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Abstract

The hydrodynamics of an archetypal low-Reynolds number swimmer, called “squirmer”, near a 

wall has been numerically studied. For a single squirmer, depending on the swimming mechanism, 

three different modes are distinguished: (a) the squirmer escaping from the wall, (b) the squirmer 

swimming along the wall at a constant distance and orientation angle, and (c) the squirmer 

swimming near the wall in a periodic trajectory. The role of inertial effects on the near-wall 

motion of the squirmer is quantified. The dynamics of multiple squirmers swimming between two 

walls is found to be very different from a single squirmer. Near-wall accumulation of squirmers 

are observed. At a relatively small concentration c = 0.1, around 60 – 80% of the squirmers are 

accumulated near the walls and attraction of pushers and pullers towards the wall is stronger than 

neutral squirmers. Near-wall squirmers orient normal to the wall, while in the bulk region, the 

squirmers are mostly oriented parallel to the wall. At a high concentration, c = 0.4, the percentage 

of the near-wall squirmers is around 40%. The orientation angle of squirmers in the bulk region is 

more uniformly distributed at high concentrations. In the near-wall region, pullers repel each 

other, while pushers are attracted to each other and form clusters.

I. Introduction

Biolocomotion in a low Reynolds number regime near a no-slip wall is a subject of growing 

interest in recent years for its importance in many health and environmental problems [1, 2]. 

For example, accumulation of bacteria near the surface and the formation of biofilms are 

closely related to many types of microbial infections [3]. Spermatozoa swimming in the 

female reproductive tract is another common example [4]. Studies have demonstrated that 

the presence of boundaries significantly affects the swimming speed and energetic properties 

of micro-swimmers [5–7]. Furthermore, recent experimental studies have observed many 

unexpected interesting behaviors for swimming organisms near a boundary, including the 

circular orbit of E. coli above a flat surface [8], wall induced accumulation of organisms [9–

12] and the “dancing” motion of pairs of Volvox near a solid boundary [13].

The inertial effects are important for many of planktonic swimmers in marine environments, 

such as larvae and Pleurobrachia. Small organisms use inertia to change their swimming 
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direction, attack a prey or escape from a predator [14, 15]. Wang and Ardekani [16, 17] 

analytically quantified the inertial effects by deriving the fundamental equation of motion 

for small organisms swimming in an unbounded quiescent fluid environment. The role of 

boundaries on the swimming of small organisms in a nonzero-Reynolds-number regime is of 

great importance. For example, the accumulation of larvae near the surface has a significant 

influence on the metamorphosis and survival of larvae [18].

Simplified swimming models have been widely used to investigate the dynamics of confined 

swimmers in a zero-Reynolds-number regime. The work of Zargar et al. [19] analyzed the 

influence of a wall on the dynamics of a three-sphere swimmer in the close proximity of a 

boundary. It is shown that the swimmer can swim towards or escape from the wall, 

depending on the initial angle and distance from the wall. The work of Or et al. [20] studied 

the dynamics of swimmers formed by small networks of rotating spheres attached by rigid 

rods. In their simulation, mobility matrices for multiple interacting spherical particles in the 

presence of a flat plane were approximately calculated by accounting for the far-field 

hydrodynamic interactions. Their results show that the swimmer may have a marginally 

stable motion or a periodic motion depending on the arrangement of the spheres. Similar 

swimming dynamics was reported in the work of Crowdy and Or [21] for a two-dimensional 

treadmilling swimmer model near a no-slip wall. The treadmilling swimmer was also 

utilized to study the swimming dynamics near a wall with a gap. Stable equilibrium points 

for the swimmer in the gap region, as well as, Hopf bifurcations and periodic bound states 

were observed [22]. The work of Dunstan et al. [23] modeled a bacterial cell by using two 

spheres of different radii at a constant distance. The effect of the flagella was modeled by 

imposing a force on the tail sphere as well as adding equal and opposite torques on the two 

spheres. Their results show three different swimming behaviors depending on the initial 

condition: swimming in circles in contact with the wall, swimming in circles at a finite 

distance from the wall and swimming away from the wall. Spagnolie and Lauga [24] 

provided a detailed comparison of the hydrodynamics of micro-swimmers near a boundary 

using far-field approximations and numerical solutions of the Stokes equation. They showed 

that the far-field approximation is surprisingly accurate for spherical swimmers when the 

distance between the center of the swimmer and the wall is larger than its diameter. 

However, the fundamental singularities of the Stokes equation cannot accurately account for 

the near-field effects when the swimmer comes close to the boundary. Here in this work, 

Navier-Stokes equations are directly solved to capture the hydrodynamic interaction of a 

single swimmer and a suspension of swimmers near a wall in a small, but nonzero, Reynolds 

number regime.

