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Abstract

Summary: Current methods for motif discovery from chromatin immunoprecipitation followed by

sequencing (ChIP-seq) data often identify non-targeted transcription factor (TF) motifs, and are

even further limited when peak sequences are similar due to common ancestry rather than com-

mon binding factors. The latter aspect particularly affects a large number of proteins from the

Cys2His2 zinc finger (C2H2-ZF) class of TFs, as their binding sites are often dominated by endogen-

ous retroelements that have highly similar sequences. Here, we present recognition code-assisted

discovery of regulatory elements (RCADE) for motif discovery from C2H2-ZF ChIP-seq data. RCADE

combines predictions from a DNA recognition code of C2H2-ZFs with ChIP-seq data to identify

models that represent the genuine DNA binding preferences of C2H2-ZF proteins. We show that

RCADE is able to identify generalizable binding models even from peaks that are exclusively

located within the repeat regions of the genome, where state-of-the-art motif finding approaches

largely fail.

Availability and implementation: RCADE is available as a webserver and also for download at

http://rcade.ccbr.utoronto.ca/.

Supplementary information: Supplementary data are available at Bioinformatics online.

Contact: t.hughes@utoronto.ca

1 Introduction

Chromatin immunoprecipitation followed by sequencing (ChIP-seq)

is the most widely used method for mapping the genomic regions

that are associated with transcription factors (TFs) (ENCODE

Project Consortium, 2012). Identification of direct TF binding sites

from ChIP-seq data is an essential step for decoding the molecular

mechanisms that underlie the regulatory programs dictated by TFs,

and understanding how genetic changes can affect these programs.

In the absence of orthogonal information on DNA binding prefer-

ences of TFs, such as in vitro binding data, achieving this goal pri-

marily depends on inference of a binding model (such as a DNA

‘motif’) from the ChIP-seq data. Current approaches for motif find-

ing from ChIP-seq data almost exclusively rely on the assumption

that the genomic regions associated with a particular TF have

diverse sequences except at the sites that are directly bound by the

TF, where the sequences are converged to match the TF binding

preference. However, this assumption is violated in many cases,

such as when the ChIP-seq peaks are dominated by binding sites of

the interacting partners of the TF of interest, represent targets of

multiple cooperative regulatory factors, and/or are enriched for re-

petitive DNA sequences such as endogenous retroelements (EREs).

Binding to EREs with similar sequences particularly affects the

ability of motif finding approaches for identification of DNA bind-

ing preferences of the Cys2His2 zinc finger (C2H2-ZF) class of TFs,

which is by far the largest class of TFs in most vertebrates. The

C2H2-ZF proteins constitute almost half of all human TFs, and al-

most half of them bind primarily to EREs (Najafabadi et al., 2015).

As a result, the motifs identified from the genomic regions that they
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bind often reflect the sequence homology among different instances

of the associated ERE type, rather than the genuine binding prefer-

ence of the C2H2-ZF protein. An alternative is to directly predict

the binding preferences of C2H2-ZF TFs from their protein se-

quences. However, these predictions are often inaccurate (Gupta

et al., 2014; Najafabadi et al., 2015; Persikov and Singh, 2014). In

addition, not all of the C2H2-ZF domains within a protein partici-

pate in DNA binding at the same time, further complicating the task

of predicting DNA preference from protein sequence.

To address these issues, we present recognition code-assisted dis-

covery of regulatory elements (RCADE), which combines predic-

tions from a recent recognition code of C2H2-ZFs (Najafabadi

et al., 2015) with motif optimization based on ChIP-seq data to

overcome limitations associated with current approaches, and also

to identify regions of the C2H2-ZF protein that engage in DNA-

binding.

