
The human transcriptome across tissues and individuals

Marta Melé1,2,*, Pedro G. Ferreira1,3,4,5,*, Ferran Reverter1,6,7,*, David S. DeLuca8, Jean 
Monlong1,7,9, Michael Sammeth1,7,10, Taylor R. Young8, Jakob M Goldmann1,7,11, Dmitri D. 
Pervouchine1,7,12, Timothy J. Sullivan8, Rory Johnson1,7, Ayellet V. Segrè8, Sarah 
Djebali1,7, Anastasia Niarchou3,4,5, The GTEx Consortium, Fred A. Wright13, Tuuli 
Lappalainen3,4,5,14,15, Miquel Calvo6, Gad Getz8,16, Emmanouil T. Dermitzakis3,4,5, Kristin 
G. Ardlie8,†, and Roderic Guigó1,7,17,18,†

1Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain 2Harvard Department of 
stem cell and regenerative biology, Harvard University, Cambridge, MA, USA 3Department of 
Genetic Medicine and Development, University of Geneva, Geneva, Switzerland 4Institute for 
Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland 5Swiss 
Institute of Bioinformatics, Geneva, Switzerland 6Facultat de Biologia, Universitat de Barcelona 
(UB), Barcelona, Catalonia, Spain 7Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain 
8Broad Institute of MIT and Harvard, Cambridge, MA, USA 9McGill University, Montreal, Canada 
10National Institute for Scientific Computing (LNCC), Petropolis, Rio de Janeiro, Brazil 11Radboud 
University, Nijmegen, Netherlands 12Faculty of Bioengineering and Bioinformatics, Moscow State 
University, Leninskie Gory 1-73, 119992 Moscow, Russia 13North Carolina State University, 
Raleigh, NC, USA 14New York Genome Center, New York, NY, USA 15Department of Systems 
Biology, Columbia University, New York, NY, USA 16Cancer Center and Department of 
Pathology, Massachusetts General Hospital, Boston, MA 02114, USA 17Institut Hospital del Mar 
d’Investigacions Mèdiques (IMIM), Barcelona, Catalonia, Spain 18Joint CRG-Barcelona Super 
Computing Center (BSC)–Institut de Recerca Biomedica (IRB) Program in Computational 
Biology, Barcelona, Catalonia, Spain

Abstract

Transcriptional regulation and posttranscriptional processing underlie many cellular and 

organismal phenotypes. We used RNA sequence data generated by Genotype-Tissue Expression 

(GTEx) project to investigate the patterns of transcriptome variation across individuals and tissues. 

Tissues exhibit characteristic transcriptional signatures that show stability in postmortem samples. 

These signatures are dominated by a relatively small number of genes—which is most clearly seen 

in blood—though few are exclusive to a particular tissue and vary more across tissues than 
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individuals. Genes exhibiting high interindividual expression variation include disease candidates 

associated with sex, ethnicity, and age. Primary transcription is the major driver of cellular 

specificity, with splicing playing mostly a complementary role; except for the brain, which 

exhibits a more divergent splicing program. Variation in splicing, despite its stochasticity, may 

play in contrast a comparatively greater role in defining individual phenotypes.

Gene expression is the key determinant of cellular phenotype, and genome-wide expression 

analysis has been a mainstay of genomics and biomedical research, providing insights into 

the molecular events underlying human biology and disease. Whereas expression data sets 

from tissues/primary cells (1, 2) and individuals (3) have accumulated over recent years, 

only limited expression data sets have allowed analysis across tissues and individuals 

simultaneously (4). The Genotype-Tissue Expression Project (GTEx) is developing such a 

resource (5, 6), collecting multiple “nondiseased” tissues sampled from recently deceased 

human donors. We analyzed the GTEx pilot data freeze (6), which comprised RNA 

sequencing (RNA-seq) from 1641 samples from 175 individuals representing 43 sites: 29 

solid organ tissues, 11 brain subregions, whole blood, and two cell lines: Epstein-Barr virus–

transformed lymphocytes (LCL) and cultured fibroblasts from skin [table S1 and (7)].

The identification and characterization of genetic variants that are associated with gene 

expression are extensively discussed in (6). Here we use the GTEx data to investigate the 

patterns of transcriptome variation across individuals and tissues and how these patterns 

associate with human phenotypes. RNA-seq performed on the GTEx pilot samples produced 

an average of 80 million paired-end mapped reads per sample (fig. S1) (7, 8). We used the 

mapped reads to quantify gene expression using Gencode V12 annotation (9), which 

includes 20,110 protein-coding genes (PCGs) and 11,790 long noncoding RNAs (lncRNAs). 

