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Abstract
Tyrosine kinase inhibitors (TKIs) against EGFR and c-Met are initially effective when admin-

istered individually or in combination to non-small cell lung cancer (NSCLC) patients. How-

ever, the overall efficacies of TKIs are limited due to the development of drug resistance.

Therefore, it is important to elucidate mechanisms of EGFR and c-Met TKI resistance in

order to develop more effective therapies. Model NSCLC cell lines H1975 and H2170 were

used to study the similarities and differences in mechanisms of EGFR/c-Met TKI resistance.

H1975 cells are positive for the T790M EGFRmutation, which confers resistance to current

EGFR TKI therapies, while H2170 cells are EGFR wild-type. Previously, H2170 cells were

made resistant to the EGFR TKI erlotinib and the c-Met TKI SU11274 by exposure to pro-

gressively increasing concentrations of TKIs. In H2170 and H1975 TKI-resistant cells, key

Wnt and mTOR proteins were found to be differentially modulated. Wnt signaling trans-

ducer, active β-catenin was upregulated in TKI-resistant H2170 cells when compared to

parental cells. GATA-6, a transcriptional activator of Wnt, was also found to be upregulated

in resistant H2170 cells. In H2170 erlotinib resistant cells, upregulation of inactive GSK3β

(p-GSK3β) was observed, indicating activation of Wnt and mTOR pathways which are oth-

erwise inhibited by its active form. However, in H1975 cells, Wnt modulators such as active

β-catenin, GATA-6 and p-GSK3β were downregulated. Additional results from MTT cell via-

bility assays demonstrated that H1975 cell proliferation was not significantly decreased

after Wnt inhibition by XAV939, but combination treatment with everolimus (mTOR inhibitor)

and erlotinib resulted in synergistic cell growth inhibition. Thus, in H2170 cells and H1975

cells, simultaneous inhibition of key Wnt or mTOR pathway proteins in addition to EGFR

and c-Met may be a promising strategy for overcoming EGFR and c-Met TKI resistance in

NSCLC patients.
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Introduction
EGFR and c-Met are receptor tyrosine kinases (RTKs) that are highly expressed in NSCLC and
facilitate tumorigenic signaling through shared pathways when dysregulated [1,2]. Several tyro-
sine kinase inhibitor (TKI) therapies against EGFR and c-Met are currently administered and
are initially effective in NSCLC patients who have certain somatic EGFR-activating mutations
such as L858R [3–5]. However, the development of TKI resistance is common and results in
the recurrence of tumors [6,7]. Greater than 50% of all acquired secondary resistance to EGFR
TKIs is attributed to the development of the T790M secondary ‘gatekeeper mutation’ [8–12].
This mutation may also cause primary EGFR TKI resistance if present prior to treatment [10].
Another 20% of acquired resistance to EGFR TKIs is attributed to amplification of the c-Met
receptor [2,13,14].MET gene amplification and the presence of T790M are not mutually exclu-
sive, as studies have shown that many NSCLC patients are positive for both alterations [2,15].

Previous studies by our group and others have demonstrated that EGFR and c-Met have
substantial cross-talk which contributes to increased activation of their shared downstream
pathways [16]. Also evidence has been provided that there is a synergistic effect between EGF
and HGF on tumorigenicity [1], and that EGFR and c-Met TKIs can synergistically inhibit
NSCLC cell proliferation [17].

Research has suggested that dysregulation of the Wnt pathway may be an important factor
contributing to enhanced maintenance and proliferation signaling in various cancers [18,19].
Other studies suggest that crosstalk between EGFR and Wnt may enhance lung cancer tumori-
genesis [17,18,20]. XAV939, a tankyrase inhibitor is a promising small-molecule Wnt inhibitor
currently in preclinical studies. XAV939 activates Axin1, promoting β-catenin degradation
[21], and thus inhibition of canonical Wnt signaling. Furthermore, Mammalian target of rapa-
mycin (mTOR), a serine/threonine kinase which is a key player in the PI3K/Akt pathway, act-
ing both up and downstream of Akt [22–25] has also been linked with a variety of cancers
when dysregulated. Thus, mTOR has also become a potential therapeutic target in anti-cancer
therapies [26]. Rapamycin and its derivative, everolimus, are two promising mTOR inhibitors
currently in clinical trials for lung cancer [27–30]. Canonical Wnt and mTOR pathways can be
negatively regulated by the serine/threonine kinase GSK3β [31–33]. In humans, GSK3 has two
isoforms, GSK3α and GSK3β [34], with the latter being known to function as part of the β-cate-
nin destruction complex[33,35,36]. This investigation compares these alternative signaling
pathways, specifically key proteins of the Wnt and mTOR pathways, in model NSCLC cell
lines positive or negative for EGFR-activating mutation T790M.

