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Abstract

In the past few years, genome-wide association study (GWAS) has made great successes in identifying genetic

susceptibility loci underlying many complex diseases and traits. The findings provide important genetic insights

into understanding pathogenesis of diseases. In this paper, we present an overview of widely used approaches

and strategies for analysis of GWAS, offered a general consideration to deal with GWAS data. The issues regarding

data quality control, population structure, association analysis, multiple comparison and visual presentation of

GWAS results are discussed; other advanced topics including the issue of missing heritability, meta-analysis, set-

based association analysis, copy number variation analysis and GWAS cohort analysis are also briefly introduced.
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Introduction

Genome-wide association study (GWAS) refers to

study in which hundreds of thousands of single

nucleotide polymorphisms (SNPs) are genotyped

across the genome and tested for association with

the phenotype of interest. In the past few years,

numerous genetic susceptibility loci have been iden-

tified to be associated with many complex diseases

via GWAS, including a variety of cancers
[1-7]

, bipolar

disorder, coronary artery disease, Crohn’s disease,

hypertension, rheumatoid arthritis, type I and II dia-

betes
[8-13]

, inflammatory bowel disease
[14]
, non-obstruc-

tive azoospermia
[15]

, obesity
[16]

, and etc. GWAS

discoveries can be found at the National Human

Genome Research Institute (NHGRI) catalogue
[17]

.

There are 1,724 publications and 11,680 SNPs until

01 October, 2013 (Fig. 1)
[17]

. These findings offer

new genetic insights into understanding the pathogen-

esis of diseases and disorders, and are expected to pro-

mote preventive strategies, diagnostic tools and

treatments. However, the massive amount of GWAS

data poses many statistical and computational pro-

blems as well as data storage and management

issues
[18-22]

. GWAS can be conducted in both popula-

tion-based and family-based manners, but here we

focus primarily on case-control studies, which are cur-

rently the most common design. This article aimed to
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give an overview of the widely used approaches and

strategies for GWAS, including quality control, treat-

ment of population structure, association analysis, mul-

tiple comparisons, visual presentation of the results,

and other advanced topics.

Data quality control

Data quality control becomes extremely important

for GWAS, it is now an imperative step to check and

clean the raw GWAS data stringently prior to any ana-

lysis
[20,23]

. Here, we only discuss the statistical proce-

dures to ensure the validity of data, i.e., the data

filtering procedures that are applied once one already

has genotype calls. The checks are performed through-

out individuals and SNPs, those not meeting the cri-

teria are deleted. All of the quality control procedures

ment ioned below can be conducted through

PLINK
[24]
, a freely available tool that implements large

scale GWAS data managements and analyses in a com-

putationally efficient manner.

Missing rate

Individuals with high missing call rate are implica-

tions of poor DNA quality. The missing call rate of

individual is the proportion of SNPs whose genotypes

are not called for a given individual. We generally

remove the subjects with missing call rate .1%-5%.

SNPs with high missing genotype rate (e.g., .5%)

imply some problems with the genotyping process,

so these SNPs are eliminated. The missing call rate

of SNP is the proportion of individuals whose geno-

types are not called for a given SNP.

An alternative way to handle missing SNPs is to per-

form data imputation, i.e., replacing the missing mar-

kers by their expectations conditional on information

of the observed markers based on reference datasets,

such as the panels of HapMap and 1,000 genomes.

Imputing genotype data not only provides complete

data for multiple markers analysis but also allows test-

ing of untyped SNPs and combination of different

data across genotyping platforms to conduct meta-

analysis
[11,16]

. Further information regarding genotype

imputation can be found in the literature
[25-29]

.

Minor allele frequency

In practice, SNPs with minor allele frequency

(MAF) ,1% are excluded from subsequent analysis

as current SNP-chips genotyping rare variants (i.e.,

locus with MAF,1%) is difficult and error-prone.

Thus, very low frequency alleles are likely to represent

genotyping error and may result in spurious associa-

tions
[68]
. Furthermore, the statistical power is extremely

low for such rare SNPs
[8,20,30]

. For example, provided

that the odds ratio (OR) is 1.30, a study of 6,000 cases

and 6,000 controls provides only approximately 0%

and 3% powers to detect disease susceptibility loci

with MAF of 0.01 and 0.02, respectively
[30]
.