Comparison with microarray-based quantification for a subset of 736 samples showed 

concordance between the two technologies (average correlation coefficient = 0.83, fig. S2). 

At the threshold defined for expression quantitative trait loci (eQTL) analysis [reads per 

kilobase per million mapped reads (RPKM) > 0.1, see (7)], at which 88% of PCGs and 71% 

of lncRNAs are detected in at least one sample, the distribution of gene expression across 

tissues is U-shaped and complementary between PCGs (generally ubiquitously expressed) 

and lncRNAs (typically tissue-specific or not expressed, Fig. 1A).

Tissues show a characteristic transcriptional signature, as revealed by multidimensional 

scaling, of both PCG and lncRNA expression (figs. 1B, S3, and S4), with individual 

phenotypes contributing little (fig. S5). The primary separation, as observed in prior studies 

(10), is between nonsolid (blood) and solid tissues and, within solid tissues, brain is the most 

distinct. Brain subregions are not well differentiated, with the exception of cerebellum (fig. 

S6). Postmortem ischemia appears to have little impact on the characteristic tissue 

transcriptional signatures, as previously noted (11). In a comparison of 798 GTEx samples 

with 609 “nondis-eased” samples obtained from living (surgical) donors (table S2), we 

found that GTEx samples clustered with surgical samples of the same tissue type (Fig. 1C 

and table S3) (12).

Tissue transcription is generally dominated by the expression of a relatively small number of 

genes. Indeed, we found that for most tissues, about 50% of the transcription is accounted 
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for by a few hundred genes (13). In many tissues, the bulk of transcription is of 

mitochondrial origin (Fig. 1D and table S4) (14). In kidney, for instance, a highly aerobic 

tissue with many mitochondria, a median of 51% (>65% in some samples) of the 

transcriptional output is from the mitochondria (fig. S7). Other tissues show nuclear-

dominated expression; in blood, for example, three hemoglobin genes contribute more than 

60% to total transcription. Genes related to lipid metabolism in pancreas, actin in muscle, 

and thyroglobulin in thyroid are other examples of nuclear genes contributing 

disproportionally to tissue-specific transcription. Because RNA samples are generally 

sequenced to the same depth, in tissues where a few genes dominate expression, fewer 

RNA-seq reads are comparatively available to estimate the expression of the remaining 

genes, decreasing the power to estimate expression variation. These tissues—i.e., blood, 

muscle, and heart (Fig. 1E)—are, consequently, those with less power to detect eQTLs (6). 

Because most eQTL analyses are performed on easily accessible samples, such as blood, this 

highlights the relevance of the GTEx multitissue approach.

Although thousands of genes are differentially expressed between tissues (fig. S8) or show 

tissue-preferential expression (fig. S9 and table S5), fewer than 200 genes are expressed 

exclusively in a given tissue (figs. S10 and S11 and tables S6 and S7, A to E). The vast 

majority (~ 95%) are exclusive to testis and many are lncRNAs. This may reflect low-level 

basal transcription common to all cell types or result from general tissue heterogeneity, with 

few primary cell types being specific to a given tissue.

Expression of repetitive elements also recapitulates tissue type (table S8 and fig. S12A). We 

identified 3046 PCGs whose expression, in at least one tissue, was correlated with the 

expression of the closest repeat element (on average 2827 base pairs away, fig. S12B). In 

about half of these cases, the repeat was also significantly coexpressed with other repeats of 

its same family (table S8 and fig. S13). LncRNA expression can be regulated by specific 

repeat families (15), and we found evidence that testis-specific expression could be 

regulated by endogenous retrovirus L repeats (ERVL and ERVL-MaLR) (fig. S12C).

Using linear mixed models, we found that variation in gene expression is far greater among 

tissues (47% of total variance in gene expression) than among individuals (4% of total 

variance, Fig. 2A and table S9), and very similar for PCGs and lncRNAs when controlling 

for gene expression (Fig. 2A). Genes that show high expression variance across individuals 

and low variance across tissues include genes on the sex chromosomes, as well as autosomal 

genes, such as the RHD gene that determines Rh blood group.