Recent studies in our laboratory involving TKI-resistant H2170 cells have demonstrated an
upregulation of p-ERK, a protein which is known to activate GATA-6 [17]. GATA-6 is a tran-
scription factor believed to be essential for the development of lung epithelial cells and other
embryogenic processes [37,38], by regulating the Wnt pathway [37]. GATA-6 is also known to
facilitate Wnt activation by promoting the transcription of important Wnt ligands [37,39–43].
Stimulation of the canonical Wnt pathway ultimately results in the activation of β-catenin
(dephosphorylated on Ser37 and Thr41), which promotes the transcription of proteins
involved in cell proliferation [44,45].

This study demonstrates that combining Wnt or mTOR inhibitors with current EGFR and
c-Met TKIs may successfully inhibit cell proliferation and survival in wild-type EGFR NSCLC
cells. However, in the case of T790M-positive cells, it may be possible to break resistance, through
combining mTOR inhibitors with EGFR and c-Met TKIs. This study suggests that the mecha-
nism of resistance to EGFR/c-Met TKI’s is different in mutated (T790M) and wild type EGFR
NSCLC cells. This indicates that selective combinatorial treatment should be used for cells with
wild type EGFR and T790Mmutated EGFR, to improve lung cancer patient prognosis.
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Materials and Methods

Reagents and Antibodies
Erlotinib [N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy) quinazolin-4-amine] (Cat. No. E-
4007) and everolimus (Cat. No. E-4040) were purchased from LC Laboratories (Woburn, MA),
SU11274 [[(3Z)-N-(3-chlorophenyl)-3-({3,5-dimethyl-4-[(4-methylpiperazin-1-yl) carbonyl]
1H-pyrrol-2-yl}methylene)-N-methyl-2-oxo-2,3-dihydro-1H-indole-5-sulfonamide]] (Cat.
No. S-9820) and XAV939 [3,5,7,8-tetrahydro-2-[4-(trifluoromethyl)phenyl]-4H-thiopyrano
[4,3-d]pyrimidin-4-one] (Cat. No. 53113) were purchased from Sigma-Aldrich (St. Louis,
MO). All inhibitors were suspended in DMSO and stored as aliquots at -20°C. EGF (Cat. No.
AF-100-15) and HGF (Cat. No. 100–39) were purchased from PeproTech (Rocky Hill, NJ) and
were suspended in PBS and stored as aliquots at -20°C.

Phosphospecific rabbit monoclonal antibodies for p-mTOR (Ser 2448, Clone D9C2), p-
4E-BP1 (Thr37/46, Clone 2855), p-GSK3β (Ser 9), Total GSK3β, Axin1 (C76H11) and p-LRP6
(C5C7), phosphospecific rabbit polyclonal antibodies for p-ERK1/2 (Thr202/Tyr204) and p-
p70SK (T389), rabbit and mouse IgG secondary antibodies were obtained from Cell Signaling
Technology. Rabbit polyclonal unphosphorylated GATA-6 (sc-9055) was obtained from Santa
Cruz Biotechnology (Santa Cruz, CA). A mouse monoclonal antibody for active β-catenin (05–
665) was obtained from Millipore (Billerica, MA). A mouse monoclonal antibody for β-actin
was obtained from Sigma-Aldrich (St. Louis, MO). All antibodies were used according to the
manufacturer’s instructions.

Cell Lines and Cell Culture
H2170 and H1975 NSCLC cell lines were purchased from American Type Culture Collection
(ATCC) (Rockville, MD, USA, CRL-5928, CRL-5807 and CRL-5908, respectively). The H2170
cells have wild-type EGFR, while H1975 cells are positive for two EGFR kinase domain muta-
tions: L858R and T790M (documented by ATCC). All cell lines were stored in incubators at
37°C with 7% CO2 and were cultured according to ATCC instructions (atcc.org) in Roswell
Park Memorial Institute (RPMI 1640) media (Thermo Fisher Scientific, Pittsburg, PA, Cat No:
SH3002701) supplemented with 10% (v/v) Fetal Bovine Serum (Atlanta Biologicals, Lawrence-
ville, GA, Cat No: S11050), 1% (v/v) Antibiotic-Antimycotic Solution (Life Technologies,
Carlsbad, CA, Cat No: 15070–063), 1% (v/v) Sodium Pyruvate (Life Technologies, Carlsbad,
CA, Cat No: 11360) and 1% (v/v) Hepes (Life Technologies, Carlsbad, CA, Cat No: 11360).

Effect of EGF/HGF and TKIs on Phosphorylation of EGFR, c-Met and
Other Signaling Pathways
Cells were treated before lysis for determining the effects of growth factor ligands and TKIs on
protein expression. Parental cells were plated and allowed to adhere and grow for 24 to 48
hours until dishes were approximately 40% confluent. Cells were then starved for 24 hours
with serum-free RPMI (with 0.5% BSA). After 24 hours of starvation, cells were treated with or
without respective TKIs (erlotinib or SU11274) for 24 hours. After 24 hours of TKI treatment,
cells were treated with or without growth factor ligands (15 ng/mL EGF for 2.5 minutes or 40
ng/mL HGF for 7.5 minutes at 37°C). Immediately following ligand treatment, cells were lysed
and collected for immunoblotting.

