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Abstract

Purpose—Disease-causing mutations and pharmacogenomic variants are of primary interest for 

clinical whole-genome sequencing. However, estimating genetic liability for common complex 

diseases using established risk alleles might one day prove clinically useful.

Methods—We compared polygenic scoring methods using a case-control data set with 

independently discovered risk alleles in the MedSeq Project. For eight traits of clinical relevance 

in both the primary-care and cardiomyopathy study cohorts, we estimated multiplicative polygenic 

risk scores using 161 published risk alleles and then normalized using the population median 

estimated from the 1000 Genomes Project.

Results—Our polygenic score approach identified the overrepresentation of independently 

discovered risk alleles in cases as compared with controls using a large-scale genome-wide 

association study data set. In addition to normalized multiplicative polygenic risk scores and rank 

in a population, the disease prevalence and proportion of heritability explained by known common 
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risk variants provide important context in the interpretation of modern multilocus disease risk 

models.

Conclusion—Our approach in the MedSeq Project demonstrates how complex trait risk variants 

from an individual genome can be summarized and reported for the general clinician and also 

highlights the need for definitive clinical studies to obtain reference data for such estimates and to 

establish clinical utility.
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INTRODUCTION

As the cost of sequencing decreases, the clinical utility of whole genome sequence (WGS) is 

currently undergoing intensive investigation as a tool for precise diagnosis, risk prediction, 

and therapeutic guidance1; WGS is also undergoing evaluation from ethical and legal 

perspectives.2,3 The MedSeq project is a randomized clinical trial studying the integration of 

WGS into clinical care in two specific contexts4: patients from a specialty clinic with a focus 

on Mendelian forms of inherited cardiomyopathy and patients from a primary-care practice. 

In each of these clinical settings, pathogenic variants in known Mendelian disease genes, 

loss-of-function variants in disease-associated genes across the genome, and other actionable 

variants, including alleles of pharmacogenetic importance, are the major focus of the whole 

genome report. However, one of the advantages of WGS over whole-exome sequencing 

(WES) is that the former provides genomic variants in intronic and other non-coding 

regions, where the majority of common alleles associated with disease traits reside.5,6 As a 

result, WGS also has the potential, when interpreted in the context of rigorous population 

data, to enable the efficient estimation of genetic liability for common complex diseases as 

well as the discovery of possible modifier effects on rare alleles of larger effect size.

One of the most interesting and relevant questions for WGS reporting is in regard to how to 

define and present data on common alleles associated with increased or decreased risk for 

certain diseases,7 particularly those with potential therapeutic implications.8 Several 

approaches might be used to estimate the composite risk for a given trait and to allow its 

communication to general clinicians. Risk alleles are typically discovered using a case-

control design in which the frequency of each allele in cases is compared to that in controls. 

An allele observed at a higher frequency in cases is considered to be a risk allele and 

represents a marker for all adjacent variants in linkage disequilibrium.9 Conversely, an allele 

with a lower frequency in cases is sometimes reported as a “protective” allele. However, the 

very same allele in different populations may represent distinct haplotypes, whereas case 

and control definitions are also necessarily imperfect. Thus, without longitudinal cohort 

studies, it may be difficult to establish the clinical validity of common alleles. In this 

context, in the current study, we focused on the single-nucleotide polymorphisms (SNPs) 

more frequently found in cases from genome-wide association studies (GWASs) as listed in 

the National Human Genome Research Institute GWAS catalogue in the current study.10
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An intuitive approach to combine information from several genetic tests is to multiply 

likelihood ratios with pretest odds of population-specific lifetime disease risk estimates.11,12 

However, for the majority of risk alleles, objective likelihood ratios are not available. 

Polygenic risk scores (PRSs) have been proposed by several investigators7,13–17 to combine 

multiple risk alleles, including those that fail to attain genome-wide significance in 

association studies, on the basis that there may be genetic epistasis, interaction with 

environmental factors, or aggregate effects that can be captured.18 To this end, a 

multiplicative model including seven risk alleles for breast cancer for risk stratification.17 

Aggregating the information from a larger number of sub-threshold risk alleles has also been 

used, testing the classic model of polygenic inheritance.13,16 These studies highlighted the 

possibility of using polygenic scores in the context of conditioning nongenetic clinical 

information, although the performances of such PRSs were inconsistent across different 

diseases.19,20

Although the prediction of disease risk based solely on genotype is not currently standard of 

care in medical practice, it may soon be useful for patients and clinicians to know whether a 

patient presents a high-risk genomic profile for a specific trait or disease as compared with 

the population norm.21,22 This may be the case even when there are no robust independent 

data regarding the clinical utility of genetic predictors, given the known role of multiple 

subjective variables in situations of clinical equipoise. Here we summarize multiple risk 

alleles by calculating a normalized PRS using a population-scale WGS data set from the 

1000 Genomes Project (1KGP).23 Our approach demonstrates how complex trait risk 

variants from individual genomes can be efficiently summarized and reported in a clinical 

context, highlighting the clinical uncertainties of interpretation while facilitating the use of 

the available information in clinical decision making.