Independence of individuals

Sometimes the apparently independent subjects in

GWAS have hidden relationship which may lead to

spurious associations
[31]
. Independence among samples

is also the fundamental assumption of case-control

study. Thus, the related individuals are excluded or

the relations should be taken into account during asso-

ciation analysis. The probable relatives and duplicates

are detected based on pairwise identify-by-state (IBS)

from which a variable called PIHAT is calculated via

PLINK
[24 ]

. Individuals with high PIHAT (e.g.,

PIHAT . 0.25) are removed.

Hardy-Weinberg equilibrium

Since some association analysis approaches are

developed under the assumption of linkage equili-

brium. It is beneficial to check whether the SNPs devi-

ate from Hardy-Weinberg equilibrium (HWE) for

quality control. For this aim, each SNP is examined

by using the asymptomatic chi-squared test or the exact

one
[32]
, and then the SNPs with P-values less than 10

-5
-

10
-6
are safely removed from further analysis.

However, it is noted that departure from HWE can

occur due to selection, population admixture, cryptic

relatedness, genotyping error and genuine genetic asso-

ciation. Thus, checking HWE only in control is usually

Fig. 1 The total number of published Genome-wide associa-

tion study (GWAS) worldwide since the first GWAS work was

reported in 2005.Only those attempting to assay at least 100,000 SNPs

in the initial stage are included.
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recommended
[8,20]

. In fact, deviation from HWE in case

is typically regarded as a signal of true association.

Sex check

Sex is an important covariate in some GWAS such

as lung cancer study
[6]
, where sex check becomes

necessary. We use X chromosome data to estimate

sex and compare it to self-reported sex. Discrepancy

of reported and estimated SEX is further examined.

Sometimes, the original documents should be retrieved

to resolve this issue. Those records with discrepancies

on sex are suggested to be removed if the discrepancy

cannot be resolved.

Population outliers

The check of population outliers can be finished by

performing an IBS-based nearest neighbor analysis in

PLINK
[24]
. For each individual, the distance to its near-

est neighbor is calculated, and then from the distribu-

tion of distance, we calculate a sample mean and

variance and transform this measure into a z score. If

an individual has an extremely low z score (e.g., , 4

standard deviations), this individual has significantly

different genetic background from the rest of the study

sample and should be excluded as outlier.

Other quality controls include the checks of Mendel

error rate and heterozygosity rate. If the GWAS is

family-based, the Mendel error rate can provide evi-

dence of non-Mendelian transmission. The increased

heterozygosity rate implies poor DNA quality
[21]
.

It should be mentioned that there are no universally

accepted thresholds for the exclusion criteria in quality

control, but the values presented above are widely uti-

lized in practical GWAS literature
[6,8]

. It is also note-

worthy that the values of exclusion criteria used in

quality control are case-specific and dependent on

other factors, such as effect sizes of SNP, sample sizes

and genotyping platform.

Population structure

In association analysis, population structure can

cause spurious findings if not accounted for, and it is

one of the most often cited reasons for non-replication

of previously confirmed variants
[33-34]

. When the allele

frequency differences between the case and control

is due to systematic ancestral differences, it is said to

have population stratification. Population structure

also refers to population admixture, family structure,

and cryptic relatedness. The population structure can

occur in apparently homogenous study. A famous

instance presented by Campbell et al.
[35]

, where it

was reported that an SNP was strongly associated

with the height of European Americans, which are

usually considered a homogenous population, but the

relationship was later proven to be attributed to stratifi-

cation. Various approaches have been proposed to

detect and correct for the possible population struc-

ture
[33-34,36]

.