We identified 92 PCGs and 43 lncRNAs with global sex-biased expression [false discovery 

rate (FDR) < 0.05, Fig. 2B and table S10]. Genes over-expressed in males are predominantly 

located on the Y chromosome. Conversely, many genes on the X chromosome are 

overexpressed in females, suggesting that more genes might escape X inactivation than 

previously described (16). Among these, we found XIST and JPX, known to participate in X 

inactivation, as well as the lncRNAs RP11-309M23.1 and RP13-216E22.4, the expression of 

which shows enrichment in the nucleus in female cell lines from ENCODE (17) and hence 

could be candidates to also participate in X inactivation (fig. S14) (16). Among autosomal 

PCGs, MMP3, linked to susceptibility to coronary heart disease [Online Mendelian 
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Inheritance in Man (OMIM) no. 614466] and more prevalent in males, shows the strongest 

expression bias (Fig. 2B).

We detected 221 PCGs and 153 lncRNAs globally differentially expressed between 

individuals of European and African-American ancestry (FDR < 0.05, Fig. 2C and table 

S11). There is a slight enrichment of lncRNAs (P < 1 × 10−6), among which we identified 

the RP11-302J23.1 gene, highly expressed in cardiac tissue in African Americans only, and 

located in a region that harbors weak associations to heart disease (18). Additionally, some 

genes showing differential expression by ethnicity lie in genomic regions under positive 

selection in European or sub-Saharan African populations (Fig. 2C and fig. S15).

Finally, we detected 1993 genes that globally change expression with age (FDR < 0.05, Fig. 

2D and table S12). Genes that decrease expression are enriched in functions and pathways 

related to neurodegenerative diseases such as Parkinson’s and Alzheimer’s diseases, among 

which eight harbor single-nucleotide polymorphisms (SNPs) for these diseases identified 

from genome-wide association studies (P < 0.05). Among the genes that increase expression 

with age is EDA2R, whose ligand, EDA, has been associated with age-related phenotypes 

(19).

We also identified 753 genes with tissue specific sex-biased expression (FDR < 0.05, table 

S13) predominantly in breast tissue (92%), and 31 genes with tissue-specific ethnicity-

biased expression, many in the skin (FDR < 0.05, Table 1 and table S14). Among the sex-

differentially expressed genes, five show biased expression specifically in heart and are of 

interest given the differing prevalence of cardiovascular disease between males and females. 

One of these genes, PLEKHA7 (fig. S15C), contains SNPs associated with risk for 

cardiovascular disease.

Overall, tissue specificity is likely to be driven by the concerted expression of multiple 

genes. Thus, we performed sex-based differential analysis of coexpression networks. We 

identified 42 coexpression modules in males and 46 in females (fig. S16). Among male-

specific modules, we found one related to spermatid differentiation and development (FDR 

= 9.0 × 10−4, fig. S16B), and among female-specific modules, we found one related to 

epidermis and ectoderm development (FDR = 4.6 × 10−14, fig. S16C). Differential network 

expression, therefore, distinguishes differences between male and females not well captured 

by analysis of individual genes.

Split-mapped RNA-seq reads predict about 87,000 novel junctions with very strong support 

(fig. S17). These tend to be more tissue specific, detected in fewer samples, and less 

conserved than previously annotated junctions (only 2.6% of novel junctions can be detected 

as orthologous in mouse, compared to 65% for annotated junctions). Multidimensional 

scaling based on exon inclusion levels again largely recapitulates tissue type (Fig. 3A). 

However, samples from brain cluster as the primary out-group, supporting the existence of a 

distinct splicing program in the brain (20). Furthermore, preferential gene expression of 

RNA-binding proteins and both differential and preferential exon inclusion are enriched in 

the brain (figs. S18 and S19 and table S15). We found very few exons exclusively included 

or excluded in a given tissue (fig. S20 and table S16), 40% of which show exclusive 
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inclusion in the brain. We also found that micro-exons (<15 bp) are overwhelmingly used in 

the brain compared to other tissues (Wilcoxon test, P < 1 × 10−7, Fig. 3B). This pattern is 

not obvious in short exons longer than 15 bp (P = 0.3, fig. S21). This observed brain-

specific splicing pattern may result from differential splicing in the cerebellum, because 

expression clustering of the brain regions reveals a general up-regulation of RNA-binding 

proteins specifically in the cerebellum (Fig. 3C). This is also the brain region exhibiting the 

largest proportion of novel splicing events (fig. S22).

In contrast to gene expression, variation of splicing, measured either from relative isoform 

abundance or exon inclusion, is similar across tissues and across individuals, but exhibits a 

much larger proportion of residual unexplained variation (Fig. 3D, fig. S23, and table S17). 

This could arise from nonadditive interactions between individuals and tissues, but might 

also reflect stochastic, nonfunctional fluctuations that are more common in splicing than in 

expression (21). Among the genes that show high interindividual splicing variability, we 

found an enrichment of ribosomal proteins and genes related to translation and protein 

biosynthesis (Fig. 3D and table S18). Higher variability between individuals may also 

partially reflect an effect of ischemic time on splicing, which we observed when clustering 

samples by exon inclusion within each tissue (fig. S24).