MATERIALS AND METHODS

Risk alleles

The National Human Genome Research Institute’s GWAS catalog (http://www.genome.gov/

admin/gwascatalog.txt) was downloaded on 03/12/2013.10 The catalog contained a total of 

9,785 records corresponding to 8,384 risk alleles. We used a series of filtering steps to retain 

only informative SNPs for the PRS estimates as detailed in Supplementary Figure S1 online. 

The excluded SNPs with each filtering step can be found at the second to the rightmost 

column–“Filtering Status”–of Supplementary Table S1. For the risk alleles with odds ratios 

(ORs) < 1, we followed the GWAS catalog’s inversion of ORs using the alternative alleles 

as risk alleles. A total of 1,565 risk alleles for 182 traits met our filtering criteria 

(Supplementary Table S1 online).

To test our approach to the reporting of common allele variations in the MedSeq project, we 

selected 8 binary phenotypes–abdominal aortic aneurysm, atrial fibrillation, coronary heart 

disease (CHD), type 3 diabetes (T2D), hypertension, obesity/metabolic syndrome, platelet 

aggregation, and QT prolongation–that are factors frequently weighed in decision making in 

both primary care and cardiology subspecialty settings. Quantitative phenotypes were not 

included due to the inconsistency in phenotype measures and descriptions between studies. 
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A total of 161 risk alleles were then incorporated into PRS estimates for the eight selected 

phenotypes.

Calculating polygenic risk scores

Several approaches to polygenic risk scoring exist, the majority summing up all risk alleles 

present in an individual genome and assigning allele-specific weighting. The simplest 

method is to treat all risk alleles equally, that is, an allele counting method where the weight 

equals to 1.20 Alternatively, observed effect sizes can be used to weight each risk allele 

differently.13,16 We calculated a multiplicative PRS (MPRS) as detailed in the 

Supplementary Materials and Methods online. Briefly, the MPRS for each phenotype was 

calculated as the product of ORs. Thus, the log (MPRS) is equivalent to the OR-weighted 

sum of risk allele counts.20 The population attribution risk (PAR) method integrates 

population allele frequency (AF) and OR.15 A single SNP PAR was established as AFi (ORi 

– 1)/(AFi × (ORi – 1) + 1), in which AFi is the prevalence of the risk allele at the ith locus in 

the control population, and ORi is the OR of the risk allele at the ith locus. The multi-SNP 

PAR was calculated on the basis of the single SNP PAR for each associated SNP: 1 – Π(1 – 

PARi), in which PARi is the single SNP PAR for the ith locus. The raw scores from 

counting, and the MPRS and PAR methods were normalized using the median score of the 

European (EUR) genotypes (N = 392) in the 1KGP, and the ranks of the individual’s score 

are reported as deciles.

Testing the performance of the MPRS with a GWAS data set

To compare the distribution of polygenic scores between cases and controls, we used the 

Wellcome Trust Case Control Consortium (WTCCC) phase I data set, which genotyped 

16,179 individuals with the Affymetrix GeneChip Human Mapping 500K arrays.24 The 

details of the WTCCC data set are described in the Supplementary Materials and Methods 

online. We selected the subset of risk alleles represented on the Affymetrix 500K arrays to 

calculate the MPRS and performed the analysis after excluding those risk alleles that were 

originally reported with the WTCCC data set.24 Genotype imputation was not performed 

since the estimated 5–6% imputation error rate25 might result in significant changes in 

MPRS decile (see Results). The MPRS percentile for each individual was calculated for 

each trait against 2,938 controls. As noted, for SNPs in linkage disequilibrium (r2 > 0.5), we 

chose the risk allele with the largest effect size. The SNPs in the major histocompatibility 

complex region of chromosome 6–rs6458307, rs9469220, rs615672, rs6457617, rs9272346, 

and rs9465871–were excluded when calculating MPRS for Crohn disease, type 1 diabetes, 

and rheumatoid arthritis.