Genomic control

Genomic control is a widely employed method to

evaluate whether or not the population structure

exists
[37-38]

. In the presence of population structure,

genomic control assumes that the chi-squared statistic

X
2
is inflated by a constant inflation factor l, which

is defined as the empirical median of L unrelated statis-

tics divided by the expected median under the null dis-

tribution

l~
median(X2

1,X2
2,:::,X2

L,)

0:456
;

where L is generally selected less than or equal to the

number of SNPs m, and 0.456 is the expected median

of the chi-squared distribution with d.f. 5 1. In theory,

l should be equal to one in a homogeneous population.

So a value greater than one implies population

structure. Note that the inflation of statistics may be

not due to population structure alone. For example,

only part of the inflation is explained by population

structure in terms of a recent study
[23]
, and it was found

that there were other confounders such as differential

bias or informative missingness, collectively leading to

the inflation.

Genomic control corrects for population structure by

rescaling each test statistic using uniform inflation fac-

tor, i.e., using X
2
/l in place of X

2
. It is easy and fast to

compute, and can deal with cryptic relatedness as well

as population stratification. However, some SNPs exhi-

bit more differences in their allele frequencies than

others; thus, the uniform adjustment is inappropriate

and leads to a loss of power
[39]
. The validity of genomic

control relies on several assumptions
[37]
, it is not known

whether these assumptions hold in practice. It is also

not clear how to choose appropriate threshold of infla-

tion factor l to assess the effectiveness of adjustment,

and empirically a value of less than 1.05 is deemed as

safety.

Structured association

Structured association is a model-based clustering

method. It firstly uses a subset of unlinked null SNPs

to infer the population structure and allocate indivi-

duals to subpopulations according to their likelihoods,
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and then performs testing for association conditional

on these allocations
[40-42]

. The advantages of structured

association are that it explicitly infers the genetic

ancestry and that it is based on a rigorous Bayesian

clustering algorithm. However, this method is compu-

tationally intensive when applied to large scale

GWAS data, and is sensitive to the number of clus-

ters
[31]

. The structured association is carried out by

the software STRUCTURE.

Principal component analysis

Principal component analysis (PCA) is frequently

applied to account for population stratification
[31,39]

.

The basic idea of PCA is to explicitly capture the hid-

den ancestry genetic background by extracting the top

several independent axes of variation. Specifically, it

suggests that individuals with similar principal compo-

nents (PCs) are likely from the same subpopulation.

The PCs are calculated using the singular value decom-

position on the genotype matrix G.

By extensive simulations, it has been demonstrated

that the PCA method, called EIGENSTRAT, has the

following merits
[39]

. The PCA performs well even

under mismatching of case and controls; it can impli-

citly and automatically match cases and controls to

extract the maximum possible amount of power from

the data while avoiding false positives due to stratifica-

tion. It is computationally feasible on GWAS data.

Secondly, the continuous axes of variation can be used

as covariates to correct for stratification in multi-mar-

ker association analysis, and it is not sensitive to the

number of axes of variation used as long as there are

a sufficient number of axes to capture true population

structure effects
[43]

. Thirdly, it is robust to inclusion

or exclusion of the causal SNPs.

EIGENSTRAT is executed by the online software

EIGENSOFT
[39]
. Fig. 2 shows the scatter plot of two

top PCs and the PCA correction for population struc-

ture using a simulated case-control data. The top PCs

in EIGENSTRAT may be not able to capture the com-

plicated covariance structure due to the family structure

or cryptic relatedness in the sample, for which the

novel mixed models that explicitly utilize the kinships

among the subjects provide an effective control
[31,44-46]

.

Multidimensional scaling

PLINK also provides an approach to population stra-

tification by clustering based on pairwise IBS dis-

tance
[24]

. Specifically, PLINK first considers every

individual as a separate cluster, then clusters indivi-

duals into homogeneous subsets, and finally performs

a multidimensional scaling (MDS) analysis to visualize

substructure. Subsequent association analyses are con-

ducted in each cluster if some clear evidence of popula-

tion stratification is observed.

