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Predicting the best treatment strategy from genomic information is a core goal of precision 

medicine. Here we focus on predicting drug response based on a cohort of genomic, epigenomic 

and proteomic profiling data sets measured in human breast cancer cell lines. Through a 

collaborative effort between the National Cancer Institute (NCI) and the Dialogue on Reverse 

Engineering Assessment and Methods (DREAM) project, we analyzed a total of 44 drug 

sensitivity prediction algorithms. The top-performing approaches modeled nonlinear relationships 

and incorporated biological pathway information. We found that gene expression microarrays 

consistently provided the best predictive power of the individual profiling data sets; however, 

performance was increased by including multiple, independent data sets. We discuss the 

innovations underlying the top-performing methodology, Bayesian multitask MKL, and we 

provide detailed descriptions of all methods. This study establishes benchmarks for drug 

sensitivity prediction and identifies approaches that can be leveraged for the development of new 

methods.

The success of precision medicine hinges on our ability to effectively translate genomic data 

into actionable, customized prognosis and treatment regimens for individual patients. This 

requires identifying a genomic disease signature from a patient, then matching it with the 

most effective therapeutic intervention. As a scientific community, we are moving toward 

this goal, but many questions still remain, including, what data are needed to develop these 

genomic signatures and what methods are needed to extract the appropriate information 

from high-dimensional genomic data sets? The first step in addressing these challenges is to 

generate comprehensive drug sensitivity profiling measurements across many drugs, many 

disease (sub)types, and many genomic profiling technologies. Several of these data sets have 

been generated with a focus on cancer biology1–9, and in particular breast cancer4,5,10–14. 

From these data, the bottleneck then becomes identifying robust computational approaches 

that connect genomic profiles to drug and disease response.

In the past 20 years, there has been measurable improvement in breast cancer outcomes with 

a steady decrease in mortality15. The identification of HER2 amplification and subsequent 

discovery of HER2-targeted therapies (e.g., trastuzumab (Herceptin), lapatinib (Tykerb)) 

demonstrates that the identification of genomic biomarkers can be used to effectively guide 

treatment decisions and improve outcomes. However, identification of such biomarkers is 

complicated by substantial genomic and epigenomic heterogeneity in breast cancer2,10,16,17, 

indicating that multiple ‘drivers’ may serve as targets for breast cancer treatment. Effective 

personalized treatments will require matching therapeutic interventions to the complex 

genomic context of each patient.

The ideal data set(s) to build predictive models linking genomic context to treatment would 

be systematically characterized drug sensitivities across a large cohort of patients, but these 

data are time-intensive to generate, prohibitively expensive, and limited in the scope of 

drugs that can be tested. Performing such assays in cell culture and focusing on breast 

cancer affords the opportunity to learn the factors that contribute to building effective 

predictive models in a tractable biological system; these factors can then be used for the 

design of marker-based clinical trials. Comparisons have shown that cell lines mirror many 

aspects of the ‘omic’ diversity found in primary tumors4,18,19, suggesting that they can be 
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used as a proxy for characterizing the response to therapeutic interventions. Previous work 

has characterized relationships between genomic profiles and drug response1,3,6,7,20 and 

several drug sensitivity prediction algorithms have been proposed1,3,20,21,22; however, a 

thorough and unbiased comparison of such methods has not been reported.

The Dialogue for Reverse Engineering Assessment and Methods (DREAM) project (http://

www.the-dream-project.org/) is the ideal framework to assess predictive models from 

researchers across the world. The DREAM project is organized around a community of data 

scientists, where high-impact data along with challenges are presented annually, participants 

submit their best models, and unbiased assessment is performed using standardized metrics 

and blinded gold standards. This effort results in a rigorous assessment and performance 

ranking of methods, and cultivates a community of scientists interested in biomedical 

research problems.

In collaboration with the NCI, we developed the NCI-DREAM drug sensitivity prediction 

challenge with the goal of identifying and benchmarking top-performing methods for 

predicting therapeutic response from genomic, proteomic, and epigenomic profiling data 

(hereafter referred to as profiling data sets) in breast cancer cell lines. The scientific 

community submitted 44 sets of predictions, providing a rich sampling of state-of-the-art 

algorithms. The submissions were rigorously scored against an unpublished and hidden 

gold-standard data set. We identify the top-performing methods and discuss the details of 

the top two performers. We relate trends in methodologies to overall performance, in 

particular, modeling nonlinearities in the data and the benefit of using prior knowledge, 

often in the form of biological pathways. Finally, we provide an analysis of the tested 

therapeutic compounds and cell line profiling data sets.

RESULTS

Summary of data sets and challenge

We assembled a panel of 53 breast cancer cell lines, which have been previously profiled for 

DNA copy-number variation, transcript expression, mutations, DNA methylation and 

protein abundance23. In addition, dose-response values of growth inhibition were compiled 

for each cell line exposed to 28 therapeutic compounds (Fig. 1). (See Online Methods for a 

detailed description of the profiling data sets.)

Outlined in Figure 1, participants were supplied with the full set of profiling data for all 53 

cell lines, and drug response data for 35 cell lines for the 28 compounds. The gold-standard 

evaluation data set, which was hidden from the participants, consisted of drug-response data 

for the remaining 18 cell lines. Cell lines were assigned to the training and test data sets to 

ensure a balance of breast cancer subtypes.

Participants were challenged to predict a ranked list of the most sensitive (to be ranked first) 

to most resistant (to be ranked last) cell lines for each individual drug across all the 18 test 

cell lines. Assessment of predictions was based on participant’s ranking of all 28 therapeutic 

compounds across all 18 test cell lines.
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Characterizing methods to predict drug sensitivity

Participants submitted 44 sets of predictions that cover a range of methodologies. We 

assigned submissions to one of six categories: (i) kernel methods, (ii) nonlinear regression 

(regression trees), (iii) sparse linear regression, (iv) PLS (partial least-squares) or PC 

(principal component) regression, (v) ensemble/model selection and (vi) other (those 

methods not falling cleanly into the previous five categories). All methods are listed in 

Table 1 with a short description that covers pre- and postprocessing, along with the 

underlying methodology (expanded team summarizations can be found in Supplementary 
Table 1).