One of the widely used swimmer models called “squirmer”, is introduced by Lighthill [25] 

and Blake [26] to model the ciliated microorganisms such as Volvox and Paramecium. Other 

studies have extended the model to general shape [27], porous prolate-spheroidal [28], and 

small-amplitude deformable squirmers [29]. Here, we consider a spherical squirmer with a 

tangential surface deformation given as
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(1)

where e is the orientation vector of the squirmer, Bn is the nth mode of the tangential 

squirming velocity [26], Pn is the nthe Legendre polynomial,  is its derivative, and r is the 

position vector. Similar to most previous studies [30–37], we only consider the first two 

squirming modes and consequently the magnitude of the tangential velocity is written as

(2)

where θ is the polar angle measured from the swimming direction, B1 and B2 are the first 

two squirming modes. The parameter β = B2/B1 distinguishes three kinds of swimmers: β > 

0, corresponds to a puller generating thrust in front of the body such as Chlamydomonas; β < 

0, corresponds to a pusher generating thrust behind the body such as most bacteria; β = 0 

corresponds to a neutral squirmer, generating a symmetric flow field, such as Volvox. In the 

Stokes regime, the swimming speed of a squirmer in an unbounded domain is U0 = 2B1/3. 

The squirmer model has been widely used to study the dynamics of a single microswimmer, 

nutrient uptake [30, 38], bio-mixing [39], unsteady propulsion of small organisms [17] as 

well as the effects of density stratification on the self-propulsion [31]. Recently, Zhu et al. 

[32] studied the locomotion of a squirmer in a capillary tube and found that a neutral 

squirmer generally follows a helical trajectory; a puller displays a stable locomotion along 

the tube, while a pusher crashes into the wall. Ishikawa, Pedley, and coworkers have studied 

the dynamics of multiple squirmers in an unbounded fluid in the Stokes regime, including 

the hydrodynamic interaction between two squirmers [33], rheology and diffusion of a 

suspension of squirmers [34, 35], collective behavior [36], and vertical dispersion of 

squirmers in a shear flow [37].

Microorganisms are usually observed in high concentrations, where the interaction between 

microorganisms are important and they often exhibit collective behaviors resulting in 

swarms and vortices of large scales [40]. Previous experiments show that a suspension of 

microorganisms results in the variation of fluid viscosity [41], superdiffusion in short times 

[42], and enhanced mixing [41]. Hydrodynamic interaction of spherical particles near a wall 

or between two walls in a zero-Reynolds-number regime has been extensively studied using 

multipole expansion method and Stokesian Dynamics [43–45]. The algorithm developed by 

Bhattacharya et al. accurately calculates the many-particle friction matrix by using spherical 

and Cartesian representation of Stokes flow to capture the interaction of the fluid with the 

particles and walls, respectively [45]. This method can be successfully applied to evaluate 

the friction matrix for a single sphere, a pair of spheres, and linear chains of spheres between 

two walls [46]. Based on the dumbbell swimmer model of two beads connected by a rigid 

rod, Underhill et al. [47] studied the diffusion and spatial correlation of swimmers as well as 

the correlations of stress and velocity [48]. Using the same model, Hernández-Ortiz et al. 

[49, 50] studied the dynamics of suspension of swimmers between two walls and found that 

the swimmers aggregate near the wall at low concentrations, while at high concentrations, 

this distribution is disrupted by large-scale coherent motions. The diffusion and spatial 
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correlation of swimmers are also affected by the confined geometry. Their model treated the 

swimmers as point force dipoles and the swimmer-swimmer and swimmer-wall interactions 

are approximated using an excluded volume force. Wensink and Löwen [51] studied the 

suspension of self-propelled colloidal rods in a channel using two-dimensional Brownian 

dynamics simulation. Their results show that the aggregated self-propelled rods near the 

channel wall form “hedgehog”-shaped clusters with most of the rods pointing towards the 

wall.

In this paper, we investigate the dynamics of a single and a collection of squirmer(s) near a 

no-slip wall in a low-Reynolds-number regime. By directly solving the Navier-Stokes 

equation, the inertial effects are included and the motion of small swimming organisms near 

a solid surface is accurately captured.