Association analysis

Single SNP scan

Association analysis by comparing allele or geno-

type frequency between the case and the control is

central to GWAS. Although considerable efforts have

been made in developing strategies for association

analysis of GWAS, single SNP scan is still the most

commonly utilized approach
[18]
. It proceeds by testing

each SNP sequentially with the null hypothesis of

no association. The additive genetic model, implying

that each additional number of copies of the minor

allele increases the risk by the same amount, is often

employed for assoc ia t ion analys is a l though

other genetic models are also considered
[18,20]

. Let Gij

be the genotypes AA, Aa, and aa for the j
th
SNP

(j 5 1, 2, ..., m) on the i
th
individual (i 5 1, 2, ..., n),

and a is the minor allele and A is the major allele.

The additive genetic model corresponds to AA 5 0,

Aa 5 1, and aa 5 2 with 1 degree of freedom

(d.f.).

The additive genetic model is tested using the

Cochran-Armitage trend test
[8,37,47]

, which is equivalent

to the score test in the logistic regression
[48]
. Logistic

regression is another popular method for single SNP

scan. Let pij be the disease risk of the j
th
SNP on the

i
th
individual, the logistic regression is

[49]

log it(pij)~log(pij(1-pij))~b0zb1Gij;

Here, b1 5 0 corresponds to the null hypothesis of

lack of dependence. One of the three asymptotically

equivalent tests, i.e., likelihood ratio test, score test,

and Wald test, can be applicable. Under the null

hypothesis, any of the three test statistics has an chi-

squared distribution with d.f. 5 1
[48]

. Logistic

regression offers a flexible tool that can accommodate

interaction effects, covariates (e.g., sex, age, and

smoking) and PCs adjusting for population structure
[18]
.

Similarly, linear regression, analysis of variance, and

t-test are natural choices for association analysis if the

phenotypes are quantitative, and survival models (e.g.,

Cox proportional hazards regression) are considered if

the phenotypes are survival data.

Multi-marker analysis

Complex diseases are determined by a group of loci

in conjunction with environmental factors. Despite its
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success in identifying numerous loci associated with

disease traits, single SNP scan is underpowered for

multifactorial diseases. Thereby, it is more preferable

to implement multiple markers analysis to capture the

joint effects of SNPs
[18,20,50]

. In GWAS analysis, how-

ever, one of the main challenges is to examine hun-

dreds of thousands of SNPs simultaneously. In a

typical setting, the number of SNPs far exceeds the

sample size, which makes it impossible to analyze

the data using traditional multiple regressions, so pla-

cing regularizations on the regression coefficients is

necessary
[51]
.

Recently, a number of penalization-based statistical

techniques have been developed to deal with the high

dimensional GWAS data, among which the least

absolute shrinkage and selection operator (Lasso)

has turned out to be a promising method
[44,52-56]

. Let

the log-likelihood function be L (b; G, Y), where

Y is the phenotype vector with values of 1 or 0 in

case-control study, G is the genotypes matrix, and b

is the SNPs effect vector. The Lasso estimators are

defined as

blassoðlÞ ¼ arg minf�Lðb; G;YÞ þ lSjbjg;

where l is a non-negative tuning parameter determining

the strength of the penalty. The second term in the formula

above is called L1-penalty, due to which the Lasso can

shrink some small values of b to be exactly zeros; hence,

parameter estimation and variable selection are achieved

simultaneously. The optimal l value is selected by cross-

validation (CV), generalized cross-validation (GCV),

and Bayesian information criterion (BIC)
[51-52]

.

The Lasso can deal with genome-wide SNPs at the

same time, but performing a full Lasso regression is

not practical because the computational burden is

intensive. Therefore, it is more efficient to first reduce

the total number of SNPs to a manageable level via a

–

– –

Fig. 2 The quantile-quantile plot and population structure adjusted by genomic control and principal components analysis.

A: The Q--Q plot of the original chi--squared test statistics generated using Cochran--Armitage trend test. Departure from the diagonal is

observed, the estimated inflation factor is 1.389 (95%CI: 1.343--1.446). B: The first two principal components from EIGENSTRAT with

different colors indicating cases and controls. The first PC well distinguishes the two subpopulations. C: The Q--Q plot of the adjusted chi--

squared test statistics by genomic control, the resulting inflation factor is 1.000 (95%CI: 0.967--1.042). D: The Q--Q plot of the adjusted chi--

squared test statistics by the first principal component, the resulting inflation factor is 0.973 (95%CI: 0.940--1.020).
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screening procedure, and look for causal loci among

these passing the prespecified threshold. This screen-

ing-modeling strategy is theoretically and empirically

reasonable for the large scale analysis
[22,57-59]

.