Preprocessing and feature selection are core components of building a predictor. In this 

challenge, features in the profiling data sets (P) far outnumber the total samples (N), 

increasing the risk of overfitting. To address this, teams often reduced the number of 

features modeled by correlating the features in the profiling data set to the dose-response 

data. Other preprocessing steps included principal component analysis, regularized 

regression (e.g., lasso, ridge or elastic nets) and mapping gene-level measurements to 

biological pathways.

Postprocessing includes summarizing or integrating predictions from individual algorithms 

or data sets into a final set of predictions. For instance, many participants built models for 

each of the six profiling data sets individually, and then integrated these models to derive the 

final cell line response predictions for submission. Most frequently, teams computed a 

weighted average across individual profiling data set predictions. Detailed descriptions of 

team methods can be found in Supplementary Note 1.

Evaluating drug sensitivity predictions

Team predictions were scored using a modified version of the concordance index (c-

index)24, the probabilistic c-index (pc-index), where variation in the experimentally 

determined dose-response measurements was directly incorporated into the calculation. We 

present all dose-response values as −log10(GI50), where GI50 is the concentration that 

inhibited cell growth by 50% after 72 hours of treatment. Raw dose-response measurements 

can be found in Supplementary Table 2. A team’s final score was calculated as the 

weighted average of the pc-index for all 28 tested compounds, which we termed the 

weighted, probabilistic c-index (wpc-index, see Online Methods and Supplementary Note 
3). Drug weights reflect the statistical significance of the gold-standard cell-line ranking 

compared to a distribution of randomly generated predictions. We note that the range of the 

wpc-index will change according to experimental variation in the dose-response 

measurements, thus we also report a scaled version of the wpc-index to map the values to the 

range [0,1]. To verify scoring consistency, we also evaluated teams using a resampled 

Spearman correlation approach (Online Methods). Results from both scoring methods were 

consistent (ρ = 0.89; Supplementary Fig. 1); we present the wpc-index results in Table 1 
and the resampled Spearman correlation results in Supplementary Table 3. Additionally, 

we explored a team’s accuracy in predicting sensitive and resistant cell lines irrespective of 

predicted rank order (Supplementary Table 4 and Supplementary Fig. 2) and found a 

tight relationship between this measure of accuracy and the wpc-index (ρ = 0.78; 
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Supplementary Fig. 3). For the top-performing method, wpc-index = 0.583, which 

corresponds to a balanced accuracy = 0.78. Details of this analysis can be found in 

Supplementary Note 2 with a mapping of the wpc-index to the sensitive and resistant 

balanced accuracy in Supplementary Table 5.

To evaluate the significance of an individual team score, we compared the wpc-index to a 

null model of randomly predicted dose-response values. For 34 of the 44 teams, the null 

model of randomly generated predictions could be rejected (two-sided, t-test, false-

discovery rate (FDR) < 0.05) (Fig. 2a). These results indicate that many diverse methods 

can be implemented to make drug sensitivity predictions from pretreatment profiling data 

sets. Consistent with previous DREAM challenge results25, we observed that no single 

method category consistently outperformed the others (Fig. 2a and Table 1). This suggests 

that the separation in performance is heavily based on factors such as feature selection and 

method-specific implementations. Examples of innovative approaches from the two top-

performing teams are presented in the following section.

All submissions were subjected to a robustness (resampling) analysis by randomly masking 

10% of the gold-standard data set, then recalculating team scores (Fig. 2b,c). From this 

analysis, the top two teams were reliably ranked the best and second best, both when 

comparing team scores (one-sided, Wilcoxon signed-rank test, FDR < 10−10; Fig. 2b) and 

team ranks (one-sided, Wilcoxon signed-rank test, FDR < 10−10; Fig. 2c). When directly 

compared, the top-ranked team outperformed the second-best team for 91%, and the 

remaining teams, for over 99% of the resampled iterations. The second-best team 

outperformed the remaining teams for over 95% of the resampled iterations 

(Supplementary Fig. 4 and Supplementary Table 6); however, the third through 

fourteenth ranked teams were not statistically different (Supplementary Tables 6 and 7).

Of the 44 submissions, 23 used all six profiling data sets to make their predictions, 8 used 

five data sets, 4 used three data sets, 5 used two data sets and 4 used one data set. We 

compared the average rank performance of teams that used all six profiling data sets to 

teams using five or fewer data sets, but did not find a significant difference in their 

performance (average rank 22.7 versus 22.3). We explored several additional variables 

(missing values being imputed, outside information being used, method category) and found 

that only the inclusion of outside information in the form of annotated biological 

pathways26,27 or published drug response data sets1,3,4 improved the average team rank 

(17.4 versus 24.9; one-sided, Wilcoxon rank-sum test, p = 0.03).

The observation that integrating predictions across multiple, independent teams produces the 

most robust score has been previously made25. For such a ‘wisdom of crowds’ phenomenon 

to hold, individual predictions must provide complementary information derived from 

independent methods. We tested this phenomenon and found that the wisdom of crowds 

resulted in better performance (Supplementary Fig. 5a), along with increasingly robust 

predictions (i.e., greater mean, lower variance), by integrating greater numbers of teams 

(Supplementary Fig. 5b). Furthermore, predictions from the aggregation of a random 

subset of methods were very often better than the best of the individual methods in that 
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subset (Supplementary Fig. 5c). These results indicate that individual team methods do 

provide complementary sets of predictions.

Top-performing methods exploit nonlinear modeling

The top-performing team from Aalto University and the University of Helsinki (co-authors 

on this manuscript) developed a machine-learning method that integrates multiple profiling 

data sets and knowledge-enhanced data representations into a nonlinear, probabilistic 

regression model to learn and predict drug sensitivities for all drugs simultaneously (Fig. 3 
and Supplementary Note 1; source code provided as Supplementary Software). Their 

Bayesian multitask multiple kernel learning (MKL) method leveraged four machine-learning 

principles: kernelized regression, multiview learning, multitask learning, and Bayesian 

inference.

The underlying model was kernelized regression, a regression approach that computes 

outputs from similarities between cell lines, which is analogous to the usage of kernel 

methods in classification tasks (e.g., support vector machines). In contrast, other regression 

approaches compute outputs directly from the input features. The kernel formulation28,29 

has two advantages. First, it reduces the number of model parameters to match the number 

of samples (training cell lines) and not the number of features. Second, it captures nonlinear 

relationships between genomic and epigenomic features, and cell-line drug sensitivities.

In multiview learning, heterogeneous input data (views) are integrated into a single model. 