II. Numerical method

The distributed Lagrange multiplier based finite volume method is used in this study and 

details of the method can be found in [52, 53]. The Navier-Stokes equations for an 

incompressible Newtonian fluid are solved in the entire computational domain

(3a)

(3b)

where u is the velocity, p is the pressure, I is the identity tensor, τ = μ(∇u + ∇uT) is the 

viscous stress, and μ is the viscosity. The density ρ is equal to the particle density ρp inside 

the squirmer and equal to the fluid density ρf in the fluid domain. In this study, we set ρp = ρf 

since the density of microorganisms is usually close to the background fluid. A rigid particle 

and a self-propelled particle can be modeled by adding a source term to the Navier-Stokes 

equation. The forcing term in each iteration is calculated as

(4)

where U is the translational velocity of the particle (inert or self-propelled), ωp is the particle 

angular velocity, ui is the imposed velocity causing the self-propulsion, f* is the force 

calculated in the previous iteration, α is a dimensionless factor whose value affects the 

convergence rate but not the solution, ϕ is the volume fraction occupied by the particle in 

each computational cell (ϕ = 1 inside, ϕ = 0 outside and 0 < ϕ < 1 for the cells at the surface 

of the particle). The velocity field u is obtained by solving Eq. (3). To recover the tangential 

velocity  on the surface of the squirmer (given in Eq. (2)), we impose the following 

solenoidal velocity ui inside the squirmer
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(5)

where a is the radius of the squirmer, er and eθ are the unit vectors along r and θ directions, 

m is an arbitrary positive integer, where the simulation results are independent of its value. It 

should be noted that ui is zero for an inert particle. The particle translational and angular 

velocities are calculated as

(6)

(7)

where Vp, Mp and Ip are the volume, mass and moment of inertia of the particle. The 

imposed velocity leads to a zero translational and rotational velocity for the particle (i.e 

∫VpuidV = 0 and ∫Vpr × uidV = 0). Iterations are repeated until the maximum of Euclidean 

norm of (f − f*) / f and the normalized residual falls below the specified tolerance of 10−3. 

The normalized residual is defined as

(8)

The velocity field inside the particle for the converged solution is u = U + ωp × r + ui. It is 

straight forward to demonstrate that the converged solution is the equivalent of the particle 

equation of motion:

(9)

where dS is the surface differential element. Combining Eqs. (4)-(7), one can show that 

∫VpfdV = 0. Integrating Eq. (3a) over the particle volume and using the Reynolds transport 

theorem lead to:

(10)

which is equivalent to Eq. (9). This method has been extensively used for the motion of inert 

particles in viscous fluids and verified in our previous publications [53–57].

Simulations are conducted using a finite volume method on a fixed staggered grid. A 

conventional operator splitting method is applied to enforce the continuity equation. The 

second-order TVD (total variation diminishing) Runge-Kutta method is used for time 

marching. The spatial derivatives in the convection term are evaluated using the QUICK 
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(Quadratic Upstream Interpolation for Convective Kinetics) scheme and the diffusion terms 

are discretized using the central difference scheme. The results are normalized by the 

characteristic length a, velocity U0 = 2B1/3, and time a/U0.

We first validate the motion of a single squirmer in an unbounded fluid at a finite Reynolds 

number defined as Re = ρU0a/μ. The comparison between the present numerical results for 

the steady swimming speed and the analytical results, obtained using perturbation theory, 

[17, 58] is illustrated in Fig. 1. The first order solution for the swimming speed of a squirmer 

in an unbounded domain is U ≈ 1 − 0.15β Re [17]. The swimming speed U of the neutral 

squirmer does not change with the Reynolds number. The swimming speed of a pusher 

increases with Re and our results are in good agreement with the analytical results at small 

values of Reynolds number. The swimming speed of a puller decreases with Re. At Re > 0.2, 

the first-order solution of Wang and Ardekani [17] and the second-order solution of Khair 

and Chisholm [58] starts to fail. Our results agree with Eq. (41) of [58].

Here in this study, we focus on the motion of a single squirmer near a wall and a suspension 

of squirmers between two walls. The schematic of a single squirmer near a wall is shown in 

Fig. 2. The distance between the center of the squirmer and the wall is h and the orientation 

angle of the squirmer from the horizontal direction is α. The wall is located at y = 0 and the 

squirmer moves in the x − y plane. For the cases of multiple squirmers, there are two walls at 

y = 0 and y = L and α corresponds to the orientation of the squirmer relative to the nearest 

wall.