RESULTS

Correlation between different polygenic scoring methods

The numbers of reported risk alleles per trait skewed to the right because a small number of 

traits were associated with a majority of risk alleles. Risk alleles for multiple sclerosis (n = 

105), CD (n = 95), T2D (n = 77), ulcerative colitis (n = 64), and CHD (n = 62) constituted 

25.7% of 1,565 alleles. Forty-three traits were associated with a single reported risk allele. 

The median OR was 1.25 (interquartile range (IQR) 1.15 – 1.45), and 461 risk alleles 
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exhibited ORs of more than 1.45. The majority of risk alleles were found in non-protein 

coding regions (91.0% of 1,565): 55.7% (872/1565) lie within intergenic regions while 553 

(35.3%) were intronic. A total of 103 (6.6%) risk alleles were found in coding regions, and 

14 and 23 were mapped to 5’-UTR and 3’-UTR, respectively. The AFs ranged from 0.011 to 

0.983 with an average of 0.422. Risk AFs were not listed for 265 loci in the original 

discovery studies.

We compared the three methods for combining risk alleles: counting, MPRS, and the multi-

SNP PAR outlined in the Methods section. For each individual in the 1KGP EUR population 

(N=379), we calculated polygenic scores for eight cardiac phenotypes: abdominal aortic 

aneurysm, atrial fibrillation, CHD, T2D, hypertension, obesity/metabolic syndrome, platelet 

aggregation, and QT prolongation. The scores from three methods showed significant 

positive correlations for all 8 traits (Kendall’s tau, P < 2.2×10−16; Supplementary Table S2 

online); however, the counting method when used with small numbers of risk alleles yielded 

nonunique scores in 379 EUR individuals (Supplementary Figure S2 online).

To check whether the subgroups of highest genetic risk–i.e., those within the 10th decile–

could be consistently defined by different summary methods, we selected two common 

complex traits–CHD and T2D, which had 62 and 77 risk alleles, respectively, that met our 

filtering criteria. The percentile rank of each individual was calculated using all three 

methods, and decile ranks were compared between polygenic scoring approaches. The three 

methods showed significant positive correlations overall (Figure 1 and Supplementary Table 

S2 online), with the correlation between MPRS and PAR being the highest (Kendall’s tau = 

0.7229 (Figure 1c) and 0.6928 (Figure 1g) for CHD and T2D, respectively). However, 

identifying subgroups within the 10th decile varied significantly by the summary method 

used. The concordance rate for 10th decile in CHD PRS was 49% between MPRS and PAR 

methods (Figure 1d). Among 38 individuals in the 10th decile as ascertained by counting 

CHD risk alleles, 23 and 16 were in the 10th decile as ascertained by MPRS and PAR 

methods, respectively (Figure 1d). Similarly, 25 individuals were in the 10th decile as 

ascertained by counting and PAR for T2D, and 22 were in the 10th decile as ascertained by 

MPRS and PAR (Figure 1h).

PAR provides more intuitive interpretation of genetic risk by combining AF and effect size. 

However, the prevalence of some risk alleles varies widely across ethnic groups, as indeed 

may the risk associated with individual alleles. If the AF in the discovery population 

deviates from the population mean or if the data are from individuals of different ethnic 

background than the original study, then there may be large effects on the estimated PAR. 

Thus, at present the validity of PAR is limited for many traits. The validity of counting 

method is also limited due to nonunique scores for the traits with fewer risk alleles 

(Supplementary Figure S2a,c,e,f online). Therefore, we chose the normalized MPRS for 

further evaluation.

There were also significant differences in MPRS distributions among the four ethnic groups. 

We compared the distribution of the MPRS for each phenotype between ethnic groups using 

one-way analysis of variance followed by post hoc tests. With the reported risk alleles, 168 

of 182 traits analyzed showed significant differences between ethnic groups (Bonferroni 
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corrected analysis of variance P < 0.01, Supplementary Table S3 online), reinforcing the 

widely held notion that an individual’s polygenic scores can be rigorously interpreted only 

in the context of the matched ethnic background.

Performance of polygenic scores with a case-control data set

To check the distribution of MPRS in cases as compared with that of controls, we used the 

WTCCC phase I data set.24 We calculated an MPRS for each individual for seven diseases 

and two control groups, excluding the risk alleles originally reported for the WTCCC data 

set (Table 1). The five hypertension risk alleles in the GWAS catalog were not sufficient to 

rank all cases and controls because of tied scores; otherwise, the distributions of MPRS for 

six diseases showed significant differences between cases and controls (Tukey’s honestly 

significant difference (HSD), all P < 0.001 for cases as compared with control groups). For 

all phenotypes, there was no significant difference of MPRS distributions between 1958 

British Birth Cohort and the UK Blood Services cohort (Figure 2). Validating a single risk 

allele with an independently collected data set often produces inconsistent results26; 

however, our polygenic score approach successfully identified the overrepresentation of 

independently discovered risk alleles in cases.