This makes it possible to include not only different profiling data sets but also various 

representations of the same data set. For example, gene expression values can be 

summarized at the pathway level. We use the term ‘view’ to describe these representations 

(analogous to views in a database). Besides the original profiling data sets, three types of 

computed data views were considered, including gene set summaries, data combinations, 

and data discretization (Fig. 3a). Sets of related genes, defined in the MSigDB27,30 

collections C2 (curated gene sets) and CP (canonical pathways), were used to calculate 

aggregated gene set views (average value for expression data, otherwise maximum). Data 

combination views were calculated as the product of individual data sets or according to the 

PARADIGM algorithm31. Finally, discretized views were compiled by binarizing 

continuous measures. A total of 22 views were generated. For the kernelized regression, 

each of the views was converted into a kernel matrix containing pair-wise similarities 

between all cell lines. Gaussian kernels were used for real-valued views and Jaccard 

similarity coefficients for binary-valued views. To integrate the views, the team modeled a 

global similarity matrix as a weighted sum of the view-specific kernel matrices. This 

approach is known as multiple kernel learning or MKL32 (Fig. 3b, left). The kernel weights 

reflect the relevance of each view for predicting drug sensitivities; the corresponding model 

parameters are shared across drugs.

The sharing of information between drugs, implying simultaneous modeling of drug 

sensitivities across all the drugs, is called multitask learning33 (Fig. 3b, right). Here, the 

kernel weight parameters were shared, providing robustness to the overall model. The 

second set of model parameters comprises the core parameters of kernelized regression, 

which were drug-specific: for each drug, there was a vector of weights for the training cell 
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lines and an individual intercept term. To handle the uncertainty resulting from the small 

sample size, all model parameters were learned by Bayesian inference, assuming for each 

model parameter a specific probability distribution, where parameters were learned using a 

computationally efficient variational approximation scheme (Supplementary Note 1).

After being benchmarked against the Genomics of Drug Sensitivity in Cancer (GDSC) data 

set3, the Bayesian multitask MKL method was applied to the NCI-DREAM test cell lines. 

By training the model with all 22 views, predictive performance was improved by 9% over 

using only the six profiling data sets, yielding a final wpc-index = 0.583 (one-sided, t-test 

from random predictions, FDR = 2.5 × 10−5; scaled wpc-index = 0.629).

The second-best performing team of Qian Wan and Ranadip Pal from Texas Tech 

University leveraged the strengths of random forest regression34 to account for 

nonlinearities in the NCI-DREAM data (Supplementary Note 1). First, an ensemble of 

unpruned regression trees with random feature selection was compiled based on a 

bootstrapped sampling of a given profiling data set. For each profiling data set, a final model 

based on averaging of predictions over the collection of trees was generated. Each model 

was then weighted according to its least-squares fit to the training drug sensitivity data. The 

final predictions were calculated as the weighted sum of all six profiling data set models, 

yielding a final wpc-index = 0.577 (one-sided, t-test, FDR = 7.2 × 10−5; scaled wpc-index = 

0.620). For this approach, the most informative profiling data sets were gene expression 

followed by methylation.

Profiling data sets provide nonredundant predictive signals

We used the insights provided by participating teams in a post-challenge comparative 

analysis between the Bayesian multitask MKL method (kernel 1) and an elastic net to 

characterize the predictive power of the original six profiling data sets. Teams most often 

reported that gene expression microarrays carried the greatest weight in their models 

(Supplementary Note 1). We tested this observation by performing 50 independent 

simulations of the NCI-DREAM challenge, randomly splitting all data sets into 35 training 

and 18 test cell lines, balanced for breast cancer subtype. To establish a baseline 

performance, we chose an elastic net model because it had been used previously1, was 

widely used by teams (Supplementary Note 1), and could be easily applied off-the-shelf 

(glmnet R package35). Averaged across all tested drugs, we found that the RPPA data 

showed the highest performance for the elastic net, followed closely by gene expression data 

(Fig. 4a). The Bayesian multitask MKL performed better than the elastic net using the 

RPPA data (one-sided, Wilcoxon signed-rank test, FDR = 1.3 × 10−6), and Bayesian 

multitask MKL using gene expression data significantly outperformed the use of RPPA data 

(two-sided, Wilcoxon signed-rank test, FDR = 1.3 × 10−6). For both methods, the 

performance varied across individual drugs (Supplementary Fig. 6). We also examined the 

effect of profiling data sets on drug classes (as defined in Supplementary Table 8) and 

found that for Bayesian multitask MKL, the ‘Signaling growth’ drugs had higher predictive 

scores in general, with gene expression and RPPA data being the data sets with the most 

predictive power (Supplementary Fig. 6).
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Between the six profiling data sets, we explored the issue of data complementarity and 

redundancy, specifically, which data set combinations provide performance gains over 

single data sets. For the Bayesian multitask MKL method, we found that exome sequencing 

data best complemented gene expression data, whereas for the elastic net, methylation data 

best complemented gene expression data. For both methods, all other data sets were best 

complemented by gene expression, to varying degrees (Supplementary Fig. 7). 

Additionally, by evaluating methods trained with five instead of the full six profiling data 

sets, we identified methylation as the most independent, non-redundant profiling data set 

because removing methylation showed the largest average drop in performance 

(Supplementary Figs. 7 and 8).

In addition to the original data sets, we explored the performance of computed data views, as 

defined in the previous section. For both methods, gene set views (CP and C2) showed 

improved performance for copy number variation (CNV) data compared to the original data. 

In contrast, discretization of RNA-seq data improved the performance only with Bayesian 

multitask MKL and not with the elastic net. Comparing all computed views, the gene set 

view (CP) of gene expression data achieved the best performance for both methods (Fig. 
4b). Finally, we tested whether all views for a single profiling data set (original data set plus 

computed views) could be integrated to improve performance. For the elastic net, we only 

found a slight gain in performance for the RNA-seq and CNV groups, whereas the Bayesian 

multitask MKL method showed performance gains for all groups except for exome 

sequencing (Fig. 4c), with the top-performing group coming from gene expression data. 

Notably, the fully integrated model of all 22 data views improved performance against the 

gene expression group (one-sided, Wilcoxon signed-rank test, FDR = 7.3 × 10−7; Fig. 4d). 