Cell Lysis and Immunoblotting
Following all cell pre-treatments (as described above), cells were lysed in buffer (20 mM Tris,
150 mM NaCl, 10% glycerol, 1% NP-40, 0.42% NaF, 1 mM phenylmethylsulfonyl fluoride, 1
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nM sodium orthovanidate, and 10 mM protease inhibitor cocktail (Sigma-Aldrich). Cell lysates
were then electrophoresed for separation on 7.5% or 10% SDS-PAGE. Separated proteins were
then transferred on to nitrocellulose membranes (Bio-Rad Laboatories, Hercules, CA) and
probed with antibodies for Wnt or mTOR pathway related proteins. Immunoblots were devel-
oped using Pierce ECL Substrate chemiluminescence kit (Thermo Fisher Scientific, Rockford,
IL, 32109) and modulations of different proteins were calculated by densitometric analysis
using NIH ImageJ software.

MTT Cell Viability Assay
The effects of various TKIs on H2170 and H1975 cell viability were measured by MTT colori-
metric dye reduction assay using MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide dye according to the manufacturer’s instructions. Cells were plated at 3000 cells per
well on 96-well plates and after 24 hours, cells were treated with inhibitors for 72 hours. MTT
reagent (Sigma-Aldrich, St. Louis, MO, Cat. No. M5655) was then added, and cells were incu-
bated at 37°C for 4 hours, after which formazan crystals were solubilized and absorbance was
measured at a wavelength of 570 nm. Percentage viability of drug treated cells was calculated
relative to untreated control cells. All cell viability experiments were performed three times in
replicates of six for each treatment condition.

Immunofluorescence
20,000 cells were plated in 8-well glass chamber slides per well (Lab-Tek II Chamber Slide Sys-
tem, Thermo Fisher Scientific, Rockford, IL) which were pre-coated with poly-L-lysine (0.01%
solution) (Sigma-Aldrich, St. Louis, MO). Cells were allowed to adhere for 24 hours, after
which cells were starved overnight in serum-free medium (with 0.5% BSA). Cells were then
treated with EGF/HGF (15 ng/mL EGF for 2.5 minutes or 40 ng/mL HGF for 7.5 minutes at
37°C), and fixed using 4% paraformaldehyde solution in 1X PBS. Cells were then permeabilized
(0.1% Triton X-100 solution in 1X PBS) and blocked (buffer containing 5% normal goat serum
in 1X PBS). Cells were incubated overnight with active β-catenin primary antibody (1:400) at
4°C and then incubated for 1 hour at room temperature with IgG DyLight 488 anti-mouse sec-
ondary antibody (1:250) (Thermo Fisher Scientific, Rockford, IL) (Product #35502) diluted in
1X PBS with 1% BSA and Hoechst nuclear staining dye (blue). Cells were observed using a
Zeiss Axio Observer Z1 microscope. Average nuclear fluorescence intensity of active β-catenin
staining was measured using NIH ImageJ software over 10 microscopic fields per treatment
condition and values were averaged.

qPCR analysis
200,000 cells were plated in a 35 mm dish and were allowed to adhere for 24 hours. Starving
media (RPMI with 0.5% BSA) was then added to the cells for 24 hours, after which total
RNA was collected using Invitrogen RNA mini kit. The RNA was quantified using Take 3
nanodrop and then equal concentrations of RNA were used for synthesis of cDNA. The primer
sequences used for β-Catenin are F: TGGATGGGCTGCCTCCAGGTGAC and R: ACCAGC
CCACCCCTCGAGCCC and for GAPDH are F: TTGCCAATGACCCCTTCA and R: CGC
CCCACTTGATTTTGGA. qPCR was performed using SuperScript III Platinum Two-Step
qRT-PCR Kit (Life Technologies, Carlsbad, CA) according to manufacturer’s protocol. The
expression of each gene was analyzed in triplicates and the Ct values were normalized with
GAPDH. The data was then analyzed using ΔΔCt method and fold changes were calculated
using 2(-ΔΔCt).
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Statistical analysis
All the experiments were performed three to five times. The Student’s t-test or ANOVA was
used to analyze the statistical significance of the data. A p-value of less than 0.05 was consid-
ered to be statistically significant throughout the study.

Results

Comparison of IC50 of parental and resistant H2170 cell lines with H1975
cell line
H2170 cells were initially moderately sensitive to TKIs erlotinib and SU11274 due to their EGFR
wild-type status (Table 1). As described in our earlier study [17], parental (naïve) H2170 cells were
treated with increasing concentrations of erlotinib (0.5 to 14 μM) and SU11274 (2.5 to 17 μM) over
several months to obtain cells with stable resistance at high concentrations of these TKIs. These
cells exhibited stable resistance after 12 passages in drug free media. MTT cell viability assays were
performed for determining the IC50 for erlotinib and SU11274. The IC50 values were calculated
using Sigma Plot 12.5 software and results are displayed in Table 1. The IC50 of erlotinib and
SU11274 in H2170 erlotinib resistant (H2170-ER) and SU11274 resistant (H2170-SR) cells was
found to be 11 to 22-fold and 4 to 5-fold greater respectively [17], when compared to H2170 paren-
tal (H2170-P) cells. However, the IC50 of erlotinib and SU11274 were found to be approximately
15-fold and 2-fold higher, respectively, in H1975 cells, when compared to H2170 parental cells.
During this study, H2170 TKI-resistant cells were maintained in media containing 10 μM erlotinib
or 10 μMSU11274. H1975 cells are naturally resistant to erlotinib, due to the presence of the
T790Mmutation, and for the purpose of this study H1975 cells were cultured in drug-free medium.

