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Genetic variation in insulin-induced
kinase signaling
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Abstract

Individual differences in sensitivity to insulin contribute to disease
susceptibility including diabetes and metabolic syndrome. Cellular
responses to insulin are well studied. However, which steps in
these response pathways differ across individuals remains largely
unknown. Such knowledge is needed to guide more precise thera-
peutic interventions. Here, we studied insulin response and found
extensive individual variation in the activation of key signaling
factors, including ERK whose induction differs by more than
20-fold among our subjects. This variation in kinase activity is
propagated to differences in downstream gene expression
response to insulin. By genetic analysis, we identified cis-acting
DNA variants that influence signaling response, which in turn
affects downstream changes in gene expression and cellular
phenotypes, such as protein translation and cell proliferation.
These findings show that polymorphic differences in signal trans-
duction contribute to individual variation in insulin response, and
suggest kinase modulators as promising therapeutics for diseases
characterized by insulin resistance.
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Introduction

Insulin is a key hormone that regulates glucose metabolism; it is

essential to support all human cells. Inappropriate insulin sensitivity

underlies diseases from diabetes to polycystic ovary syndrome and

cancer. Diabetes alone affects nearly 400 million people worldwide

and accounts for about 5 million deaths annually (International

Diabetes Federation, 2013). Insulin orchestrates a network of signal

transducers and gene expression regulators to respond to energy

demands and maintain cellular glucose levels. This pathway

maintains routine cellular functions, responds to a wide range of

energy needs and adapts to changes in glucose levels resulting from

food intake.

We differ in our ability to process nutrients. Some people are

more and others are less sensitive to glucose and other components

in our food. Studies have shown individuals differ extensively in

response to glucose load and sensitivity to insulin (Clausen et al,

1996; Bouatia-Naji et al, 2008). But how these metabolic differences

affect one’s well-being and disease susceptibility remains largely

unknown. Knowledge of individual variation in insulin response is

an important step toward understanding insulin sensitivity. Some

gene mutations that influence insulin sensitivity have been identi-

fied. For example, mutations in the insulin receptor result in disor-

ders such as the Donohue syndrome (Taylor et al, 1981). But these

are rare and do not explain more prevalent diseases such as

diabetes. Finding the susceptibility genes for common disorders

characterized by aberrant insulin response has been difficult. Under

the label of insulin resistance is a wide range of abnormalities from

inappropriate secretions to decreased insulin sensitivity. Such

heterogeneity makes it difficult to identify the genetic basis. Thus,

despite several very large-scale genetic studies, the identified genetic

variants can only explain about 20% of the disease risks (Drong

et al, 2012; DIAbetes Genetics Replication And Meta-analysis

(DIAGRAM) Consortium et al, 2014).

Given the complexity of insulin response, knowledge on which

steps along the pathway show the largest individual variability will

enable the development of more precise diagnostic tools and thera-

peutics. More focused genetic studies based on molecular know-

ledge of insulin response can provide such information. In parallel to

genetic studies, other studies have provided molecular and cellular

bases of insulin response. Details on how ligand binding triggers

insulin receptor to auto-phosphorylate and activate effector proteins

such as the insulin receptor substrates (IRS), which then lead to

steps that regulate glucose and lipid homeostasis, have been eluci-

dated (Boulton et al, 1991; Burgering & Coffer, 1995; Prudente et al,

2009). This knowledge can be leveraged to identify the genetic basis

of insulin sensitivity. Studies have already shown that dysregulation

of phosphoinositide-3 kinase (Hansen et al, 1997; Engelman et al,

2006) and mitogen-activated protein kinase pathways (Bost et al,

2005; Wu et al, 2006; Jiao et al, 2013) lead to defective insulin
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response and subsequent insulin resistance. The importance of

kinase signaling in diabetes and related disorders is further illus-

trated by anti-diabetic drugs, such as thiazolidinediones and

metformin, that facilitate glucose transport and insulin response

through promoting insulin signaling (Zhou et al, 2001; Kim et al,

2002). Thus, polymorphic differences in kinase activities likely

contribute to the development and progression of insulin-related

diseases.