Taken together, these results suggest that gene expression data provides the most predictive 

power for any individual profiling data set. Also, predictive power can be gained within a 

data set by generating new computational views that integrate across profiling data sets and 

incorporate prior knowledge. Notably, this improvement comes with no additional 

experimental cost (Supplementary Figs. 9 and 10).

A predictive signal can be identified for most drugs

Teams were scored according to their ability to rank cell lines across all 28 tested 

therapeutic compounds. Here, we explored teams’ abilities to predict individual drug 

response. Inhibition of cell growth was predicted well for some compounds (e.g., 

bromopyruvate (glycolysis), PD184352 (MEK)), whereas for other compounds, teams 

generally performed poorly (e.g., chloroquinine (autophagy), FR180304 (ERK)) (Fig. 5a). 

To characterize factors that influence compound predictability, we measured the Pearson 

correlation between the pc-index and a compound’s dynamic range (minimum to maximum 

−log10(GI50) values). A mild positive trend exists (ρ = 0.14), though it is not statistically 

significant (p = 0.49) (Fig. 5b). We found that proteasome inhibitors tend to be predicted 

more accurately than other drug classes (as defined in Supplementary Table 8), though 

with a relatively small number of compounds in each class, this analysis is not well-

powered. One factor that did confound our assessment of individual drug performance was 

the number of −log10(GI50) values measured for a drug (Fig. 5b). That is, missing values 

and multiple cell lines with the same measured response resulted in underpowered, drug-
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specific statistics. This observation is the basis for weighting drugs to calculate the wpc-

index score.

We further assessed the predictability of individual drugs by comparing the distribution of 

team predictions to a random model and found that 21/28 drugs performed better than the 

average null model, and 16/28 drugs were significantly better (Kolmogorov-Smirnov test, 

FDR < 0.05; Fig. 5c). This strongly indicates that a predictive signal is being identified by a 

majority of teams for more than half of the tested compounds. Further, these observations 

demonstrate that it is possible to identify predictive features for compounds representing 

diverse modes of action. We also quantified the gap in performance between team 

predictions and the best possible ranking (as defined by the rank order of the test cell lines). 

Across 28 compounds, the Bayesian multitask MKL method accounted for 73% of the 

maximum possible score, with the second-best performing team accounting for 71% of the 

maximum possible signal. Although promising, this indicates that these drug sensitivity 

predictions could benefit from further refinement.

DISCUSSION

Over a period of 5 months, 127 researchers focused their time and efforts on addressing the 

challenge of drug sensitivity prediction. To our knowledge, no previous studies have 

assessed a comprehensive benchmarked set of algorithms for predicting therapeutic response 

based on genomic, epigenomic, and proteomic profiles of untreated cells. The Bayesian 

multitask MKL method provides an excellent example of how the NCI-DREAM challenge 

drove innovation in algorithm development. Considering all 44 submitted methods, the 

insights gained provide a valuable resource for future algorithm development 

(Supplementary Note 1).

In particular, our analysis of this collection of algorithms revealed several insights about 

predicting drug sensitivity. First, we found that modeling nonlinearities in the data was a 

common component of top-performing methods. Second, the Bayesian multitask MKL 

method showed improved performance by learning weights for the input data sets. Sharing 

the weights across drugs provided greater robustness of the prediction model and resulted in 

an increased overall performance, particularly for the drugs with many missing values. 

Finally, the application of prior knowledge, particularly in the form of biological pathways, 

improved drug sensitivity predictions. This was demonstrated in the Bayesian multitask 

MKL method through data views, though many top-performing teams implemented similar 

approaches to leverage pathway information.

We observed that gene expression was the most informative data set in many approaches, 

which may partly reflect the fact that analysis tools for this data type are more abundant and 

advanced. That is, we do not yet know the best approaches to extract predictive information 

from the other large profiling data sets; in particular the sparsity of exome sequencing data 

requires novel analysis methods36. However, when combined with expression data, these 

other data sets can enhance prediction performance.
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The analysis of individual compounds showed that predictors of response could be robustly 

identified for the majority of compounds tested. This suggests a prioritization scheme for 

identifying compounds and their associated signatures with the most promise for validation 

in patient populations. Both targeted and nontargeted compounds, as well as those with both 

high and low dynamic ranges of response could be predicted, indicating that predictive 

features are present in the profiling data sets for a diverse array of drug mechanisms.

The −log10(GI50) drug response measurement used in this study represents one available 

metric to quantify drug response. Recent studies have demonstrated that dose-response 

curves can be parameterized in many meaningful ways1,37. It is possible that applying the 

algorithms assessed here to other parameters of the curves would yield more robust 

predictions for some of the compounds for which predictions were poor. In addition, the 

−log10(GI50) reflects the combined effect of growth inhibition and apoptosis, two related but 

distinct processes that can be modeled separately, and even targeted separately as a cancer 

treatment strategy38. Expanding the measurements to include endpoints that mediate 

oncogenic behavior of cells39 would allow for improved model construction and has 

recently been shown to be experimentally and technologically feasible40.

A limitation of this work is the small number of cell lines and compounds tested. The efforts 

by NCI-DREAM participants have laid the groundwork for the development of improved 

drug sensitivity models that can be applied to newly generated data sets1,3. Another 

consideration is that preclinical work is only a very early step in the translation to clinical 

samples. Now that genomic, epigenomic and/or proteomic profiles are frequently a 

component of clinical trials (e.g., I-SPY 2 Trial: http://www.ispy2.org/), these data will be 

available to test and refine models developed from this challenge in human trials. Moreover, 

participants were not given any information about the mode of action, target or chemical 

structure of the compounds, which could be included as additional features for the models22.

The success of precision medicine will depend on our ability to translate large compendia of 

genomic, epigenomic, and proteomic data into clinically actionable predictions. Examples 

such as the recent Sage Bionetworks-DREAM breast cancer prognosis challenge41 and this 

NCI-DREAM drug sensitivity challenge demonstrate the evolution of challenge-based 

competitions, resulting in rapid advancement of robust algorithms and establishment of 

benchmarked models. Equally important, challenge-based competitions build the critical 

mass of collaborative scientists necessary to address fundamental biomedical questions42. 

The evolution of the DREAM project will continue as the challenges in biomedical research 

expand to the genome scale.