Polygenic scores for each phenotype were sorted into 10 bins in the control group, and the 

score decile of each case was then determined using the score range of 1st to 10th decile in 

controls. Each bin had ~294 control individuals and different numbers of cases according to 

the MPRS. As expected, we observed a significant overrepresentation of cases as compared 

with controls in upper deciles (Supplementary Figure S3 online). For the patients with CD, 

27.3% were in 10th decile compared to 2.35% in 1st decile, which resulted in the relative risk 

of 1.91 in this data set. However, the positive predictive value for those individuals in 10th 

decile was 0.044% using the upper-bound CD prevalence of 16/100,000.27 Positive 

predictive value increased with the prevalence of the trait, as summarized in Table 1, and 

was as high as 12.4% for T2D. Given the relatively low narrow-sense heritability of 0.05–

0.10 for T2D,28 the clinical validity of analyzing common risk alleles for unsegmented 

common diseases is likely to be limited.29 We also measured the performance of polygenic 

scores using the area under the receiver operating characteristics curve (AUC). Except for 

CD (AUC 0.704), overall performances of polygenic scores for diseases were poor (AUCs 

0.592 (bipolar disorder), 0.622 (coronary artery disease), 0.595 (T2D), 0.604 (T1D), and 

0.614 (rheumatoid arthritis), Supplementary Figure S4 online).

Stability of summary method with fewer risk alleles

In light of potential inaccuracy in genotyping, we checked the stability of the MPRS rank of 

an individual in a population by comparing the original decile using all reported risk alleles 

with the deciles recalculated using smaller numbers of randomly selected risk alleles. A total 

of 111 risk alleles were reported for T2D (Table 1), and we randomly selected n risk alleles 

to recalculate the MPRS and the relevant decile. For the individuals in 10th decile with all 

111 alleles, we traced the change of decile ranks with random exclusion of n risk alleles 

from 1 to 56 (Supplementary Figure S5 online). This procedure was repeated 100 times for 

each n, and the mean decile was plotted. Excluding 20% of risk alleles (blue dotted line in 

Supplementary Figure S5 online) did not result in a change of classification by more than 
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two deciles on average; however, 25% of instances were equal to or less than the 9th decile 

(Table 2). With 50% of risk alleles, only 56.8% were in 10th decile. For other phenotypes 

with small numbers of risk alleles, excluding a single risk allele could change scores from 

the highest decile to lower deciles or vice versa.

Summarizing cardiac risk alleles in the clinical context

To summarize polygenic relative risks from known risk alleles for general clinicians and 

patients, we prepared a report on cardiovascular disease risk from common genetic variation 

as a part of a Cardiac Supplement to our Genome Report in the MedSeq project.4 The 

reports include the disease prevalence and narrow-sense heritability in conjunction with an 

estimated MPRS for a limited number of common cardiac traits of relevance for decision 

support in both primary prevention and in specialist care of inherited heart disease. For eight 

traits (abdominal aortic aneurysm, atrial fibrillation, CHD, T2D, hypertension, obesity/

metabolic syndrome, platelet aggregation, and QT prolongation) implicated in cardiac 

diseases with qualitative outcome measures, the effect sizes of risk alleles selected for these 

cardiac phenotypes were small to moderate (average OR 1.23, range 1.06 – 3.57) (Table 3). 

We normalized MPRS to the 1KGP data set, including four ethnic groups, to calculate 

relative risks compared to estimated population norms. Across the four ethnic groups, the 

number of risk alleles per individual was significantly different (one-way analysis of 

variance P < 0.0001). The East Asian individuals had more risk alleles (mean ± SD 105.5 ± 

4.82) compared to the other ethnic groups (Tukey’s HSD P < 0.0001 for all 3 comparisons). 

The average number of risk alleles in Admixed American individuals (102.5 ± 5.05) was not 

significantly different from those of EUR (102.0 ± 4.79) and African (103.6 ± 4.37) 

(Tukey’s HSD P = 0.0853 and 0.745 respectively) individuals, but the difference between 

African and EUR individuals was significant (Tukey’s HSD P = 0.0005). The differences 

were partly attributable to biases in discovery cohorts (Supplementary Table S4 online). 