The abundance of splicing isoforms reflects the actions of both primary transcription and 

posttranscriptional processing—mostly alternative splicing. To determine the relative 

contribution of each process, we estimated the proportion of variance in isoform abundance 

that can be simply explained by variance in gene expression. We found that gene expression 

explains only 45% of the variance between individuals, but 84% of the variance between 

tissues (Fig. 3E and fig. S25). This strongly suggests that primary transcription is the main 

driver of cellular specificity, with splicing playing a complementary role. Although this may 

be unexpected, given the magnitude of the effect, it is consistent with recent findings of low 

proteomic support for alternatively spliced isoforms (22) and few shifts in major protein 

isoforms across cell types (table S19) (23).

Overall, our results underscore the value of monitoring the transcriptome of multiple tissues 

and individuals in order to understand tissue-specific transcriptional regulation and to 

uncover the transcriptional determinants of human phenotypic variation and disease 

susceptibility.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The GTEx multitissue transcriptome
(A) Gene expression levels and number of tissues in which genes are expressed (>0.1 

RPKM in at least 80% of the samples). RPKMs are averaged over all genes expressed in a 

given number of tissues. (B) Sample and tissue similarity on the basis of gene expression 

profiles. Left: Multidimensional scaling Right: Tissue hierarchical clustering. (C) 

Expression values from eight GTEx tissues (colored circles) plotted radially along seven 

metagenes extracted from expression data. Antemortem samples curated from the Gene 

Expression Omnibus (GEO) cluster strongly with GTEx tissues. (D) Transcriptome 

complexity. Bottom: Cumulative distribution of the average fraction of total transcription 

contributed by genes when sorted from most-to-least expressed in each tissue (x axis). Lines 

represent mean values across samples of the same tissue, and lighter-color surfaces around 

the mean represent dispersion calculated as the standard deviation divided by the cumulative 
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sum of all means.Top: Biological type and relative contribution to total transcription of the 

hundred most expressed genes. Height of the bars is proportional to the fraction that these 

genes contribute to total transcription.
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Fig. 2. Gene expression across tissues and individuals
(A) Left: Contribution of tissue and individual to gene expression variation of PCGs and 

lncRNAs. Bottom right: Mean ± SD over all genes (filled circles) and over genes with 

similar expression levels in PCGs and lncRNAs (unfilled circles). Circle size is proportional 

to the sum of tissue and individual variation, and segment length corresponds to 0.5 SD. Top 

right: genes with high individual variation and low tissue variation. (B) Sex differentially 

expressed genes. Top: differentially expressed genes (FDR < 0.05) sorted according to 

expression differences between males and females. Genes in the Y chromosome are sorted 

according to the expression in males. Bottom: MMP3 gene expression in males and females. 

(C) Genes differentially expressed with ethnicity. Top: differentially expressed genes (FDR 

< 0.05) between African Americans (AA) and European Americans (EA) sorted according 

to expression differences. A few of these genes lie in regions reported to be under positive 

selection in similar populations. Bottom: expression of RP11-302J23.1. (D) Genes 

differentially expressed with age. Top: Genes sorted according to the regression coefficient. 
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Bottom: expression of EDAR2 gene in nerve and artery as a function of age. Shaded area 

around the regression line represents 95% confidence interval.
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Fig. 3. Splicing across tissue and individuals
(A) Multidimensional scaling of all samples on the basis of exon inclusion levels (Percent 

spliced in, PSI). (B) Microexon inclusion across tissues.Values of tissue exon inclusion 

close to 1 (−1) indicate that the microexon is included (excluded), in nearly all samples from 

the tissue, and excluded (included) in nearly all samples from the rest of the tissues.Tissues 

are sorted according to tissue exon inclusion (phi) median value. (C) Clustering of brain 

samples on the basis of the normalized expression levels of 67 RNA binding proteins 

involved in splicing. The order of samples and genes is obtained by biclustering the 

expression matrix. (D) Left: Contribution of tissue and individual to splicing variation in 

PCGs. Bottom right: Mean ± SD of individual and tissue contributions to splicing and to 

gene expression variation. Circle size is proportional to the sum of tissue and individual 

variation and segment length corresponds to 0.5 SD. Top right: Genes with high splicing 

variation across individuals. (E) Contribution of gene expression to the between-individual 

and between-tissue variation in isoform abundance
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