Dual inhibition by EGFR and c-Met TKIs on H1975 cell proliferation
Since, the T790M EGFR mutation is known to confer erlotinib resistance (Table 1) in NSCLC,
it is important to identify potential drug susceptibility caused by this mutation. Therefore, we
tested for drug synergism on H1975 cells (positive for the L858R and T790M EGFR mutations)
using erlotinib and SU11274 via MTT cell viability assay. Synergistic effects on H1975 cell
growth inhibition were observed with erlotinib and SU11274 in combination at concentrations
of 1 μM (1:1 ratio of each drug) and 3 μM (1:1 ratio of each drug) (Fig 1). However, their com-
binatorial effects were not synergistic above the concentration of 5 μM of each drug (1:1 ratio)
(data not shown). Synergism was determined using Calcusyn software v2.0 and combinatorial
index (CI) values below 1 were obtained (CI values<1 indicate synergism) [46].

Role of Wnt and mtor pathways in EGFR/c-Met TKI-resistance
In order to elucidate mechanism of resistance to erlotinib and SU11274 in H2170 cells, expres-
sion levels of key proteins involved in Wnt/mTOR pathway were determined by immunoblot-
ting. We observed that active β-catenin was upregulated 1.5-fold and 2.0-fold in the presence
of EGF and erlotinib respectively, in H2170-ER cells, when compared to same treatments in
H2170 parental cells. We also observed that GATA-6 was upregulated 2.0 to 3.0-fold in the

Table 1. IC50 of RTKIs for NSCLC cell lines with and without T790Mmutation.

Cell line Erlotinib SU11724

H2170 Parental [17] 0.5μM 2.5μM

H2170 Resistant [17] 11μM 12μM

H1975 7.62μM 4.74μM

doi:10.1371/journal.pone.0136155.t001
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presence and absence of EGF and erlotinib in H2170-ER cells when compared to same treat-
ments in H2170-P cells. Furthermore, p-GSK3β (Ser9) was found to be upregulated approxi-
mately 2-fold in the H2170-ER cells in the presence of erlotinib when compared to the
erlotinib treated H2170-P cells (Fig 2).

Similarly, in the H2170-SR cells, we observed active β-catenin was upregulated 2.0 to
4.0-fold in the presence and absence of HGF and SU11274; p-GSK-3b was upregulated 1.5 to
2.0 fold in the presence and absence of HGF and SU11274; and GATA-6 was also upregulated
3.0 to 4.0-fold in the presence of HGF and SU11274, when compared to same treatments in
H2170-P cells (p<0.01) (Fig 2). No significant modulation in the expression of total proteins
was observed among the H2170-P, H2170-ER and H2170-SR cells (Fig 2).

Increased nuclear accumulation of active β-catenin in H2170-ER and
H2170-SR cells
Due to the fact that active β-catenin is a key downstream effector in the canonical Wnt signal-
ing pathway and is observed to be significantly upregulated in H2170-ER and H2170-SR cells

Fig 1. Erlotinib and SU11724 synergism on H1975 cells. H1975 cells were plated at 3000 cells per well in
a 96 well plate and after 24 hours were treated with varying combinations of EGFR inhibitor erlotinib and c-
Met inhibitor SU11274. After 72 hours of drug exposure MTT cell viability assay was performed. Synergistic
inhibitory effects on H1975 cell growth inhibition were observed following combination treatment of erlotinib
and SU11274 at concentrations of 1 μM and 3 μM (1:1 ratio of each drug). Drug synergism was calculated
using Calcusyn v2.0 software and the CI values were below 1. ANOVA analysis was used to determine
statistically significant differences between treatments (n = 3, p<0.01).

doi:10.1371/journal.pone.0136155.g001
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(Fig 2). We analyzed the localization of active β-catenin in H2170-P, H2170-ER and H2170-SR
cells using immunofluorescence. Upon activation, β-catenin accumulates into the nucleus, and
interacts with TCF/LEF to initiate transcription. We observed that in H2170-ER and
H2170-SR cells, there was increased localization of β-catenin in nucleus when compared to
H2170-P cells. Average fluorescent intensity of active β-catenin staining in the nucleus was
found to be 1.9 and 2.5-fold greater in H2170-ER cells compared to H2170-P, in EGF treated
and untreated cells, respectively (p<0.01) (Fig 3). Similarly, the average fluorescence intensity
of active β-catenin staining in the nucleus was found to be 2.9 and 3.1-fold greater in
H2170-SR cells, compared to H2170-P cells, in HGF treated and untreated cells, respectively
(p<0.01) (Fig 3).

