human PLP, where mutations of this
protein lead to a pathophysiology of abnormal myelination
and oligodendrocyte death. Using SpIDA, we showed, quan-
titatively within intact cells, that the impaired trafficking
was linked to retention of the protein in the ER and that
the proteins were mainly present in a tetrameric state in
the ER. Interestingly, there was no measured difference in
oligomerization states in the distribution of receptors that
reached the membrane. For the first time to our knowledge,
ulum
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2N ER
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FIGURE 9 Impaired trafficking of PLP from the

ER is linked with its oligomerization state. The

results for 11 cells for both the wild-type and the

D202N mutation were analyzed by SpIDA and

the results are shown in (A) for thewild-type (34 sub-

regions) and in (B) for the D202N mutation (18 sub-

regions). (C) A plot of the total protein density for all

the cases studied. (D) The weight of each oligomeric

population for the different cell compartments

studied. For (C) and (D), dimers and tetramers

have, respectively, two and four times the weight

of the monomers (total protein density ¼ 1 * N1 þ
2 * N2 þ 4 * N4). The error bars correspond to

mean5 SE. A two-tailed t-test was applied to every

meaningful pair: *pt-test < 0.05; **pt-test < 0.01;

***pt-test < 0.001; and ns, no significant difference.



SpIDA Reveals Abnormal Oligomerization 721
we provide a quantitative measure of this abnormal protein
retention in single cells. Such analysis could ultimately lead
to a better understanding of protein oligomerization in dis-
ease phenotype and help in studying drug treatment efficacy.
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