More than two-thirds of risk alleles (70.8%) were reported from studies with EUR 

populations. East Asian (20.5%) and African (6.8%) populations were underrepresented in 

previous studies. For instance, seven risk alleles associated with obesity were discovered 

from two independent studies of EUR populations. Of these, five risk alleles–rs10508503, 

rs2116830, rs988712, rs1805081, and rs1421085–are rare (AF ≤ 0.05) in the African group, 

and two risk alleles– rs10508503 and rs2116830 –are not present in any East Asian 

individuals in the 1KGP. The average MPRS in EUR was higher as compared with those of 

the other ethnic groups (one-way analysis of variance with Dunnett’s post hoc tests with 

EUR as control, P < 0.001). Thus, an individual in the interquartile range of MPRS in the 

EUR population might be placed in 9th and 10th decile in the other ethnic groups.

Table 3 demonstrates our current format for reporting of the MPRS and the other contextual 

information outlined above. Age-specific prevalence is also reported, with the proportion of 

variation in phenotype liability explained by common genetic variants based on the extant 

literature. The number of risk loci and total risk alleles identified, normalized MPRS 

truncated at 10 and 90 percentiles for the outlier values, and percentile rank are reported. 

The clinical application of this result summary (albeit in the absence of objective clinical 

utility) will be investigated in the MedSeq Project and other longitudinal studies. As such, it 

will be important also to emphasize the changing context and evolving limitations of genetic 
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risk assessment attributable to common variants. For instance, the estimated heritability of 

T2D from family studies ranges from 0.3 to 0.6 as compared with the more modest 

proportion of variation in phenotype liability explained by common genetic variants (0.05–

0.1). Although much more rigorous data will be required for the demonstration of formal 

clinical utility, the combination of a detailed family history, with even current risk 

predictions for common diseases attributable to common genetic variants, may be 

informative for clinicians and patients to promote specific health behaviors.

DISCUSSION

Predicting the genetic liability for a particular disease based on the reported risk alleles is 

currently not useful in medicine practice. Indeed, even alleles with large effect sizes are of 

little utility for predicting clinically meaningful outcomes. In most common disorders, the 

contribution of acquired or environmental risk factors is considered to be of much greater 

importance than the inherited contribution. These limitations of genetic prediction are also a 

function of the context in which the extant genetic data have been collected; for common 

phenotypes, the context is usually case-control studies that are not designed or powered to 

derive the trait’s genetic architecture. For most diseases, rigorous heritability estimates are 

scant, genetic studies have used low-resolution phenotypes, and outcomes data are 

incomplete. For all but a few genotypes there are no robust data for clinical utility. If 

genome sequencing and common genetic variation are to play a substantial role in precision 

medicine (it is expected that they will), then there will have to be considerable investment in 

rigorous large-scale studies in clinical cohorts for which validity, clinical utility, and cost-

effectiveness can be demonstrated.12,30,31

One of the prerequisites for studies that will be necessary to establish the role of WGS in the 

clinic is standardized reporting strategies for genome-scale data. These will be required not 

only to communicate the primary results but also to inform the clinician of additional 

nongenomic data and to supply the nuanced context necessary for secondary interpretation. 

In the current study, we have proposed summarizing polygenic risks using the ranks in a 

population instead of providing absolute disease risk estimates attributable to known risk 

alleles.17 Clinicians and patients can review the genetic information in the context of the 

medical and family histories, lifestyle, and laboratory test results. These are all important 

elements that can condition interpretation of any genotype and frame the doctor-patient 

relationship for a range of health-promoting behaviors. Thus, an individual with the highest 

polygenic disease risk may have a modest overall risk once nongenetic factors are 

considered. Importantly, the reproducibility and stability of risk prediction in such a 

complex context are likely to limit the clinical validity of genetics.32 Kalf and colleagues 

compared the three polygenic relative risk prediction methods of current direct-to-consumer 

genotyping companies33 and found significant discordance. For six multifactorial diseases, 

the personal genome tests marketed by the three companies had limited predictive ability 

(atrial fibrillation, T2D, and prostate cancer), a considerable probability (20–27%) of 

predicting effects in the “opposite” direction (age-related macular degeneration and CD), or 

substantial differences in absolute risks at the individual level (celiac disease).
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There are also some significant limitations to our approach. First, we restricted our model to 

narrow-sense heritability, aggregating the additive contributions of each risk allele to the 

phenotype and ignoring potential dependencies between the risk alleles for the same 

phenotype. As a consequence, estimating genetic risks from multiple risk alleles may 

overestimate the total heritability or genetic risk. Second, we chose the 1KGP cohort to 

calculate the background distribution of MPRS, but this cohort contains only a few hundred 

individuals of each major ethnic group, so the samples were not large enough to accurately 

match genetic background or to estimate population norms. Third, the original discovery and 

replication cohorts undoubtedly have biases in population structure and cryptic relatedness34 