Activation of the mtor pathway in H1975 cells
In order to elucidate the mode of resistance to erlotinib and SU11274 in the H1975 cell line
(T790M-positive), immunoblotting was performed to analyze the modulations in expression
levels of important Wnt and mTOR proteins. Active β-catenin was found to be downregulated
1.5-fold in H1975 cells in the presence of erlotinib and EGF when compared to H2170-P cells
with same treatments. GATA-6 was found to be downregulated 1.5 to 6.5-fold in H1975 cells
in the presence and absence of EGF and erlotinib treatment when compared to same treat-
ments in H2170-P cells. Furthermore, negative Wnt regulator Axin1 was found to be upregu-
lated 1.5-fold and 2.5-fold in H1975 cells, compared to H2170-P cells, in the presence of EGF
and erlotinib, respectively (Fig 4A). The modulations in expression of key Wnt pathway related
proteins, following EGF and erlotinib treatment suggest that in H1975 cells, the Wnt/β-catenin
pathway is not directly involved in development of erlotinib resistance.

Additionally, p-ERK was upregulated 10.5 and 4.6-fold in H1975 cells in the presence of
erlotinib and both erlotinib and EGF, respectively, compared to same treatments in H2170-P
cells. Also, p-mTOR was upregulated 1.5-fold in H1975 cells when compared to H2170-P cells
in the presence of erlotinib. Furthermore, p-p70S6K was found to be upregulated 1.5-fold to

Fig 2. Modulation of keyWnt andmTOR proteins in H2170 TKI-resistant cells.H2170-P, H2170-ER and H2170-SR cells were plated in 35 mm dishes at
125,000 cells per dish and starved (RPMI 1640 with 0.5% BSA) for 24 hours before ligand (EGF and HGF) or/and drug (erlotinib and SU11274) treatments.
After western blot analysis increased expression of Wnt and mTOR pathway related proteins in H2170-ER and H2170-SR cells were observed when
compared to H2170-P cells with the exception of p-GSK-3β in H2170 SR cells. The fold changes were calculated using ImageJ software. (n = 3, p<0.05).

doi:10.1371/journal.pone.0136155.g002
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3.6-fold in H1975 cells in the presence and absence of EGF and erlotinib when compared to
same treatments in H2170-P cells. Interestingly, p-LRP5/6, a commonWnt co-receptor, was
found to be upregulated 1.8 to 2.5-fold in H1975 cells in the presence and absence of erlotinib
when compared to same treatments in H2170-P cells (p<0.05) (Fig 4A).

Further, immunoblotting was performed in order to elucidate similarities or differences in
protein expression in H1975 cells after treatment with HGF and SU11274. Active β-catenin
was found to be downregulated 1.5 to 2.0-fold in H1975 cells in the presence and absence of
SU11274 and GATA-6 was also found to be downregulated 1.5 to 3.5-fold in the presence and
absence of HGF and SU11274 in H1975 cells when compared to same treatments to H2170-P
cells. We did not observe any significant modulations in expression of p-GSK3β (Ser9) in

Fig 3. Enhanced nuclear accumulation of active β-catenin in TKI-resistant H2170 cells. H2170-P, H2170-ER and H2170-SR cells were plated in 8-well
chamber slides at 20,000 cells per well and then starved overnight. Cells were fixed with 4% paraformaldehyde, permeabilized with 0.1% Triton X-100 and
then blocked with 5% Normal goat serum and 0.3% Triton X-100 before incubation with primary antibody. The cells were then incubated with Dylight 488
conjugated secondary antibody and then were observed under the fluorescence microscope. The green color in the image represents active β-Catenin
staining in the cell and the purple color represents DAPI nuclear staining. Average intensity of active β-catenin staining was quantitatively measured using
ImageJ software. We observed greater nuclear accumulation of active β-catenin in H2170-ER and H2170-SR cells, as compared to H2170-P cells (n = 3,
p<0.01).

doi:10.1371/journal.pone.0136155.g003
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H1975 cells when compared to similar treatment groups in H2170-P cells. Furthermore, negative
Wnt regulator Axin1 was found to be upregulated 2.0-fold in H1975 cells, in the presence of
HGF and SU11274 when compared to H2170-P cells with same treatments (p<0.05) (Fig 4B).

Additionally, p-ERK and p-LRP5/6 were observed to be upregulated up to 2.0-fold in
H1975 cells, compared to H2170-P cells in presence of SU11274. Also, p-mTOR was upregu-
lated 1.5-fold in absence of EGF and erlotinib and in the presence of erlotinib only, while p-
p70S6K was upregulated 1.5 to 3-fold in the presence and absence of HGF and SU11274 in
H1975 cells when compared to same treatments in H2170-P cells (p<0.05) (Fig 4B). We did
not observe any significant modulation in the expression of key total proteins in the H1975
cells when compared to H2170-P cells (S1 Fig).