ONLINE METHODS

Challenge data and gold standard

The NCI-DREAM drug sensitivity prediction challenge is outlined in Figure 1. A total of 

seven data sets were provided for 53 breast cancer cell lines, as discussed in detail in two 

recent publications: Heiser et al.4 and Daemen et al.23. The cell lines were selected to 

represent the major, clinically relevant subtypes of breast cancer, including luminal, basal, 

claudin-low, ERBB2-amplified, and nonmalignant. The drugs were selected based on data 
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availability (on average, drugs were tested on 80% of the 53 cell lines) and novelty (drug 

response data were unpublished, not distributed throughout the community of participants, 

and not available from other sources (Supplementary Note 4)). Most of the included drugs 

have not been tested clinically in breast cancer, and therefore have the potential to serve as 

novel therapeutics.

A total of six genomic, epigenomic and proteomic profiling data sets were collected from 

untreated cells in growth conditions. Descriptions of each profiling data set can be found in 

the annotation files associated with each data set supplied through the DREAM website 

(http://www.the-dream-project.org/). Not all profiling data were collected for every cell line, 

and drugs were not equally sampled across all of the cell lines.

(1) DNA copy-number variation (CNV). Affymetrix Genome-Wide Human SNP6.0 

Array. Copy number ratios were estimated relative to a set of 20 normal samples, and 

data were segmented using circular binary segmentation (CBS)43;

(2) Transcript expression values. Affymetrix GeneChip Human Gene 1.0 ST 

microarrays were processed using the R package aroma.affymetrix44 (over 18,000 

expression values);

(3) Whole exome sequencing (exome seq). Mutation status was obtained from exome-

capture sequencing (Agilent Sure Select system). Mutations across all cell lines were 

filtered as follows: (i) average sum of the base quality scores of all mismatches in the 

reads containing the mutant allele ≤ 20; (ii) average number of other mismatches in the 

reads ≤ 1.5; (iii) average distance of the mutant alleles to the 3′ end of their respective 

reads between 0.2 and 0.8; (iv) mutant allele read support ≥ 4; (v) number of reads per 

variant supporting either the reference or mutant allele < 400 (over 33,000 reported 

mutations);

(4) RNA sequencing data (RNA-seq). RNA-seq libraries were prepared using the 

TruSeq RNA Sample Preparation Kit (Illumina) and Agilent Automation NGS system 

per manufacturers’ instructions. Expression analysis was performed with the ALEXA-

seq software package45 (just under 37,000 RNAs);

(5) DNA methylation data. The Illumina Infinium Human Methylation27 BeadChip Kit 

was used for the genome-wide detection of 27,578 CpG loci, spanning 14,495 genes46. 

GenomeStudio Methylation Module v1.0 was used to express the methylation for each 

CpG locus as a value between 0 (completely unmethylated) and to 1 (completely 

methylated) (over 27,000 CpGs);

(6) RPPA. An antibody-based method to quantitatively measure protein abundance. 

RPPA data were generated and preprocessed as previously described47 (131 proteins 

assayed).

In addition to the profiling data, drug response for each of the 53 cell lines to 28 drugs was 

tested. Dose-response curves were generated and the GI50[M] was calculated. To estimate 

the GI50, a series of assays were done, as previously described48. Briefly, cells were treated 

for 72 h with a set of nine doses of each compound in 1:5 serial dilution. Cell viability was 

determined using the Cell Titer Glo assay. We used nonlinear least-squares to fit the data 
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with a Gompertz curve. The fitted curve was transformed into a GI curve using the method 

(http://dtp.nci.nih.gov/branches/btb/ivclsp.html) described in Monks, et al.49. In cases where 

the underlying growth data were of high quality, but the GI50 was not reached, the values 

were set to the highest concentration tested. The drug response data were filtered according 

to previously described criteria4. All reported drug response values and calculations for 

scoring were done using −log10(GI50). The complete set of unfiltered raw drug response 

data is in Supplementary Table 2.

Participants were supplied with the full set of profiling data for all of the cell lines and drug 

response data for 35 (of the 53) cell lines for all 28 drugs. The gold-standard evaluation data 

set consisted of drug response data for the remaining 18 cell lines, which were hidden from 

the participants. Cell lines were assigned to the training and test data sets to ensure a 

balanced set of breast cancer subtypes.

Participants were challenged to predict a ranked list of the most sensitive (to be ranked first) 

to most resistant (to be ranked last) cell lines for each individual drug across all the 18 test 

cell lines. We note that the drug response values, −log10(GI50), ranked from highest to 

lowest values, correspond to a ranking of the most-sensitive to the most-resistant cell lines. 

Assessment of predictions was based on participant’s ranking of the 18 test cell lines. 

Participants supplied their final submission as a comma-separated text file with the drugs 

listed as columns and cell lines listed as rows. The cells in the matrix represent ranks of each 

cell line for a given drug.

Team scoring

Drug response measurements, −log10(GI50), are subject to noise. To account for these 

uncertainties, a pooled variance,

was calculated for each tested drug individually, d, over n = 53 cell lines, where ri and  are 

the replicate number and variance of the ith cell lines, respectively. There were several drugs 

(bromopyruvate (glycolysis), chloroquine (autophagy), GW5074 (RAF1), and QNZ 

(NFκB)) with low replicate numbers; in these instances, the global pooled variance across 

all drugs and cell lines was used. Values used to calculate the pooled variance can be found 

in Supplementary Table 10. The pooled variance was then taken into account when scoring 

team submissions as described in the following section.

The final team submissions were evaluated using two independent scoring methods. The 

first scoring method, a weighted, probabilistic concordance-index (wpc-index), was used to 

report the final team rankings of the challenge. The second method, a resampled Spearman 

correlation, was used to verify the consistency between team rankings based on a separate 

scoring method and implementation. Team scores were then subjected to a resampled, 
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robustness analysis to ensure team rankings were not affected by perturbations to the gold-

standard test cell lines. Team scores were based on the set of 18 test cell lines.

Weighted probabilistic concordance-index (wpc-index)

The concordance index (c-index) is a nonparametric scoring method that provides a measure 

of similarity between two lists of measurements or ranks24. For a detailed description of the 

scoring methodology, see Supplementary Note 3.

Resampled Spearman correlation

The key idea motivating this scoring metric is to compare the predicted ranked list for each 

drug, d, and n cell lines (n = 18 for the set of test cell lines), Rd = (r1, r2,…, rn) against an 

ensemble of t different possible realizations of the gold standard, Ĝd,t = (Gd,1,Gd,2, …,Gd,t), 

for the same drug and cell lines, where each realization Gd is defined as Gd = (g1, g2,…, gn). 