Multiple comparisons

Single SNP scan for GWAS analysis is computation-

ally practical. However, it suffers from serious multiple

comparison problems due to implementing a large

number of hypotheses at the same time. Type I error

will be inflated if no measure is taken. Assume that

each SNP is tested at the traditional significance level

a 5 0.05, then the total type I error is 1-(1-a)
m
, which

will approach 1 quickly as the number of marker m
increases. For example, if m 5 100,000, it is expected

that about 5,000 false positive associations are

observed by chance even none of SNPs is disease-

related. Thus, multiple comparison is an important con-

sideration in GWAS analysis, and must be handled

appropriately
[18]
.

Bonferroni correction

Bonferroni correction offers a convenient way to

control the family-wise error rate (FWER) by dividing

a by m provided that the markers are uncorrelated. The

FWER is the probability of rejecting at least one null

hypothesis when all the nulls are correct
[60-61]

. The

resulting significance level is a/m, an SNP is then con-

sidered to be statistically significant if its P-value is

less than the adjusted significance level. However, it

is well known that Bonferroni correction is conserva-

tive. Perhaps none of SNPs can achieve such small

threshold; in this case, a few SNPs with relatively

small P-values can be chosen for further investigation.

Bayes factor has recently been applied to the mea-

surement of significance as an alternative to P-
value

[62-64]
, which avoids adjustment for multiple com-

parisons.

False discovery rate

False discovery rate (FDR)
[65]

is another commonly

used error measure, which provides a less conservative

way by controlling the expected proportion of false

rejections of nulls among all rejections. FDR is con-

trolled through the linear step-up procedure. For a

given FDR level (e.g., a 5 0.05) find the largest k
value that satisfies P(k) # ak/m, where P(k) is the order

P-value from the smallest to the largest, and the SNPs

with P-values # P(k) are declared as significance. The

step-up procedure is valid when the tests are indepen-

dent or positively dependent, and it often leads to a

lower threshold and thus improves the power
[65-66]

.

The Bonferroni correction, false discovery rate pro-

cedures, and other adjustment methods can be per-

formed using PLINK
[24]
.

Independent validation

To minimize the risk of false positive associations in

GWAS, statistically significant SNPs should be further

validated by independent replications
[20,67,68]

. The main

objective of replications is to evaluate systemically

whether or not the discovered SNPs in initial GWAS

are spurious signals. The replication samples should

be collected the same way as the original study.

Association analysis has to be based on the same

genetic model as being employed in the original study

to ensure consistency and robustness of associations.

The effect sizes of markers should show the same signs

in both the replicated and original study. Mulitple cri-

teria for establishing positive replication are suggested

by Chanock et al.
[67]
.

However, the failures of replication do not necessa-

rily mean the original findings of association are false

positive because there are many reasons for non-repli-

cations. For example, hidden population structures

are not taken into account in both the replicated and

original samples
[34]
, the found markers have very small

effects and cannot be rediscovered easily, and the repli-

cations have small sample sizes leading to low power

to confirm the initial outcomes
[67-68]

. In conclusion, it

has now been agreed that any significant associations

in GWAS must be validated strictly by follow-up stu-

dies or biological interpretations before being reported.

Visual presentation

Visual presentation is helpful to understand the

results of GWAS, a large number of visual tools have

been developed. Here, we briefly introduce a few of

them.

Quantile-quantile plot

It has been realized that the statistics will be biased

due to population structure. It is a routine pattern to

apply the quantile-quantile (Q-Q) plot to evaluate the

existence of population structure before and after cor-

rection. The Q-Q plot is constructed as a scatter plot

of the observed ranked chi-squared statistics from the

smallest to the largest against the theoretical values

under the null hypothesis of no association. If the sta-

tistics come from null distribution, the plot should go

along the diagonal linearly. The Q-Q plot can be con-

veniently implemented by R package using the outputs

of PLINK
[69]
.
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The Q-Q plots for population structure using a simu-

lated data with genomic control and PCA adjustments

are shown in Fig. 2. The simulation settings are

similar to those in the report of Price, et al.
[39]

.