When the squirmer approaches the wall or another squirmer, the high pressure in the thin 

film between the squirmers and the wall prevents any unphysical overlaps. However, a very 

small grid resolution is needed to properly capture this dynamic process and consequently it 

is computationally expensive. As mentioned in [24], a short-range repulsive force [59] is 

necessary to prevent squirmer-wall or squirmer-squirmer overlaps. The repulsive force 

during the squirmer-wall or squirmer-squirmer collision is defined as:

(11)

where  is the characteristic force, ε = 10−4 is a small positive number, d is the 

distance between the center of the squirmer and the wall or the distance between two 

squirmers, dmin = a or 2a is the corresponding minimum possible distance, dr is the force 

range and is usually set to be the smallest grid size Δ in the computational domain [59]. The 

direction of the repulsive force ec is normal to the wall or along the line of center of the two 

squirmers. The above mentioned repulsive force has been widely used to handle the 

collision between particles and walls [57, 59]. Besides the formula used here, another form 

of repulsive force based on soft-sphere collision model is used in the numerical simulation 

of nutrient uptake of a suspension of squirmers in a thin film [30].

To check the convergence of the results, simulations of the near-wall motion of a neutral 

squirmer and a puller are conducted for different values of mesh size, time step and 

magnitude of repulsive force. The size of computational domain is 64 × 25.6 × 12.8. The no-
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slip boundary condition is used on the wall and the far field boundary condition is used at 

other boundaries of the domain. The squirmer is initially located at h0 = 2, α0 = −π/4 and Re 

= 1. As shown in Fig. 3, the computed results are independent of the grid size, time step and 

magnitude of the repulsive force. Consequently, for the calculations presented in this work, 

twenty grid points are used across the squirmer diameter and the time step is set to Δt = 1 × 

10−3.

III. Results and Discussion

A. Swimming dynamics of a single squirmer near a wall

Fig. 4 shows the trajectory as well as the time history of orientation angle α and swimming 

speed U of the squirmer for different values of β. The squirmer collides with the wall at t ≃ 

0.8, then it swims along the wall for a certain period of time referred to as the “contact time” 

and finally swims away from the wall. The contact time decrease as β increases. When 

squirmers detached from the wall, three different swimming modes are observed depending 

on the values of β: (1) Squirmers of β ≤ 1 will swim away from the wall with a positive 

angle. (2) Squirmers of 2 ≤ β ≤ 5 oscillate near the wall and eventually swim along the wall 

with a constant distance and a negative angle. It should be noted that the damping ratio for 

the cases of β = 4 and 5 is small and their oscillations is not fully damped during the 

simulation time. (3) Squirmers of β ≥ 7 will swim in a cyclic motion, bouncing on the wall. 

The amplitude of the cyclic motion is small compared to the wavelength. Similar steady and 

periodic swimming modes along the wall have been observed in [20] using a three-sphere 

swimmer model. For the squirmers swimming away form the wall, the swimming speed is 

recovered to its value for a squirmer in an unbounded domain. For β ≤ 1, the swimmers 

scape from the wall and their steady swimming speed decreases as β increases, which is 

consistent with analytical results of inertial squirmer in an unbounded domain [17]. On the 

other hand, pullers of β > 2 are trapped near the wall and their swimming speed increases 

with β.

The effects of the initial angle and the initial height are also studied. The effects of the wall 

on the squirmer weakens for α0 > 0 since the squirmer swims away from the wall. 

Therefore, we mainly focus on the cases of α0 ≤ 0. For the neutral squirmers at h0 = 2 and 

Re = 1 in Fig. 5, the trajectories are affected by the initial angle while the swimming mode 

remains the same. For angles α0 ≥ −π/12, the squirmer rotates away from the wall before 

getting to a close contact with the wall, whereas for initial angles α0 ≤ −π/6, the squirmer 

collides with the wall and rotates away from the wall in a near-wall contact region. The 

squirmer eventually escapes the wall with a same final angle of αf ≃ 0.4. In the work of 

[24], final angle αf ≃ 0.4 and 0.35 were derived from the boundary-integral simulation and 

far-field approximation, respectively. The role of initial angle of a puller on the final angle 

and distance from the wall is shown in Fig. 6. All the squirmers of β = 3 at h0 = 2 and Re = 1 

finally reach to a steady state away from the wall with a constant distance hf ≃ 1.47 and 

final angle αf = −0.23, independent of the initial angles. The effects of the initial height of 

the squirmers are plotted in Fig. 7; the initial height affects the collision time between the 

squirmer and the wall but not the swimming mode.

Li and Ardekani Page 7

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2015 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In Fig. 8, we compare the trajectories of squirmers of β = −3, 0, 3 and 7 at α0 = −π/4 and h0 

= 2 for two different values of Reynolds number (Re = 0.1 and 1). The initial contact time 

decreases with Reynolds number. The pusher and neutral swimmer escape from the wall for 

both values of Reynolds number, whereas puller of β = 3 escapes from the wall at Re = 0.1 

and is entrapped near the wall at Re = 1. At larger values of β, the puller is entrapped for 

both values of Reynolds number, but the one at Re = 1 has a larger bouncing frequency. In 

summary, the inertial effect decreases the initial wall contact time independent of the 

squirming type, but it leads to a stronger attraction towards the wall for the puller.