In this study, we examined signaling pathways that are activated

upon binding of insulin to its receptor, and studied the downstream

effects. We found extensive individual variation in the extent of

kinase phosphorylation and demonstrated that this propagates to

downstream differences in gene expression and cellular response.

Among the identified target genes of insulin-induced signaling are

diabetes susceptibility genes such as THADA, CENTD2 and VEGFA.

We confirmed the signaling proteins and target gene relationships

by pharmacologic inhibitions and gene silencing. We then mapped

DNA variants that influence kinase activations in cis and the corre-

sponding downstream response pathways in trans. Our results show

that individual differences in insulin response begin as early as acti-

vation of signal transduction following insulin binding to its recep-

tor and this variation affects gene and cellular responses.

Results

Insulin-induced kinase phosphorylation

To study the response of human cells to insulin and assess indi-

vidual differences in this response, we treated fibroblasts from 35

age- and gender-matched individuals with insulin and measured

kinase activation and changes in gene and protein expression. We

used skin fibroblasts since they are easily accessible and are

known peripheral targets of insulin action. Skin fibroblasts have

been used to study diseases characterized by insulin resistance

(Schilling et al, 1979; Dunaif et al, 1995; Eckardt et al, 2007;

Porter & Turner, 2009). Human physiological plasma insulin

levels are about 0.1–2 nM (Melmed et al, 2011); however, we

expected a different concentration of insulin would be needed in

cell-based experiments. To determine the optimal dose of insulin,

we treated cells with serial titration of insulin and chose the

concentration in the midpoint of dose–response curve (100 nM),

which is the same dose used for cultured fibroblast in other stud-

ies (Frittitta et al, 1998; Borisov et al, 2009). Under our experi-

mental conditions, insulin activates the insulin receptor in

fibroblasts but not the insulin-like growth factor 1 receptor

(Figs 1A and EV1).

Binding of insulin to its receptor activates a signaling cascade

of factors such as AKT (Figs 1B, 2A and EV1). For more

quantitative measurements, we used the antibody-based Luminex

assay to measure insulin-induced phosphorylation of 15 proteins.

The results showed that within 10 min following insulin treat-

ment, several proteins were activated; these include the insulin

receptor b subunit (INSRb) and insulin receptor substrate 1 (IRS-1;

Fig 2B). Phosphorylation of the 15 signaling proteins increased by

1.4- to over 10-fold. Seven signaling factors (AKT, CREB, ERK,

JNK, p38, p70S6K and STAT3) showed an average of 3- or greater

fold increase in phosphorylation levels. Results from replicates are

highly correlated (r > 0.7; Fig EV2). Using Western blot, we vali-

dated the induction of phosphorylation measured by Luminex;

A

B

Figure 1. Insulin specifically activates insulin receptor in fibroblasts.

A Insulin treatment induced tyrosine phosphorylation of the insulin receptor (INSR), but not the IGF1 receptor (IGF1R). INSR and IGF1R were pulled down using specific
antibodies, and activation of each receptor was assessed by Western blot analysis with anti-phosphotyrosine antibody. The right panel shows IGF1R is activated by
IGF-1 as a control experiment. Fibroblasts were treated with IGF-1 or insulin before IGF1R was immunoprecipitated and analyzed for phosphorylation of tyrosine.

B Insulin treatment leads to phosphorylation of AKT, a known signaling factor activated by insulin. Cells were treated with a serial titration of insulin for 10 min before
they were harvested and analyzed by Western blot. 100-nM insulin treatment was chosen for all following experiments as it is the midpoint of the dynamic range of
insulin dose.

Source data are available online for this figure.
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while results from these two methods are similar, the Luminex

assay provides broader dynamic range (Fig EV1). Moreover,

measurement of the total protein levels showed that even though

the levels of phosphorylation increased following insulin, the total

protein level did not change (Fig EV3). Together, these results

identified at least seven signaling proteins activated in response to

insulin.