Upregulation of the mtor pathway in H1975 cells compared to erlotinib-
resistant and SU11274 resistant H2170 cells
For elucidating similarities or differences in the mode of resistance to erlotinib occurring in the
H1975 and H2170-ER cells, immunoblotting was performed after EGF and erlotinib treatment.
p-LRP5/6 was downregulated 1.5 to 2.2-fold in H1975 cells in the presence and absence of EGF

Fig 4. Upregulation of the mTOR pathway in H1975 cells. H1975 and H2170-P cells were plated at 125,000 cells per dish in 35 mm dishes and starved
(RPMI 1640 with 0.5% BSA) for 24 hours before ligand (EGF and HGF) or/and drug (erlotinib and SU11274) treatments and analyzed using western blot. (A)
Active β-catenin and GATA-6 were observed to be downregulated and p-ERK, p-mTOR, p-p70S6K, p-LRP5/6 and Axin1 were observed to be upregulated in
H1975 cells when compared to the same treatments in H2170-P cells (n�3, p<0.05). (B) Similarly active β-catenin and GATA-6 were observed to be
downregulated while, p-GSK3β was not significantly modulated in H1975 cells when compared with H2170-P cells with same treatments. We also observed
p-ERK, p-LRP5/6, p-mTOR, p-p70S6K, p-4E-BP1 and Axin1 were all upregulated in H1975 cells when compared to H2170-P cells with same treatments
(n�3, p<0.05).

doi:10.1371/journal.pone.0136155.g004
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and erlotinib when compared to same treatments in H2170-ER cells. GATA-6 was found to be
downregulated 3.6-fold and 2.9-fold in H1975 cells when compared to H2170-ER cells in the
presence of EGF and erlotinib, respectively and p-ERK was found to be upregulated 2.0 to
70.0-fold in H1975 cells in the presence and absence of erlotinib and EGF when compared to
same treatments to H2170-ER cells. Also, p-mTOR was found to be upregulated up to 1.6-fold
in the presence of EGF only and in absence of both EGF and erlotinib in H1975 compared to
H2170-ER cells with the same treatments. Furthermore, p-p70S6K was found to be upregulated
up to 2.0-fold in H1975 cells when compared to H2170-ER cells in the absence and presence of
EGF and erlotinib both (p<0.05) (Fig 5A).

Similarly, for elucidating similarities or differences in the mode of TKI resistance occurring
in the H1975 and H2170-SR cells, immunoblotting was performed after HGF and SU11274
treatment. Active β-catenin was observed to be downregulated 2.0-fold in H1975 cells, com-
pared to H2170-SR cells in the presence and absence of HGF and SU11274. GATA-6 was
downregulated 1.5 to 6.0-fold in H1975 cells compared to H2170-SR cells in the presence and
absence of HGF and SU11274. p-ERK was found to be upregulated 2-fold and 6.0-fold in
H1975 cells, compared to H2170-SR cells, in absence of HGF and SU11274 both and in the
presence of SU11274 alone, respectively. p-mTOR was upregulated 5.5-fold and 1.5-fold in
absence of both HGF and SU11274; and in presence of SU11274 alone, respectively, in H1975
cells, when compared to same treatments in H2170-SR cells. Furthermore, p-p70S6K was also
found to be upregulated 2.0 to 6.0-fold in H1975 cells compared to H2170-SR cells in the pres-
ence and absence of HGF and SU11274 (p<0.05) (Fig 5B).

Fig 5. Downregulation of Wnt proteins and upregulation of mTOR proteins in H1975 EGFR-mutant cells compared H2170-ER and H2170-SR cells.
H1975, H2170-ER and H2170-SR cells were plated at 125,000 cells per dish in 35 mm dishes and starved (RPMI 1640 with 0.5% BSA) for 24 hours before
ligand (EGF and HGF) or/and drug (erlotinib and SU11274) treatments and were analyzed using western blot. (A) GATA-6 and p-LRP5/6 were observed to
be downregulated in H1975 cells when compared to H2170 ER cells in same treatments. However, p-ERK, p-mTOR and p-p70S6K were upregulated in
H1975 cells when compared to H2170-ER cells in similar treatments (n�3, p<0.05). (B) Active β-catenin and GATA-6 were observed to be downregulated in
H1975 cells compared to same treatments in H2170-SR cells. We also observed that p-ERK, p-mTOR and p-p70S6K were upregulated in H1975 cells when
compared to H2170-SR cells in same treatments. The fold changes were calculated using ImageJ software (n�3, p<0.05).

doi:10.1371/journal.pone.0136155.g005
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Increased active β-catenin expression in H2170-ER and H2170-SR cells
To further analyze the gene expression of β-Catenin in H2170 cells we performed qPCR experi-
ments as described in the methods section. The results indicate that in H2170-ER cells expression
of β-Catenin at mRNA levels was approximately 3.4-fold higher when compared to H2170-P
cells (p<0.01). Similarly, the β-Catenin expression in H2170-SR cells was 3.2-fold higher when
compared to the H2170-P cells (p<0.01). However, no significant change was observed in β-
Catenin gene expression in H1975 cells when compared to H2170-P cells. (Fig 6).