B. Swimming dynamics of multiple squirmers between two walls

We examine the swimming dynamics of a suspension of squirmers between two walls. The 

simulation is conducted in a cubic domain of [0, 13.89] × [0, 13.89] × [0, 13.89] with two 

no-slip walls at y = 0 and y = 13.89. Periodic conditions are used along x and z directions. 

Without any overlap, squirmers are initially randomly placed in a fluid otherwise at rest and 

their orientations are also randomly initialized. Three cases of β = 0, 3, and −3 at volume 

concentration c = (4πN)/(3L3) = 0.1 are simulated. The case of β = 0 at c = 0.4 is also studied 

to consider the role of concentration. N = 64 and 256 squirmers are modeled for the two 

concentrations, respectively. Across the diameter of the squirmer, there are around 20 grid 

points for cases of c = 0.1 and 10 grids for c = 0.4, the time step is Δt = 1 × 10−3. The 

Reynolds number is Re = 1 for all cases.

Fig. 9 shows the spatial distribution of squirmers at t = 100 at which the system has reached 

a statistical steady state. White and black points show the front and trailing ends of 

squirmers, respectively. At concentration c = 0.1, squirmers are accumulated near the walls 

for all values of β. Aggregation of pushers and pullers near the wall is stronger compared to 

the neutral squirmers. At high concentrations, squirmers are very close to each other and the 

accumulation near the walls is not obvious from Fig. 9. Another interesting phenomena is 

that there is a strong tendency for squirmers to orient towards the walls in the near-wall 

region.

We now quantitatively characterize the hydrodynamic interaction between the squirmers and 

the walls. We first define the percentage of near-wall squirmers φ (see Fig. 10(a)) and the 

number of the collisions between squirmers normalized by the total number of squirmers φc 

(see Fig. 10(b)). Squirmer n is considered to be near the wall when its distance from the wall 

dn = min(yn(t), L − yn(t)) is smaller than a cutoff distance dcut. Squirmer-averaged properties 

are plotted in Figs. 10(c)∼(f): the squirmer-averaged swimming speed , 

the squirmer-averaged distance from the wall  and the squirmer-averaged 

orientation angle , where αn is the orientation angle of the squirmer n from 

the nearest wall. All the cases reach a statistical state at t ≃ 20. In the case of c = 0.1, around 

60 ∼ 80% of squirmers swim within the distance of one diameter away from the wall, and 

most of them are actually in contact with the wall. In the suspension of squirmers at c = 0.4, 

the percentage of the near-wall squirmers is lower due to the dense packing and dominance 

of the steric interactions between squirmers. The percentage of squirmers undergoing 
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collisions is shown in Fig. 10(b). There are more collisions among pushers compared to 

pullers and neutral squirmers at c = 0.1, which can be due to the larger swimming speed of 

pushers at Re = 1. At a high concentration, c = 0.4, φc increases dramatically, reaching to 

about 2.

Fig. 10(c) shows that the average swimming speed Ū decreases and reaches a statistically 

steady state at t ≃ 20. At small concentrations, Ū is approximately the same for different 

types of squirmers. At a high concentration (i.e. c = 0.4), the squirmer-averaged swimming 

speed Ū is reduced. Fig. 10(d) shows the time evolution of average swimming speed for the 

squirmers in the near-wall region and in the bulk region. In the near-wall region, pullers 

swim faster; while in the bulk region, pushers swim faster. These results are consistent with 

the results of a single squirmer shown in Fig. 4(d). We use the data of t > 20 to calculate the 

time-averaged speed over the total numbers of squirmers : . For β = 0, −3, 

and 3 at c = 0.1, 〈Ū〉 is 0.44, 0.46, and 0.51, respectively, and 0.27 for β = 0 at c = 0.4. 

Recall form Fig. 1, the steady swimming speed of a single squirmer in an unbounded 

domain at Re = 1 is 1, 1.35, 0.79 for β = 0, −3 and 3, respectively. When near the wall, the 

swimming speed of a pusher decreases, while it increases for a puller as seen in 4(d). For a 

wall-trapped puller of β = 3 swimming along the wall, the steady speed is around 0.86. In 

summary, in all our cases, the average swimming speed of suspension of squirmers 

decreases to around 30–60% of the speed of a single squirmer due to the effects of the walls 

and collision between squirmers.