Fig. 2 shows that the population structure leads

to inflation of test statistics, and both the genomic

control and PCA provide effective corrections. The

95% confidence interval (CI) of inflation factor is cal-

culated using the method of bootstrap
[70]

, repeating

1,000 runs.

Manhattan plot

The P-values of GWAS are generally shown by

Manhattan plot. This plot is produced by scattering

the P-values in -log10 scale in the vertical axis and

the physical position of SNP along chromosomes

in the horizontal axis. Different chromosomes are gen-

erally distinguished with colors. Using -log10 scale is to

highlight the small P-values, which suggest potential

disease-related SNPs. The Manhattan plot is executed

through the R package or the program Haplo

View
[69,71]

. For example, see Fig. 3.

Haploview plot

Once significant susceptibility loci are found, the

computation of linkage disequilibrium among their

neighboring SNPs upstream and downstream and

understanding the population haplotype structure

are of interest. Haploview provides such analyses in a

visually appealing and interactive interface (Fig. 4)
[71]
.

LocusZoom plot

LocusZoom, a web-based plotting tool, provides

visually regional information such as the strength and

extent of the association signal relative to genomic

position, local linkage disequilibrium and recombina-

tion patterns and the positions of genes in the region

(Fig. 5)
[72]
.

Other advanced topics

Although the above methods for analyzing the

GWAS data have been widely employed in practice,

they have some limitations and shortcomings, for

example, low power and lack of interpretability and

repeatability for single marker scan. Substantial efforts

have been made to overcome these difficulties. Now,

we discuss some advanced topics for further analyzing

the GWAS data.

Missing heritability

In spite of GWAS success for most common dis-

eases, the discovered disease susceptibility loci explain

only a remarkably small part of the overall phenotypic

variation
[22,73-75]

. Several reasons have been proposed

for the missing heritability. (I) The genetic effect sizes

on the phenotypes are fairly weak. It is reported that

the relative risks (or odds ratios, OR) of most of the

related loci are typically on a scale of 1.10-1.20 even

for GWAS with very huge sample size. A large num-

ber of markers with much weaker effect sizes cannot

be detected using current statistical approaches. (II)

Part of the heritability is attributable to the interaction

effects of gene-gene and gene-environment
[76-80]

,

whereas most of the published GWAS literature only

considers the main effects. (III) Gene-based and path-

way-based analyses can improve the power
[81-87]

; these

considerations result from the fact that multiple SNPs

nearby are often involved in the same biological path-

way and act collectively. (IV) The effectiveness of the

current GWAS largely depends on the hypothesis of

common disease common variant (CDCV)
[18]
, i.e., the

common complex diseases are mainly attributable to

a number of common variants (i.e., locus with

MAF. 1%). However, recently, it has been recognized

that the rare variants (i.e., locus with MAF ,1%) are

expected to contribute to susceptibility to the common

complex diseases substantially
[75,88-92]

, i.e., the hypoth-

esis of common disease rare variant (CDRV)
[93]
.

All of the issues above are not trivial, and actually they

can be more complicated and challenging. Discovering

markerswithweaker effect sizes requiresmuch larger sam-

ple size, which will lead to more expenses. Although the

importance of epistasis has been recognized, the power

of detecting epistatic effect is rather low due to relatively

small sample size, and the calculation of interaction effect

is much time-consuming. For example, to look for

Fig. 3 Manhattan plot of P-values. The blue and red lines

represent the corresponding P-values of 1 6 10
--5

and 1 6 10
--7
,

respectively.
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pairwise interactions from 500,000 SNPs, a total of 1.25
6 10

11
tests need to be implemented. The issue of multi-

ple testing also arises in epistasismodel, higher order inter-

actions aremore complex, andhow tomodel thebiological

epistasis statistically is not completely clear. For rare var-

iants, the commonly used methods break down due to

the extremely low MAF; therefore, developing powerful

statistical approaches for rare variants is an urgent

demand
[94-105]

.