because the observed levels of MPRS in the 1KGP population were considerably smaller 

than the expected 3N levels with n risk alleles in our analysis. Indeed, even small numbers of 

genotyping errors result in significant changes in polygenic risk, as shown in our simulation 

analysis. Fourth, we also found significant errors throughout the current GWAS catalog. For 

instance, in some cases risk AF was replaced by the OR, or minor alleles were reported as 

major, with downstream errors in direction and magnitude of effect. Much more stringent 

data sets will be necessary for clinical interpretation and decision support. Finally, we did 

not undertake analysis for detection of copy number or other structural variations in the 

current study, given the limits of current analytic tools, and the phenotypic associations of 

such variants are not well established, except for specific oncogenic driver mutations.35 As 

analytic techniques improve and associations are defined, WGS data sets can be reanalyzed 

for such structural variants.

Family history remains the most commonly used genetic information in clinical practice. 

Because collecting family history is an important part of standard medical assessment and 

can contribute independent genetic information beyond any measured risk alleles, future 

prospective studies should seek to combine family history and allelic risk predictions. Some 

such population-scale data sets have accumulated in direct-to-consumer companies over 

several years and would provide an invaluable resource to the biomedical research 

community if shared with appropriate privacy protection. The successful implementation of 

genomic medicine will require the systematic collection of phenotypic data and 

environmental risk factors, drug responses, and quantitative outcomes. The deconvolution 

even of the limited genotypic data interpretable at present will require vast data sets that can 

only be mustered by collaborative projects on a global scale. The unstated inference is that 

for genomic medicine to be rigorously evaluated, it must first be incorporated into general 

clinical practice, overturning the “evidence-first” strategy of modern medicine.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

The MedSeq Project is supported by the National Institutes of Health (NIH) National Human Genome Research 
Institute (U01-HG006500). Members of the MedSeq Project are as follows: David W. Bates, MD, Alexis D. Carere, 
MA, MS, Allison Cirino, MS, Lauren Connor, Kurt D. Christensen, MPH, PhD, Jake Duggan, Robert C. Green, 
MD, MPH, Carolyn Y. Ho, MD, Joel B. Krier, MD, William J. Lane, MD, PhD, Denise M. Lautenbach, MS, Lisa 
Lehmann, MD, PhD, MSc, Christina Liu, Calum A. MacRae, MD, PhD, Rachel Miller, MA, Cynthia C. Morton, 
PhD, Christine E. Seidman, MD, Shamil Sunyaev, PhD, Jason L. Vassy, MD, MPH, SM, Brigham and Women’s 

Kong et al. Page 9

Genet Med. Author manuscript; available in PMC 2015 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hospital and Harvard Medical School; Sandy Aronson, ALM, MA, Ozge Ceyhan-Birsoy, PhD, Siva Gowrisankar, 
Ph.D., Matthew S. Lebo, PhD, Ignat Leschiner, PhD, Kalotina Machini, PhD, MS, Heather M. McLaughlin, PhD, 
Danielle R. Metterville, MS, Heidi L. Rehm, PhD, Partners Personalized Medicine; Jennifer Blumenthal-Barby, 
PhD, Lindsay Zausmer Feuerman, MPH, Amy L. McGuire, JD, PhD, Sarita Panchang, Jill Oliver Robinson, MA, 
Melody J. Slashinski, MPH, PhD, Baylor College of Medicine, Center for Medical Ethics and Health Policy; 
Stewart C. Alexander, PhD, Kelly Davis, Peter A. Ubel, MD, Duke University; Peter Kraft, PhD, Harvard School 
of Public Health; J. Scott Roberts, PhD, University of Michigan; Judy E. Garber, MD, MPH, Dana-Farber Cancer 
Institute; Tina Hambuch, PhD, Illumina, Inc.; Michael F. Murray, MD, Geisinger Health System; Isaac S. Kohane, 
MD, PhD, Sek Won Kong, MD, In-Hee Lee, PhD, Boston Children’s Hospital.

REFERENCES

1. Biesecker LG, Burke W, Kohane I, Plon SE, Zimmern R. Next-generation sequencing in the clinic: 
are we ready? Nature reviews. Genetics. 2012 Nov; 13(11):818–824.