Each of the possible t realizations of the gold-standard samples a drug’s −log10(GI50) dose 

in a cell line from the normal distribution, N(xd,n, sd) where xd,n is the sample mean of the 

drug response for d and cell line n, and sd is the pooled s.d. for d over all tested cell lines. 

The ensemble of gold standards, Ĝd,t, is then converted into ranked gold-standard cell lines, 

. Afterwards we compared these rank gold-standard cell lines to the predicted ranks, Rd:

where  and R̄
d are the mean gold standard ranks and predicted rank, respectively.

Robustness analysis

To ensure team rankings are robust to perturbations in the gold-standard data set, a 

subsampling analysis was performed. A set of t = 10,000 evaluation data sets, 

, was generated where 10% of the gold-standard data set, G, was 

randomly masked to create G′. All predictions in E were scored to create an empirical null 

distribution of wpc-index scores. Individual teams were rescored using G′ and compared to 

the null distributions using a single-sample, two-sided, Student’s t-test. FDRs were 

calculated using the Benjamini-Hochberg correction. In addition to the wpc-index, on each 

iteration, submissions were re-ranked to create a distribution of team ranks, which were 

compared using the Wilcoxon signed-rank test.

Data view analysis

Besides the six profiling data sets supplied in the challenge, additional views were 

constructed by challenge organizers (discretized RNA-seq) and by the top-performing team 

(discretized exome sequencing, gene set summaries for individual data types and genewise 

combination of two or more data sets). The analysis of individual and grouped data views 
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was done using the Bayesian multitask MKL method from the top-performing team and an 

elastic net linear regression implemented in the R package, glmnet35. A total of 50 

simulations of the challenge were run by randomly selecting 35 training and 18 test cell 

lines, keeping the subtypes of cell lines balanced.

At each iteration of the challenge simulations, the Bayesian multitask MKL method was 

applied using a single view or a group of views as input data. The elastic net was learned 

using the same training and test cell lines as the Bayesian multitask MKL method and 

modeling each drug separately. For each selection of input views and each drug, an elastic 

net regression model was learned, where regularization parameters were selected by fivefold 

cross-validation on the training data, using α values from 0 to 1 in increments of 0.1 and the 

default λ sequence. The final prediction model was trained on all training cell lines, using 

the parameters with minimal cross-validation error. Elastic net models were first trained 

using all features in a data set, but performance was poor due to the high dimensionality 

compared to low sample size. Thus, for data sets with more than 5,000 features, only the top 

10% most-variable features were used. For the analysis of multiple grouped views, a simple 

data concatenation approach was first tried, but resulted in decreased performance due to an 

increase in the number of input features. Therefore, a fraction of  top-varying features was 

kept for each view when integrating K views. Statistical significance was calculated using 

the Wilcoxon signed-rank test and FDR corrected.

Data deposition

The NCI-DREAM data set is a subset of the data reported in Daemen et al.23 Genome copy 

number data has been deposited at the European Genome-Phenome Archive (http://

www.ebi.ac.uk/ega/), hosted at the EBI (accession numbers EGAS00000000059 and 

EGAS00001000585). Gene expression data for the cell lines were derived from Affymetrix 

GeneChip Human Genome U133A and Affymetrix GeneChip Human Exon 1.0 ST arrays. 

Raw data are available in ArrayExpress (http://www.ebi.ac.uk/arrayexpress), hosted at the 

EBI (accession number E-TABM-157 and E-MTAB-181). RNA-seq and exome-sequencing 

data can be accessed at the Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/

geo/), accession number GSE48216. Genome-wide methylation data for the cell lines are 

also available through GEO, accession number GSE42944. Scripts to perform the wpc-index 

and resampled Spearman scoring can be found on the DREAM website (http://www.the-

dream-project.org/). Source code for the Bayesian multitask MKL method can be found as 

Supplementary Software.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The NCI-DREAM drug sensitivity challenge. (a) Six genomic, epigenomic, and proteomic 

profiling data sets were generated for 53 breast cancer cell lines, which were previously 

described23. Drug responses as measured by growth inhibition were assessed after treating 

the 53 cell lines with 28 drugs. Participants were supplied with all six profiling data sets and 

dose-response data for 35 cell lines and all 28 compounds (training set). Cell line names 

were released, but drug names were anonymized. The challenge was to predict the response 

(ranking from most sensitive to most resistant) for the 18 held-out cell lines (test set). The 

training and test cell lines were balanced for cancer subtype, dynamic range and missing 

values (Supplementary Fig. 11). Submissions were scored on their weighted average 

performance on ranking the 18 cell lines for 28 compounds. (b) Dose-response values for 

the training and test cell lines displayed as heatmaps.
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Figure 2. 
Evaluation of individual drug sensitivity prediction algorithms. Prediction algorithms (n = 

44) are indexed according to Table 1. (a) Team performance was evaluated using the 

weighted, probabilistic concordance index (wpc-index), which accounts for the experimental 

variation measured across cell lines and between compounds. Overall team ranks are listed 

on top of each bar. The gray line represents the mean random prediction score. (b,c) 

Robustness analysis was performed by randomly masking 10% of the test data set for 10,000 

iterations. Performing this procedure repeatedly generates a distribution of wpc-index scores 

for each team (b). Additionally, after each iteration, teams were re-ranked to create a 

distribution of rank orders (c). The top two teams were reliably ranked the best and second-

best performers (one-sided, Wilcoxon signed-rank test for b and c, FDR « 10−10).
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Figure 3. 
The method implemented by the best performing team. (a) In addition to the six profiling 

data sets, three different categories of data views were compiled using prior biological 

knowledge, yielding in total 22 genomic views of each cell line. (b) Bayesian multitask 

MKL combines nonlinear regression, multiview learning, multitask learning and Bayesian 

inference. Nonlinear regression: response values were computed not directly from the input 

features but from kernels, which define similarity measures between cell lines. Each of the K 

data views was converted into an N×N kernel matrix Kk (k = 1,…,K), where N is the number 

of training cell lines. Specifically, the Gaussian kernel was used for real-valued data, and the 

Jaccard similarity coefficient for binary-valued data. Multiview learning: a combined kernel 

matrix K* was constructed as a weighted sum of the view-specific kernel matrices Kk, k = 1,

…,K. The kernel weights were obtained by multiple kernel learning. Multitask learning: 

training was performed for all drugs simultaneously, sharing the kernel weights across drugs 

but allowing for drug-specific regression parameters, which for each drug consisted of a 

weight vector for the training cell lines and an intercept term. Bayesian inference: the model 

parameters were assumed to be random variables that follow specific probability 

distributions. Instead of learning point estimates for model parameters, the parameters of 

these distributions were learned using a variational approximation scheme.
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Figure 4. 
Performance comparison of data set views. The top-performing method, Bayesian multitask 

MKL, and an elastic net predictor were trained on (a) the original profiling data sets, (b) 

computed views, (c) groups of data views, and (d) the fully integrated set of all data views. 