Meta-analysis

As mentioned before, current single marker scan of

GWAS data is underpowered and limited by the weak

to modest effect sizes of related common variants.

Fortunately, several independent teams of investigators

around the world perform similar GWAS on the same

disease
[11,106]

. This provides an opportunity to combine

these datasets via the method of meta-analysis. An

attractive aspect of meta-analysis is that the statistical

power can be improved by increasing the sample size.

However, various studies typically contain different

sets of SNPs; therefore, the first step of meta-analysis

for GWAS is imputing the untyped SNPs. Then, the

classical meta-analysis can be employed, such as the

fixed effects model and mixed effects model. The for-

mer assumes that the genetic effects are the same

across the individual studies and the observed differ-

ences are duo to sample error; while the latter assumes

that the genetic effects vary between studies and the

differences include both sample error and substantial

distinctions across various GWAS.

The mixed effects model is more conservative than

the fixed effects model; thus, determining which mod-

els are employed is important. If the evidence of

between-study heterogeneity is present, the mixed

effects model is used, for example, the DerSimonian

and Laird model; otherwise, the fixed effects model

is used. The heterogeneity may be due to variable link-

age disequilibrium across the studies, winner’s curse,

gene-gene interaction and other possibilities
[107]

. Many

metrics have been proposed to test the heterogeneity,

among those the statistic I
2
is widely applied, which

is a measure of the proportion of total variation

between studies attributable to heterogeneity beyond

Fig. 4 Linkage disequilibrium structure of the selected SNPs. The grey scale indicates the strength of correlation coefficient

r
2
between two SNPs; the black lines indicate the block structure of the human genome. The white bars at the top indicate the

position of SNP, each square represents the correlation of two SNPs measured by the correlation coefficient r
2
between the alleles of

the two SNPs, and the shades of grey indicate the strength of the correlation varying from zero correlation (white) to strong correlation

(black).
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the sample error
[108]

. The value of I
2
ranges from 0% to

100%, and a larger I
2
indicates more heterogeneity. A

general guideline of I
2
for detecting heterogeneity is

that 0% to 25% represents ignorable heterogeneity,

25% to 50% represents low heterogeneity, 50% to

75% represents moderate heterogeneity, and 75% to

100% represents high heterogeneity
[109]

.

Set-based association analysis

To overcome the limitation of single SNP analy-

sis, set-based association analyses have been devel-

oped, where multiple related SNPs (e.g., within the

same gene, pathway or functional group) are grouped

into an SNP set and collectively examined
[81-87]

. SNP

set analysis enjoys many advantages compared to

single SNP analysis, e.g., identifying multi-marker

effects, decreasing the number of multiple compari-

sons, allowing for epistatic effects, and making infer-

ence on biologically meaningful units
[110]

. The

reasonable logics behind the set-based testing proce-

dures exist in two aspects: (I) the statistical power

increases significantly due to enriching association

signals by grouping; (II) it has been observed that

multiple SNPs are often jointly related to diseases.

The often used set-based tests include principal com-

ponents analysis, kernel machine testing, the global

test and others
[110]

.

Copy number variant analysis

Beyond SNP, copy number variant (CNV) is another

important genetic variation existing in the human genome.

CNV is typically defined as a submicroscopic variation of

DNA segments, ranging from kilobases to megabases in

size, including deletions, insertions, duplications, and com-

plex multi-site variants. CNV is related to common com-

plex diseases and is widely believed as one of the causes

of missing heritability
[111,112]

. Several methods are devel-

oped for detecting CNV, e.g., BAC Array Comparative

Genomic Hybridization (CGH), Representational

Oligonucleotide Microarray Analysis (ROMA) and

Agilent CGH. It is also possible to infer CNV using the

GWAS data; however, the optimal strategy for evaluating

such data is not clear. Additionally, the approaches for

inferring rare and de novo CNV also need to be devel-

oped
[113]

.