2. McGuire AL, McCullough LB, Evans JP. The indispensable role of professional judgment in 
genomic medicine. JAMA : the journal of the American Medical Association. 2013 Apr 10; 
309(14):1465–1466. [PubMed: 23571582] 

3. Pyeritz RE. The coming explosion in genetic testing--is there a duty to recontact? The New England 
journal of medicine. 2011 Oct 13; 365(15):1367–1369. [PubMed: 21995382] 

4. Vassy JL, Lautenbach DM, McLaughlin HM, et al. The MedSeq Project: a randomized trial of 
integrating whole genome sequencing into clinical medicine. Trials. 2014 Mar 20.15(1):85. 
[PubMed: 24645908] 

5. Dewey FE, Grove ME, Pan C, et al. Clinical interpretation and implications of whole-genome 
sequencing. JAMA : the journal of the American Medical Association. 2014 Mar 12; 311(10):1035–
1045. [PubMed: 24618965] 

6. Hindorff LA, Sethupathy P, Junkins HA, et al. Potential etiologic and functional implications of 
genome-wide association loci for human diseases and traits. Proceedings of the National Academy 
of Sciences of the United States of America. 2009 Jun 9; 106(23):9362–9367. [PubMed: 19474294] 

7. Lyssenko V, Jonsson A, Almgren P, et al. Clinical risk factors, DNA variants, and the development 
of type 2 diabetes. The New England journal of medicine. 2008 Nov 20; 359(21):2220–2232. 
[PubMed: 19020324] 

8. Manolio TA. Bringing genome-wide association findings into clinical use. Nature reviews. 
Genetics. 2013 Aug; 14(8):549–558.

9. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. A comprehensive review of genetic 
association studies. Genetics in medicine : official journal of the American College of Medical 
Genetics. 2002 Mar-Apr;4(2):45–61. [PubMed: 11882781] 

10. Welter D, MacArthur J, Morales J, et al. The NHGRI GWAS Catalog, a curated resource of SNP-
trait associations. Nucleic acids research. 2014 Jan; 42(Database issue):D1001–D1006. [PubMed: 
24316577] 

11. Yang Q, Khoury MJ, Botto L, Friedman JM, Flanders WD. Improving the prediction of complex 
diseases by testing for multiple disease-susceptibility genes. American journal of human genetics. 
2003 Mar; 72(3):636–649. [PubMed: 12592605] 

12. Ashley EA, Butte AJ, Wheeler MT, et al. Clinical assessment incorporating a personal genome. 
Lancet. 2010 May 1; 375(9725):1525–1535. [PubMed: 20435227] 

13. Stahl EA, Wegmann D, Trynka G, et al. Bayesian inference analyses of the polygenic architecture 
of rheumatoid arthritis. Nature genetics. 2012 May; 44(5):483–489. [PubMed: 22446960] 

14. Wray NR, Yang J, Hayes BJ, Price AL, Goddard ME, Visscher PM. Pitfalls of predicting complex 
traits from SNPs. Nature reviews. Genetics. 2013 Jul; 14(7):507–515.

15. Kraft P, Wacholder S, Cornelis MC, et al. Beyond odds ratios--communicating disease risk based 
on genetic profiles. Nature reviews. Genetics. 2009 Apr; 10(4):264–269.

16. Purcell SM, Wray NR, Stone JL, et al. Common polygenic variation contributes to risk of 
schizophrenia and bipolar disorder. Nature. 2009 Aug 6; 460(7256):748–752. [PubMed: 
19571811] 

Kong et al. Page 10

Genet Med. Author manuscript; available in PMC 2015 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



17. Pharoah PD, Antoniou AC, Easton DF, Ponder BA. Polygenes, risk prediction, and targeted 
prevention of breast cancer. The New England journal of medicine. 2008 Jun 26; 358(26):2796–
2803. [PubMed: 18579814] 

18. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. 
Nature. 2009 Oct 8; 461(7265):747–753. [PubMed: 19812666] 

19. Machiela MJ, Chen CY, Chen C, Chanock SJ, Hunter DJ, Kraft P. Evaluation of polygenic risk 
scores for predicting breast and prostate cancer risk. Genetic epidemiology. 2011 Sep; 35(6):506–
514. [PubMed: 21618606] 

20. Evans DM, Visscher PM, Wray NR. Harnessing the information contained within genome-wide 
association studies to improve individual prediction of complex disease risk. Human molecular 
genetics. 2009 Sep 15; 18(18):3525–3531. [PubMed: 19553258] 

21. Pashayan N, Pharoah P. Translating genomics into improved population screening: hype or hope? 
Human genetics. 2011 Jul; 130(1):19–21. [PubMed: 21484433] 

22. Kathiresan S, Melander O, Anevski D, et al. Polymorphisms associated with cholesterol and risk of 
cardiovascular events. The New England journal of medicine. 2008 Mar 20; 358(12):1240–1249. 
[PubMed: 18354102] 

23. The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human 
genomes. Nature. 2012 Nov 1; 491(7422):56–65. [PubMed: 23128226] 

24. Wellcome Trust Case Control C. Genome-wide association study of 14,000 cases of seven 
common diseases and 3,000 shared controls. Nature. 2007 Jun 7; 447(7145):661–678. [PubMed: 
17554300] 

25. Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nature reviews. 
Genetics. 2010 Jul; 11(7):499–511.