Figs. 10(e) and 10(f), show that both squirmer-averaged distance from the wall d̄ and 

squirmer-averaged orientation angle ᾱ decrease with time, indicating the tendency of 

squirmers to accumulate near the wall and to orient towards the wall. The distribution of 

squirmers is furthermore quantified by calculating the probability distribution function f(ϕ) 

which is defined as

(12)

and

(13)

where ϕ is the vertical position y and orientation angle α in Figs. 11(a)∼(f), and Δϕ is the 

interval of ϕ which is set to Δy = 1.389, Δα = 0.05π and Δu = Δv = Δw = 0.1. The choice of 

Δϕ does not qualitatively change the results. The symbol 〈〉 represents a time-averaged 

quantity.

Fig. 11(a) shows the probability distribution function of the vertical position of squirmers. 

The squirmers are accumulated near the walls and the probability distribution function 

rapidly falls away from the walls. When close to the wall, pushers and pullers have stronger 
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tendencies to accumulate near the wall compared to neutral squirmers. This result is 

predictable since the stresslet (strongest far-field interaction) is absent in the case of neutral 

squirmer [24]. At high concentrations, the peaks of f(y) near the two walls are lower than the 

cases of c = 0.1 because the layer of the squirmers close to the wall is nearly saturated and 

the concentration in the middle of the channel grows. Similar results have been reported in 

[49, 50]. In Fig. 12, we quantitatively compare our simulation results of pusher of β = −3 

and c = 0.1 with published experimental/analytical results. The volume concentration of the 

cells in the experiments were reported in the range of c = 0.01–0.1 and the ratio between the 

channel width and the cell radius is around 40 for bull spermatozoa [9], 20-80 for E. coli 

[10], 66 for C. crescentus [11, 12] and 6.6 for C. crescentus [12], respectively. All the 

results show an increase in concentration of microorganisms near the wall, and the wall 

attraction is stronger for the smaller channel width. Our results show good agreements with 

the results of C. crescentus which is performed at a small channel width [12]. The analytical 

results solely based on the dipole interaction with the wall [10] overestimates the probability 

distribution of swimmers near the wall compared to the results of direct numerical 

simulation.

Fig. 11(b) shows the probability distribution function of the orientation angle of the 

swimmers f(α). A peak near α = −π/2 is observed for all the cases. For squirmers of β = 0 at 

c = 0.1, another peak occurs near α = 0. To better visualize the results, the probability 

distribution function of the orientation angle f(α) is plotted for the squirmers near the wall 

and in the bulk region in Figs. 11(c) and 11(d), respectively. The near-wall squirmers are 

strongly oriented normal to the wall (see Fig. 9). Interestingly for squirmers away from the 

wall, two different types of behavior are observed: for cases of β = 0 and 3 at c = 0.1, α is 

mostly between −π/4 and π/4 and there is a clear peak at α = 0; and for cases of β = −3, c = 

0.1 and β = 0, c = 0.4, f(α) is almost uniformly distributed over −π/2 to π/2. From the results 

of a single squirmer in Fig. 4(b), after the initial wall contact, all the squirmers detach from 

the wall with the finial angle between −π/4 to π/4 (0.56, 0.41, and -0.24 for β = −3,0, and 3, 

respectively). We have also shown that the finial angles are independent of the initial impact 

angle of the squirmer if a close contact between the squirmer and the wall occurs. Therefore, 

when squirmers swim into the bulk region, their orientation angle is mainly between −π/4 

and π/4. However, for cases of β = −3, c = 0.1 and β = 0, c = 0.4, squirmers collide with each 

other more frequently, which leads to a more uniform distribution in the orientation angle. 

As shown in Fig. 11(e), the distribution of vertical velocity component v dominates at 0, 

which also indicates the high percentage of the near-wall squirmers. Similar results can be 

also found in Fig. 11(f) for u and w components of velocity.

Previous studies have shown that the hydrodynamic interaction between squirmers generates 

large scale flows and leads to a collective motion, with a range and duration depending on 

the volume fraction and the swimming type β [36, 60]. The spatial correlation function g(r) 

can be used to quantify this interaction
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(14)

where rm,n is the distance between squirmers m and n, V(rm,n) = (4π/3)((rm,n + Δr/2)3 − (rm,n 

− Δr/2)3) is the volume of spherical shell of radius rm,n and thickness Δr. Figs. 13 (a) and (b) 

show the pair distribution function for squirmers close to the wall and in the bulk region, 

respectively. For the squirmers near the wall, g(r) peaks at around r = 2 and 4, referring to 

the cluster formation of squirmers in the near-wall region. The curve of β = −3 has the 

highest peak at r ≃ 2, meaning that a larger number of pushers are in close contact (see Fig. 