Boxplots represent the distribution of 50 random simulations matching the NCI-DREAM 

challenge parameters, where whiskers indicate the upper and lower range limit, and the 

black line, the median. (b) The computed views were derived from gene sets, combined data 

sets, calculated as the product of values between data sets, and discretizing continuous 

measures into binary values. (c) Data view groups were defined as all views derived from 

one profiling data set. (d) For Bayesian multitask MKL, the integration of all data views 

achieves the best performance. Gene expression is the most predictive profiling data set, 

slightly outperformed by gene set views of expression data and the integration of original 

and gene set expression data.
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Figure 5. 
Prediction performance on individual drugs. Prediction algorithms are indexed and colored 

according to Table 1. (a) The heatplot illustrates participant performance on individual 

drugs, grouped by drug class (values can be found in Supplementary Table 9). Drug 

weights, which take into account the number of missing values and the noise in the 

−log10(GI50) measurements, are displayed at the top of the heatplot. Team submissions are 

ordered according to their overall performance from best performer at the top of the list. (b) 

The dynamic range of drugs across all cell lines was compared to the median team score. 

The node size reflects the number of distinct −log10(GI50) values for each drug across all 53 

cell lines. The node colors reflect mode-of-action classes. The gray horizontal line is the 

mean score of random predictions and the vertical gray line separates low dynamic range 

(<2) from high dynamic range (>2), where dynamic range for a drug is the maximum 

−log10(GI50) − minimum −log10(GI50). (c) The distribution of team scores (n = 44) for 

individual drugs was compared to the null model of random predictions (gray line where pc-

index = 0.5). The red points correspond to the maximum possible pc index (pc index of gold 

standard in the test data). On average, 21/28 drugs performed better than the null model; 

using the Kolmogorov-Smirnov test, 16/28 drugs were significantly better than the null 

model (*FDR < 0.05; **FDR < 0.01; ***FDR < 0.001).
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Table 1

NCI-DREAM drug sensitivity prediction methods

Team Synopsis wpc-index (scaled) FDR Data

Kernel method

1 Bayesian multitask MKL (see main text). 0.583(0.629) 2.6 × 105 exnmrc OI

2 A predefined number of features were selected using Pearson correlation, training 
and prediction was done
using support vector regression (SVR; radial basis).

0.559(0.592) 1.0 × 103 enmrc

3 Separate normalizations were applied to each dataset, several support vector 
machine (SVM) classifiers were
independently trained (varying kernels and input data), final predictions were made 
using a weighted average
of all SVM outputs.

0.553(0.582) 2.7 × 103 exnmrc

4 Bidirectional search was used to select features, training and prediction was done 
using a SVM (radial basis).

0.549(0.575) 4.8 × 103 enmrc

Nonlinear regression (regression trees)

1 Features were randomly selected to built an ensemble of unpruned regression trees 
for each dataset, missing
values were imputed, weights for the models were calculated, final predictions were 
made using a weighted
sum of the individual models.

0.577(0.620) 7.2 × 105 enm

2 Features were filtered based on their correlation to dose-response values, random 
forests were trained for
each dataset, missing values were imputed, final rankings were based on a 
composite score from four
individual dataset models (enrc).

0.569(0.607) 2.9 × 104 enrc OI

3 Features were filtered based on their correlation to dose-response values, random 
forests were trained for
each dataset, missing values were imputed, final rankings were based on a 
composite score from five
individual dataset models (enmrc).

0.565(0.601) 5.1 × 104 enmrc OI

4 Features were filtered based on their correlation to dose-response values, random 
forests were trained for each
dataset, missing values were imputed, final rankings were based on a composite 
score from five individual
dataset models (exnrc).

0.564(0.599) 5.1 × 104 exnrc OI

5 Features were filtered based on their correlation to dose-response values, random 
forests were trained for
each dataset, missing values were imputed, final rankings were based on a 
composite score from individual
dataset models (exnmrc).

0.559(0.591) 1.0 × 103 exnmrc OI

6 Gene features were selected using linear regression and maximal information 
coefficient, pathway information
was also used to derive features, training and prediction was done using a random 
forest model.

0.551(0.579) 3.3 × 103 exnmrc

7 Random forests were constructed in a stacked approach, an ensemble of regression 
trees was constructed for
all drug/dataset pairs, missing values were imputed, predictions were made for 
individual models and another
random forest was used to combine the different predictions for the drugs to a final 
prediction.

0.548(0.575) 5.0 × 103 exnmrc

8 Features were ranked according to the absolute value of Spearman’s correlation, the 
average rank of all
cell lines was calculated according to the top features.

0.548(0.574) 5.0 × 103 exnmrc

9 Features were selected using Pearson correlation and a combination of bagging and 
gradient boosting,
prediction was made using selected features and a regression tree.

0.544(0.568) 1.0 × 102 exnmrc

10 Features were selected using matrix approximation methods leveraging SVD, 
training and prediction were
done using a regression tree models using gradient boosting.

0.538(0.560) 1.9 × 102 en
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Team Synopsis wpc-index (scaled) FDR Data

11 Features were selected for individual cell lines by constructing random forests and 
pruning (recursive
feature elimination), missing values were imputed, final predictions were made by 
training a random forest
using features from all cell lines. In addition to cell line features, bioactivity spectra 
of the individual
compounds were included as compound features.

0.524(0.538) 9.2 × 102 exnmrc

Sparse linear regression

1 Features were simultaneously selected and a ranking model built for each drug by 
lasso regression.

0.564(0.600) 5.1 × 104 en

2 Features were initially filtered based on linear regression to drug response, training 
and prediction were done
using elastic nets.