26. Ioannidis JP, Thomas G, Daly MJ. Validating, augmenting and refining genome-wide association 
signals. Nature reviews. Genetics. 2009 May; 10(5):318–329.

27. Lakatos PL. Recent trends in the epidemiology of inflammatory bowel diseases: up or down? 
World journal of gastroenterology : WJG. 2006 Oct 14; 12(38):6102–6108. [PubMed: 17036379] 

28. Weedon MN, Clark VJ, Qian Y, et al. A common haplotype of the glucokinase gene alters fasting 
glucose and birth weight: association in six studies and population-genetics analyses. American 
journal of human genetics. 2006 Dec; 79(6):991–1001. [PubMed: 17186458] 

29. Hunter DJ, Khoury MJ, Drazen JM. Letting the genome out of the bottle--will we get our wish? 
The New England journal of medicine. 2008 Jan 10; 358(2):105–107. [PubMed: 18184955] 

30. Patel CJ, Sivadas A, Tabassum R, et al. Whole Genome Sequencing in support of Wellness and 
Health Maintenance. Genome medicine. 2013 Jun 27.5(6):58. [PubMed: 23806097] 

31. Chen R, Mias GI, Li-Pook-Than J, et al. Personal omics profiling reveals dynamic molecular and 
medical phenotypes. Cell. 2012 Mar 16; 148(6):1293–1307. [PubMed: 22424236] 

32. Ng PC, Murray SS, Levy S, Venter JC. An agenda for personalized medicine. Nature. 2009 Oct 8; 
461(7265):724–726. [PubMed: 19812653] 

33. Kalf RR, Mihaescu R, Kundu S, de Knijff P, Green RC, Janssens AC. Variations in predicted risks 
in personal genome testing for common complex diseases. Genetics in medicine : official journal 
of the American College of Medical Genetics. 2013 Jun 27.

34. McCarthy MI, Abecasis GR, Cardon LR, et al. Genome-wide association studies for complex 
traits: consensus, uncertainty and challenges. Nature reviews. Genetics. 2008 May; 9(5):356–369.

35. Forbes SA, Bindal N, Bamford S, et al. COSMIC: mining complete cancer genomes in the 
Catalogue of Somatic Mutations in Cancer. Nucleic acids research. 2011 Jan; 39(Database 
issue):D945–D950. [PubMed: 20952405] 

Kong et al. Page 11

Genet Med. Author manuscript; available in PMC 2015 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Comparison of polygenic score calculation methods
Using the risk alleles and allele frequencies reported in the GWAS catalog, we calculated 

polygenic scores for 379 individuals of the 1000 Genomes Project European cohort. We 

counted the number of risk alleles in an individual—counting method—and compared with 

the multiplicative polygenic risk score (MPRS) and multiple single-nucleotide 

polymorphism (SNP) population attribution risk (PAR) using odd ratios (ORs) and ORs 

with risk allele frequency, respectively. Red circles represent the individuals in the same 

decile according to MPRS and PAR. The resulting decile of the counting method was 
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different from those from MPRS and PAR, although they were significantly correlated (c 
and g). The results for coronary heart disease (60 risk alleles, a–c) and type 2 diabetes (70 

risk alleles, e–g) showed the same trend. Venn diagrams show the agreement between 

polygenic scoring methods for the individuals in the lOth deciles by three methods (d and 

h). GWAS, genome-wide association study.
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Figure 2. Distribution of polygenic scores in a case-control data set
The Wellcome Trust Case Control Consortium (WTCCC) phase I data set (N = 16,179 

individuals) consisted of two control groups—the 1958 British Birth Cohort (58BC) and 

common controls recruited from the UK Blood Services (NBS)—and six disease groups; 

Crohn disease (CD), bipolar disorder (BD), coronary heart disease (CHD), type 1 diabetes 

(T1D), type 2 diabetes (T2D), and rheumatoid arthritis (RA). We compared the 

multiplicative polygenic risk score (MPRS) distributions between cases and controls, except 

for the hypertension group because of the small number of risk alleles (see Table 1). For all 

phenotypes, no significant difference was found between 58BC and NBS, and the mean 

MPRS of case groups was significantly higher as compared with the two control groups 

(Tukey's honestly significant difference P values < 0.001 for all case versus control groups).
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