Effect of Wnt and mtor inhibitors alone and in combination with erlotinib
on H1975 cells
MTT cell viability assays were performed for determining the inhibitory effects of Wnt inhibi-
tor XAV939 and mTOR inhibitor everolimus on H1975 cells. H1975 cell viability was very
minimally decreased (<10%) after treatment with XAV939 (up to 10 μM) (Fig 7A), but inter-
estingly, H1975 cell viability was moderately decreased (30 to 40%) after everolimus treatment
(up to 10 μM) (Fig 7B). However, selective inhibition of mTOR with everolimus alone was not
sufficient to significantly inhibit cell proliferation, so combination therapy with EGFR TKI
erlotinib was studied. We observed synergistic effects on inhibition of cell growth in H1975
cells when everolimus and erlotinib were administered in combination at concentrations of
1 μM everolimus with 2.5 μM erlotinib (53% inhibition, p<0.01) and 5 μM everolimus with
2.5 μM erlotinib (54% inhibition, p<0.01) (Fig 7C). The synergistic effect was calculated using
Calcusyn software and the CI values were found to be less than 1.

Discussion
Acquired resistance to EGFR and c-Met TKIs is a common occurrence in patients which limits
the overall efficacy of current lung cancer therapies [7]. This study focuses on elucidating key
signaling proteins in alternative signaling pathways which result in EGFR/c-Met TKI resistance
in lung cancer cell lines which have wild type EGFR or EGFR with T790M mutation. In cells

Fig 6. Modulations in gene expression of β-Catenin in H2170 and H1975 cells. H2170 and H1975 cells
were plated at 125,000 cells per 35 mm dishes and were allowed to adhere and grow for 24 hours. After
which cells were starved (RPMI with 0.5% BSA) for 24 hours and then were processed for RNA collection.
Real-Time PCR results show that β-Catenin is upregulated in H2170-ER and H2170-SR cells when
compared to H2170-P cells. While, in H1975 (T790M EGFRmutated) cells we did not observe any significant
modulation of β-Catenin when compared to H2170-P cells. Expression of each gene was analyzed in
triplicate (n = 2, p<0.01).

doi:10.1371/journal.pone.0136155.g006
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with wild type EGFR, Wnt and mTOR pathways exhibit crosstalk due to proteins which can
regulate both of these pathways [8,18,31], such as GSK3β [31,32]. According to the present
study, significant modulations of key Wnt and mTOR pathway-related proteins such as active
β-catenin, GATA-6 and p-GSK3β confirm the role of these two pathways in H2170-ER and
H2170-SR cells. However, in the H1975 cell line which has a T790Mmutation, we observed
that the mTOR pathway proteins were modulated, but Wnt pathway proteins were not signifi-
cantly altered. These results suggest that mechanism of resistance may be different in cells with
wild type EGFR compared to cells with T790M mutation and different targeting therapies
should be used.

This study provides evidence that active β-catenin, which binds to transcription factors
TCF/LEF, which are known to transcribe tumorigenesis-enhancing proteins [47,48] is signifi-
cantly upregulated in both H2170-ER and H2170-SR cells in comparison to H2170-P cells. It
has been suggested that over-activation of EGFR enhances nuclear accumulation of active β-
catenin [49,50]. In the present study, we observed significantly enhanced nuclear accumulation
and increased gene expression of active β-catenin in H2170-ER and H2170-SR cells. As, H2170
cells have upregulated and constitutively activated p-EGFR [17], this suggests that EGFR and
Wnt pathways may converge at β-catenin, [51] and thus, cooperatively enhance tumorigenesis
in H2170-ER and H2170-SR cells, which has also been suggested by other investigators in
other cancers [18,52–55].

Fig 7. Inhibitory effect of XAV939 and Everolimus on H1975 cells alone and in combination with erlotinib. H1975 cells were plated at 3000 cells per
well in a 96 well plate and then treated with varying drug concentrations of XAV939, everolimus and erlotinib alone or in combinations for 72 hours. Cell
viability was determined by measuring the absorbance colorimetrically after adding MTT dye. (A) IC50 for XAV939 alone in H1975 cells was greater than
10 μM, and similarly (B) the IC50 for everolimus alone in H1975 cells was greater than 10 μM. (C) Synergistic inhibition (approximately 53%) of H1975 cells
was observed when everolimus and erlotinib were administered in combination. Drug synergism was calculated using Calcusyn v2.0 software. ANOVA
analysis was used to determine differences between treatment conditions which were statistically significant (n = 3, p<0.01).

doi:10.1371/journal.pone.0136155.g007
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The phosphorylated (inactive) form of GSK3β (Ser9), was found to be significantly upregu-
lated in H2170-ER and H2170-SR cells, compared to H2170-P cells, which suggests that it is
not able to inhibit the Wnt or mTOR pathways in these cells [31,32,56]. Currently, the role of
GSK3β in tumorigenesis and drug resistance is unclear [48]. To our knowledge, this is the first
study investigating the role of GSK3β expression in EGFR and c-Met TKI resistant lung cancer
cells.