2 Methods

RCADE examines the C2H2-ZF domains within a protein to iden-

tify stretches of adjacent zinc fingers, or zinc finger ‘arrays’, whose

predicted binding sites (Najafabadi et al., 2015) are enriched in

ChIP-seq peaks relative to dinucleotide-shuffled sequences, indicat-

ing direct DNA binding. Then, RCADE optimizes the motifs to dis-

criminate between the real and shuffled sequences (Fig. 1A). Briefly,

for each predicted seed motif, RCADE identifies the sequences with

the largest motif scores, and constructs a new Position Weight

Matrix (PWM) by aligning the motif hits in these sequences, repeat-

ing this procedure until the PWM converges. The top-scoring opti-

mized PWM is reported, along with the zinc fingers that are

predicted to contribute to DNA-binding. The optimized motifs are

almost always significantly similar to the original seed motifs, indi-

cating that the optimization procedure does not depart drastically

from the starting point. The RCADE algorithm is shown in more

detail in Supplementary Figure S1.

We have implemented RCADE in a webserver, which can be ac-

cessed at http://rcade.ccbr.utoronto.ca/. The input and output of the

RCADE webserver are described in Supplementary Figure S2.

3 Benchmarking

To evaluate the performance of RCADE in identifying correct motifs

from highly similar sequences, we applied it to the set of ChIP-seq

data for all the 18 human proteins shown to bind to EREs in a previ-

ous study (Najafabadi et al., 2015). We identified the 500 most en-

riched ERE-overlapping peak summits as well as the 500 most

enriched non-ERE peak summits for each dataset, and trained the

RCADE motifs exclusively on the ERE-overlapping peaks. Since

EREs have highly similar sequences due to common ancestry, it is

very difficult to distinguish the correct TF motifs from unrelated en-

riched sequences, and therefore, most current motif finding

approaches are expected to perform poorly. We used MEME (Bailey

and Elkan, 1994) for comparison, as it is one of the most widely

used motif finding methods. The motifs that were trained on the

ERE-overlapping peaks were evaluated using non-ERE peaks

(Fig. 1B), to confirm that RCADE does not overfit the motifs on the

EREs. Non-ERE sequences are not expected to be similar due to

common ancestry, and therefore, motif enrichment is an indicative

of biological relevance.

The RCADE motifs generally showed considerably better enrich-

ment at the center of the non-ERE peaks compared with MEME

motifs, as evaluated by CentriMo (Bailey and Machanick, 2012)

(Fig. 1C). Furthermore, many RCADE motifs are significantly better

than MEME motifs at distinguishing non-ERE peaks from dinucleo-

tide-shuffled sequences (Fig. 1D). Two prominent examples of such
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Fig. 1. RCADE workflow and benchmarking results. (A) RCADE starts by

predicting a set of motifs from the target C2H2-ZF protein sequence, using a

previously published bacterial-one-hybrid assay-based recognition code, or

B1H-RC (Najafabadi et al., 2015), which are evaluated against the ChIP-seq

peak sequences to identify significantly enriched motifs, and are then itera-

tively optimized. (B) Benchmarking workflow for evaluation of RCADE. The

peak sequences were divided into two sets of ERE-overlapping and non-ERE

peaks. The ERE-overlapping peaks for each protein were used for motif dis-

covery using RCADE, and the motifs were validated using non-ERE peaks.

(C,D) Validation results for 18 ERE-binding proteins. The arrows show the im-

provement in the AUROC of RCADE motifs compared with seed B1H-RC

motifs. (E) Example motifs for two proteins that show the largest difference

between RCADE and MEME validation results. The top-scoring MEME motif

is shown for each protein, followed by the top-scoring motif that is directly

predicted from protein sequence using the B1H-RC, and the RCADE optimized

motif. The Pearson similarity of the B1H-RC and RCADE motifs was calculated

as described previously (Najafabadi et al., 2015)
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motifs are shown in Figure 1E. Further validation results are shown

in Supplementary Figures S3–S7. We note that in addition to its util-

ity for motif derivation, RCADE pinpoints the C2H2-ZF domains

that engage DNA. While RCADE currently supports only the

C2H2-ZF class of TFs, its concept can also be applied to other TF

classes as long as a suitable recognition code exists.
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