Furthermore, the next-generation sequencing technolo-

gies create new challenges for analyzing CNV since there

have been no accepted standard protocols and quality con-

trol measures so far. The challenges can come frommapp-

ability, GC-content bias, quality control measures of reads

and difficulty in identifying duplications
[114]

.

GWAS cohort analysis

Current GWAS is mainly cross-sectional. This may

be limited in investigating the causality between

Fig.5 A LocusZoom plot for SNPs in the region flanking 400 kb on either side of the selected SNP rs2513514 on chromosome 11.

P-values in --log10 scale as in Manhattan plot are shown on the left vertical axis, the recombination rates are on the right vertical axis, and the

chromosomal positions are on the horizontal axis. The bottom panel of a LocusZoom plot shows the name and location of genes. The SNPs are shown

in purple and the r
2
the values are represented by different colors. The genes within the region are annotated and are shown as arrows.
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genetic variants and diseases. GWAS cohort can not

only provide further insight into causality but also a

solution of missing heritability. In cohort study, indivi-

duals are collected longitudinally; accordingly, tem-

poral changes in biological properties will offer

insight into disease diagnosis, progression, and recov-

ery. However, the temporal effects between different

times create great statistical challenge, especially in

such high-dimensional data, and should be taken into

account
[115]

. Association analysis for GWAS cohort

data is a relatively new field although some explora-

tions have been made. Recently proposed methods

for cohort GWAS data include, dependent on the type

of dataset, for example, the longitudinal support vector

machine and the penalized mixed effects model
[115]

.

Discussion

The success of GWAS relies on the progresses of

technologies, effective collaborations of researchers,

well designs and implementations as well as subse-

quent analyses and interpretations. This article gives

a comprehensive overview of genome-wide association

analysis, the basic strategies commonly used in GWAS

are introduced, and the shortcomings of these

approaches are also emphasized.

Stringent quality control ensures the results of

GWAS are believable, some of which will become less

important in the future. For example, owing to next-

generation sequencing, there are fewer genotyping

er ro rs and no need to removing SNPs wi th

MAF , 1%; instead, the rare variants are of important

interest.

When association is analyzed, it requires paying

more attention to the issues of multiple testing and

population structure because false positive or false

negative associations arise. For population structure,

it is important either to demonstrate that it can be neg-

ligible
[6,8]

, or to adequately adjust for by methods such

as genomic control and PC analysis
[21]
.

There are many user-and-interface friendly tools to

implement the visualizations. It has become routine

in GWAS analysis that one presents the Manhattan plot

to show the potential disease-related loci and the Q-Q

plot to show the inflations of test statistics. Other plots

such as LocusZoom plot and Haploview plot offer

valuable complements.

The genome-wide era creates exciting and challen-

ging opportunities to the scientific world. Statistical

approaches play very important roles in GWAS. We

have noted that some other novel statistical tools are

ignored, such as the Bayesian approaches and the

machine learning
[21-22,51,58,62,79,116-117]

. We hope that the

present overview is helpful for GWAS researchers to

obtain a clear picture of analyzing such large scale

data, and that the future improvement of statistical

methods will enable us to overcome these challenges

and to make a better understanding of the genetic basis

of the complex diseases.

Some online sources and websites

HAPGEN2 for simulating case control datasets:

https://mathgen.stats.ox.ac.uk/genetics_software/hap-

gen/hapgen2.html. plink for whole genome associa-

tion analysis: http://pngu.mgh.harvard.edu/,purcell/

plink/. IMPUTE2 for genotype imputation and haplo-

type phasing program: http://mathgen.stats.ox.ac.uk/

impute/impute_v2.html. NHGRI catalogue of

GWAS results: http://www.genome.gov/gwastudies/.

EIGENSOFT for population structure: http://genet-

ics.med.harvard.edu/reich/Reich_Lab/Software.html.

Haploview: http://www.broadinstitute.org/scientific-

community/science/programs/medical-and-population-

genetics/haploview/haploview. LocusZoom: http://

csg.sph.umich.edu/locuszoom/. R software: http://

cran.r-project.org/.
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