0.564(0.600) 5.1 × 104 exnmrc

3 Gene and pathway features were determined using a one-dimensional factor 
analysis, training and predictions
were made with spike and slab multitask regression, drug dose-response values 
were recalculated from raw
growth curves.

0.564(0.598) 5.1 × 104 exnmrc OI

4 Missing features were imputed, combinations of datasets were enumerated and used 
to train elastic net
regression models, for each drug, final predictions were made using the best-
performing model.

0.551(0.579) 3.3 × 103 exmrc

5 Gene and pathway features were determined using a one-dimension factor analysis, 
training and predictions
were made with spike and slab multitask regression, drug dose-response values 
were recalculated from raw
growth curves, Heiser et al. data were used to train the model.

0.539(0.560) 1.9 × 102 exnmrc OI

6 Features were removed with low dynamic range, missing feature values were 
imputed, training and predictions
were made using lasso regression on individual datasets, final predictions were 
made using the weighted sum
of regression models.

0.539(0.560) 1.9 × 102 exnmrc

7 Statistically significant features were selected using Spearman correlation, training 
and prediction were done
using an elastic net.

0.532(0.549) 4.7 × 102 e

8 Features were constructed by grouping genes according to GO terms, training and 
prediction were done using
relaxed lasso regression.

0.531(0.548) 4.7 × 102 en OI

9 Gene and pathway features were determined using a one-dimension factor analysis, 
training and predictions
were made with spike and slab multitask regression, GI50 values were used.

0.531(0.547) 4.9 × 102 exnmrc OI

10 Features were selected using a regression with log penalty, which bridges the L0 
and L1 penalty, missing values
were imputed, penalized regression models were trained on individual datasets, 
final predictions were made
using a weighted average.

0.531(0.547) 4.9 × 102 exnrc

11 Features were selected based on elastic nets, missing values were imputed, training 
and predictions were done
using ridge regression.

0.527(0.543) 6.7 × 102 exnmrc

12 Features were filtered on dataset-specific criteria, missing values were set to 
random numbers, training and
predictions were made using the interior point method for L1-regularization.

0.519(0.529) 1.5 × 101 enmrc

13 Features were selected using a Gompertz growth model, predictions were made 
using a lasso regression model.

0.517(0.526) 1.8 × 101 exnmrc

14 Putative gene set expression values were calculated from constituent genes, training 
and predictions were
made using linear regression.

0.485(0.477) 8.0 × 101 e

PLS or PC regression

1 Removed lowly expressed and/or low variance features, features were selected 
based on correlation to drug

0.562(0.597) 5.5 × 104 en OI
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Team Synopsis wpc-index (scaled) FDR Data

response, multiple partial least squares regression models were trained and 
consensus determined for final
prediction.

2 Features were selected by using lasso regression and groups of genes predefined by 
core signaling pathways,
predictions were made by linear regression of the reduced feature set to drug 
response, predictor datasets
were merged in advance of drug response prediction, and responses were predicted 
simultaneously sharing
information among drugs.

0.543(0.567) 1.0 × 102 exnmrc OI

3 Training and prediction were done using principal component regression for 
individual drugs.

0.535(0.554) 3.1 × 102 exnmrc

4 Statistically significant features were selected using correlation, models were fit 
using principal component
regression, final predictions were made using a weighted average of models.

0.524(0.538) 9.2 × 102 en

Ensemble/model selection

1 Features were selected using correlation, dimensionality reduced using principal 
component analysis, lasso
and ridge method, several regression models were trained for individual drugs and 
the top cross-validated
model was selected to make final predictions for each drug.

0.562(0.597) 5.5 × 104 exnmrc

2 Features were selected on outside information, missing values were imputed, 
predictions were made by
aggregating results from an ensemble of machine-learning methods.

0.556(0.587) 1.6 × 103 exnmrc

3 Features were selected using Spearman’s rank correlation, missing values were 
imputed, predictions were
made using the best-performance method (determined by cross-validation on the 
training set) among an
ensemble of methods (random forest, support vector machine and linear regression).

0.554(0.583) 2.6 × 103 exnmrc

4 Gene and pathway features were compiled using outside data, an ensemble of 
prediction models were trained,
final predictions were based on a rank-aggregation of combined prediction models.

0.517(0.527) 1.7 × 101 exnmrc OI

5 Features were selected using outside pathway and interaction data, missing values 
were imputed, individual
drug predictions were made using the best model selected from an ensemble of 
methods.

0.506(0.509) 3.7 × 101 e OI

Other

1 Features were weighted based on Pearson’s correlation to drug response, 
predictions were made using the
correlation of the weighted features.

0.570(0.608) 2.9 × 104 enr

2 Gene features showing strong survival from the METABRIC dataset were selected, 
then hierarchically clustered,
a linear model was built to fit gene clusters to drug response, predictions were made 
using a regression model.

0.553(0.582) 2.6 × 103 e OI

3 Missing features were imputed, signatures were extracted for each dataset, 
predictions were made using
1-nearest-neighbor to training cell lines via Pearson’s correlation between 
signatures for each data type, final
predictions are the weighted sum of the individual datasets.

0.553(0.581) 2.7 × 103 exnmrc

4 Features were selected using dataset-specific criteria, missing values were imputed, 
predictions were made
using KNN.

0.531(0.549) 4.7 × 102 exnmrc

5 Features were filtered using dataset-specific criteria, an ensemble of Cox regression 
models were constructed
using random sampling from top-performing features, final prediction is the 
average of all models.

0.528(0.543) 6.5 × 102 nmc

6 Features were selected using the concordance index, predictions were made using 
an integrated voting
strategy based on each feature’s ability to predict the order of pairs of cell lines.

0.521(0.532) 1.3 × 101 enmrc

The 44 team submissions were categorized according to their underlying methodology. The indexing scheme is used in Figures 2 and 5. Team 
scores (wpc-index) were re-scaled setting the gold-standard ranking to 1 and the inverse to 0. Teams leveraged different genomic datasets, coded as 
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(e) gene expression, (x) exome sequencing, (n) RNA seq, (m) methylation, (r) RPPA and (c) copy number variation. The use of outside 
information, often in the form of biological pathway annotation, was found to be a factor that improved average team rank and is noted in the Data 
column as ‘OI’. Additional method characterizations can be found in Supplemental Table 1.
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