9(c)). On the contrary, pullers are more scattered. This can be explained by the side-by-side 

interactions between two pushers, which is an attractive force, and two pullers, which is a 

repulsive force [2]. All curves have similar distributions for the bulk squirmers, the pair 

distribution function has a peak near r = 2 corresponding to the squirmers in close contact. 

Similar results were reported for the suspension of passive particles [61], bubbles [62], and 

two-dimensional swimming particles [60] in an unbounded domain.

The flow field near the bottom wall (y = 0) generated by pushers (β = −3) and pullers (β = 3) 

is plotted in Fig. 14. The contourplot of the vertical velocity component v is shown in the 

plane of y = 2.5. For clarity, the squirmers above the plane is not shown here. Near-wall 

pushers accumulate near each other and form large scale coherent structures. Previous 

studies have shown that these coherent structures can increase the mass transport [41, 42]. 

On the contrary, near-wall pullers are more scattered due to the side-by-side repelling force 

between them.

IV. Conclusion

We have studied the dynamics of a single and multiple low-Reynolds-number swimming 

organism(s) near a wall by conducting a three-dimensional direct numerical simulation. 

Each swimmer is modeled as a squirmer, which consists of a spherical body that propels 

itself by a tangential velocity distribution on its surface.

When a single squirmer is initially oriented towards the wall, three different modes are 

observed for Re = 1: (a) squirmers of β ≤ 1 escapes from the wall, (b) squirmers of 2 ≤ β ≤ 5 

oscillate near the wall and eventually swim along the wall keeping a constant distance and 

orientation angle and (c) squirmers of β ≥ 7 bounce on the wall. At a smaller Reynolds 

number, Re = 0.1, the initial wall contact time is increased independent of the swimming 

type, but a weaker attraction towards the wall is observed for the puller. The dynamics of 

suspension of squirmers between two walls is also studied. Similar to the observation of 

previous experiments [9–12], we found that the squirmers are strongly attracted to the walls. 

At a relatively small concentration of c = 0.1, around 60 ∼ 80% of the squirmers are 

accumulated near the wall, the attraction of pushers and pullers is stronger than neutral 

squirmers. At a high concentration, c = 0.4, around 40% of the squirmers are near the wall. 

In the near-wall region, the squirmers mostly orient normal to the walls, while in the bulk 
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region, the orientation angle of squirmers are more uniformly distributed or they orient in 

the direction parallel to the wall. The wall leads to the decrease of the average swimming 

speed of the squirmers. The pair distribution function shows that suspensions of pushers 

form large scale clusters near a wall, which is not the case for pullers.

It is interesting to extend the results of this paper by including higher-order squirming 

modes which will affect the near-wall motion of the squirmer. In our simulations, the 

squirmer model is used to reduce the complexities of real microorganisms. The first two 

squirming modes capture the most important features of pusher- and puller-type 

microswimmers. Previous experiments of E. Coli near a surface [10, 63] show that a 

stresslet and its image singularities, included to satisfy the no-slip boundary condition on the 

wall, describes the measured flow field around a bacterial cell near a wall with good 

accuracy. Since higher-order squirming modes will extensively expand the parameter space, 

our simulation as well as most of the previous studies [30–37] only considered the first two 

squirming modes.
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V. Appendix

In addition to the validation test included in the main text, we provide two additional 

validation tests.

A. A squirmer colliding with a wall

Here, we compare the results of our numerical code against the published results of 

Spagnolie and Lauga [24] for a neutral squirmer swimming near a wall. The computational 

domain is [−16,16] × [0, 25.6] × [−6.4, 6.4] with a uniform mesh size Δ = 0.1 and the time 

step is set to Δt = 1 × 10−3. The wall boundary is located at y = 0 and the squirmer is initially 

placed above the wall at h0 = 2. Fig. 15 shows the final steady angle of the squirmer of β = 0 

with various initial angles α0. The results show good agreement with the simulation results 

of Spagnolie and Lauga [24] at Re = 0 using a boundary-integral method based on 

regularized Stokeslets.