The transcription factor GATA-6 is believed to be involved in the development of cancer by
downregulating Wnt antagonist Dickopf-1 [57] and by promoting transcription of important
Wnt ligands [37,41,42]. Constitutively activated EGFR in H2170 cells [17], stimulates activa-
tion of the RAS/RAF/MEK pathway and its downstream effector ERK [58] which is known to
upregulate GATA-6 [39]. Results from this study have shown significant upregulation of
GATA-6 in both H2170-ER and H2170-SR cells, compared to H2170-P cells, which further
validates the role of GATA-6 in linking EGFR to the Wnt/β-catenin pathway. This is the first
study which demonstrates the role of GATA6 in EGFR/c-Met TKI resistance in NSCLC.

Due to the presence of T790M, H1975 cells are highly resistant to EGFR and c-Met TKIs, as
seen by higher IC50 for erlotinib and SU11274, compared to EGFR wild-type NSCLC cells [17].
In the present study, we observed synergistic inhibitory effects of erlotinib and SU11274 on
H1975 cells. This indicates that a combination of a c-Met and EGFR TKI could be used in
NSCLC patients with T790M mutation.

Greater than 50% of all acquired resistance to EGFR TKIs is caused by the acquisition of the
T790M EGFR mutation [12] and hence, elucidating the mechanism of resistance caused by
T790M is important [9]. We observed downregulation of active β-catenin, as well as upregula-
tion of negative Wnt regulator Axin1 in H1975 cells, when compared to H2170-P cells. This
suggests that the Wnt/β-catenin pathway may not play a role in TKI resistance in H1975 cells.
Interestingly, we observed upregulation of commonWnt co-receptor p-LRP5/6 in H1975 cells,
compared to H2170-P cells. Recent studies indicate that this receptor may be involved in the
activation of mTOR signaling [59,60]. LRP6 can stimulate the activity of the Akt-mTOR
(mTORC1) pathway through an integrated signal with Caveolin-1 [59].

GATA-6, which is known to transcribe important Wnt ligands [39–41], was observed to be
significantly downregulated in H1975 cells. Thus, indicating less Wnt ligand is available for
binding to LRP5/6 for Wnt/β-catenin pathway activation. Also, the mechanism by which ERK
activates GATA-6 is currently unclear, however binding of ERK is required for GATA-6 activa-
tion [39]. In H1975 cells ERK may be unable to bind to GATA-6 and hence we observe down-
regulation of GATA-6 andWnt/β-catenin. Similarly, we observed significant downregulation
of Wnt proteins (active β-catenin, GATA-6, p-LRP5/6 and p-GSK3β) and upregulation of
mTOR proteins (p-ERK, p-mTOR and p-p70S6K) in H1975 cells, when compared to
H2170-ER and H2170-SR cells.

Based on our results, we suggest that alternative EGFR signaling in H1975 cells (T790M-
positive) may be mediated through c-Met and the downstreamMAPK/ERK-mTOR pathway.
Thus, it may be possible to overcome the resistance through the combination of inhibitors
against EGFR, c-Met and mTOR [61,62]. Our results demonstrated that the mTOR inhibitor
everolimus or EGFR inhibitor erlotinib alone did not result in significant cell death of H1975
cells. However, we observed significant synergistic inhibition of H1975 cell proliferation after
combination treatment of everolimus with erlotinib, supporting the requirement of combinato-
rial therapies.

In summary, this study demonstrates that in the case of H2170 EGFR and c-Met TKI-resis-
tant NSCLC cells, which are EGFR wild-type, the canonical Wnt and mTOR pathways have
prominent roles in facilitating alternative EGFR/c-Met signaling mechanisms, resulting in the
development of TKI resistance and cancer cell survival. Thus, it may be possible to break
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resistance and successfully inhibit cell proliferation and survival in EGFR wild-type cells,
through combinatorial inhibition of Wnt and mTOR along with EGFR and c-Met inhibition.
However, in the case of EGFR-mutant H1975 NSCLC cells (L858R and T790M positive), our
study suggests that alternative EGFR signaling may be occurring mainly through the MAP
Kinase and/or PI3K/Akt-stimulated mTOR pathway, resulting in cancer cell proliferation and
survival. Thus, in NSCLC patients who have acquired the T790M EGFR TKI resistance-confer-
ring mutation, it may be possible to break resistance, through combining mTOR inhibitors
with current EGFR and c-Met TKIs.

Supporting Information
S1 Fig. Expression of total Wnt and mTOR pathway related proteins in H2170 and H1975
cells.H1975 and H2170-P cells were plated at 125,000 cells per dish in 35 mm dishes and
starved (RPMI 1640 with 0.5% BSA) for 24 hours before ligand (EGF and HGF) or/and drug
(erlotinib and SU11274) treatments and analyzed using western blot. The results were quanti-
fied using ImageJ software and no significant modulation of total β-Catenin, total GSK-3β,
total ERK and total p70S6K was observed in H1975 cells when compared to H2170-P cells with
same treatments. (n = 2).
(TIF)
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