B. A particle moving between two parallel walls

Here, we compare the results of our numerical code against the published results of 

Bhattacharya et al. [46] for an inert particle moving with velocity U along x direction 

between two parallel walls and evaluate the drag force acting on the particle for different 

values of distance from the lower wall. The particle is initially located at (0, h, 0). In order to 

facilitate the computation, we consider the frame of reference moving with the particle. In 

this frame, the particle is fixed and the walls, located at y = 0 and y = L, move with velocity 

U along x direction. Inlet velocity U is imposed at x = −50. Simulations are conducted in a 
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rectangular domain of [−50, 50] × [0, L] × [−50, 50]. The time step is set to Δt = 1 × 10−5 

and stretched grids are used where the mesh resolution around the particle is Δ = 0.1. The 

distance between the particle and the lower wall is defined as ε = h − 1 and the Reynolds 

number is set to Re = 0.01. We calculate the normalized drag force coefficient CD = FD/6π 

μUa, where FD is the drag force acting on the sphere. The comparison between our results 

and the semi-analytical results of Bhattacharya et al. [46] using a modified Stokesian 

dynamics method is shown in Fig. 16. Our results start to deviate from the results of 

Bhattacharya et al. [46] at ε ≃ 0.05, which corresponds to half a mesh size. Similar accuracy 

is also achieved in Lambert et al. [30] when simulating two spherical particles in shearing or 

squeezing motion.
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Fig. 1. 
(Color online) Comparison of the results for the steady swimming of a squirmer in an 

unbounded domain at finite Re. Symbols: present numerical results, dashed lines: Eq. (39) 

from [17] (first order), dashdot lines: Eq. (40) of [58] (second order), solid lines: Eq. (41) of 

[58]. The domain size for the computational results is 40 × 40 × 40.
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Fig. 2. 
Schematic of a squirmer near a wall.
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Fig. 3. 
(Color online) (a) Trajectory and (b) temporal evolution of orientation angle α for squirmers 

of β = 0 and 7 at Re = 1 and initially located at α0 = −π/4, h0 = 2. Gray area and the black 

line in (a) show the area inside which the gap between the squirmer and the wall is less than 

one mesh size of Δ = 0.1 and Δ = 0.05, respectively.
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Fig. 4. 
(Color online) (a) Trajectory and (b) temporal evolution of distance away from the wall y, 

(c) orientation angle α and (d) swimming speed U for squirmers of various β at Re = 1, 

initially located at h0 = 2 and α0 = −π/4.
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Fig. 5. 
(Color online) (a) Trajectory and (b) temporal evolution of α for squirmers of β = 0, h0 = 2, 

and Re = 1.
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Fig. 6. 
(Color online) (a) Trajectory and (b) temporal evolution of α for squirmers of β = 3, h0 = 2, 

and Re = 1.
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Fig. 7. 
(Color online) (a) Trajectory and (b) temporal evolution of α for squirmers of different 

initial heights at Re = 1 and α0 = −π/4.
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Fig. 8. 
(Color online) Trajectory of squirmers of (a) β = −3 and 0 (b) β = 3 and 7 at different 

Reynolds numbers.
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Fig. 9. 
(Color online) Distribution of squirmers of (a) β = 0, c = 0.1, (b) β = 0, c = 0.4, (c) β = −3, c 

= 0.1, and (d) β = 3, c = 0.1. Thick solid lines on the top and bottom show the plane walls, 

dashed lines show the computational domain. The front and trailing ends of squirmers are 

shown with white and black points, respectively. The contourplot of v and the velocity 

vectors on horizontal planes are shown on three slices at y = 1,6.94, and 12.89. The data is 

shown at every two points for cases of c = 0.1.
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Fig. 10. 
(Color online) Time evolution of (a) percentage of near-wall squirmers φ, (b) percentage of 

colliding squirmers normalized by the total number of squirmers φc, (c) squirmer-averaged 

swimming speed Ū, (d) squirmer-averaged swimming speed for squirmers inside and 

outside the near-wall region distinguished by dcut = 2, (e) squirmer-averaged distance from 

the wall d̄ and (f) squirmer-averaged orientation angle ᾱ.
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Fig. 11. 
(Color online) The probability distribution function of (a) vertical position of squirmers, (b) 

orientation angle α with respect to the nearest wall, (c) α for the near-wall squirmers, (d) α 

for the squirmers in the bulk region, (e) vertical velocity component v and (f) velocity 

components u and w.
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Fig. 12. 
(Color online) Comparison of vertical distribution of microorganisms between present 

simulation results and previous experimental/analytical studies.
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Fig. 13. 
(Color online) Pair distribution function for the squirmers (a) close to either walls or (b) in 

the bulk region.
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Fig. 14. 
(Color online) Top view of the flow field near the bottom wall of a suspension of (a) pushers 

(β = −3) and (b) pullers (β = 3). Contourplots show the distribution of velocity component v 

on the plane of y = 2.5.
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Fig. 15. 
(Color online) Comparison of the final angle of a neutral squirmer for various initial angles 

and a constant initial height of h0 = 2 with the results of [24].
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Fig. 16. 
(Color online) Comparison of the results for a single translating particle between two walls. 

Symbols: present numerical results at Re = 0.01; lines: simulation results of [46].
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