Insulin-induced changes in gene and protein expression

To study the downstream effect of kinase activation, we measured

gene expression of cells at one and 6 h following insulin treatment.

As expected, insulin induced changes in expression of many genes.

The expression of 2,637 genes (22% of expressed genes) signifi-

cantly changed following insulin treatment at one or both time

points (P < 1 × 10�6, ANOVA; Fig 3A; Dataset EV1). These include

genes that are known to play a role in insulin response, such as

immediate early response gene (IER2) and early growth response

genes (EGR1, EGR2 and EGR3), and the glucose transporter type 6

(GLUT6) and activating transcription factor 3 (ATF3). Gene

ontology analysis (Ashburner et al, 2000) shows that these “insulin-

responsive genes” are significantly enriched for roles in the regula-

tion of cell cycle, RNA processing and metabolism (Benjamini

P < 10�10). By text-mining the literature, we found that many of

these insulin-responsive genes have not been implicated in insulin-

mediated pathways. A search of PubMed for co-occurrence of the

A

B

Figure 2. Insulin-induced phosphorylation of multiple signaling factors.

A Schematic diagram of the factors along insulin signaling pathways.
B Results from Luminex assays show phosphorylation of the signaling factors 10 min following insulin treatment. Each individual is represented with a different color.

Average phosphorylation levels of the biological duplicates from the same individual are shown.

Source data are available online for this figure.
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term “insulin” or “diabetes” with each of the 2,637 genes showed

that less than half of these genes were mentioned in insulin or

diabetes literature; thus, these results identified a large number of

insulin-responsive genes. Among those uncovered in this study are

DKC1 that plays a role in maintaining telomere integrity and when

mutated leads to dyskeratosis congenita, and SFRS3, a serine/

arginine-rich splicing factor 3 (Fig 3B).

To extend the study beyond changes in gene expression, we

carried out a proteomic analysis of the insulin-treated cells using

stable isotope labeling by amino acids in cell culture (SILAC) mass

spectrometry (Ong et al, 2002). A total of 1,828 proteins (at least

two unique peptides per protein) were identified. Among them, the

corresponding transcripts for 1,638 proteins were also found in our

gene expression study. The gene and protein expression levels of

the 1,638 pairs were significantly correlated (r = 0.35 and 0.37 at

time 0 and 6 h, respectively; P < 0.001; Fig 4A), consistent with the

previous studies of relationships between transcript and protein

expressions (Gygi et al, 1999; Kislinger et al, 2006; De Godoy et al,

2008). The expression levels of 158 proteins showed significant

changes at 6 h following insulin treatment (P < 0.05; Fig 4B; Cox &

A

B

Figure 3. Insulin-induced changes in gene expression.

A Heatmap shows the expression levels of 2,637 insulin-responsive genes (P < 10�6; ANOVA). Examples of genes that are involved in various biological processes are
listed.

B Examples of insulin-responsive genes, including those known to be regulated by insulin (EGR1, GLUT6), and those that were not previously implicated in insulin
response (DKC1, SFRS3).
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Mann, 2008). These “insulin-responsive proteins” play a role in

protein biosynthesis (EIF1, RPS6), RNA processing (RBM25,

HNRNPC), lipid biosynthesis (APOC3, FASN) and protein transport

(XPO5, TMED3). For instance, it was previously reported that

abnormal level of APOC3 led to hypertriglyceridemia in transgenic

mice and humans (Carlson & Ballantyne, 1976; Ginsberg et al, 1986;

Ito et al, 1990; Aalto-Setälä et al, 1992; Pollin et al, 2008). APOC3 is

transcriptionally repressed by insulin, a critical step of its regulation

(Chen et al, 1994; Li et al, 1995). Here we showed that APOC3

protein is down-regulated following insulin treatment, supporting

its role in mediating insulin response.

Individual variation in insulin-induced kinase activation

The above findings were obtained by averaging the results from

our subjects. As we studied the data, we noticed individual

differences in response to insulin. While all the signaling proteins

were activated by phosphorylation in response to insulin, the

extent of phosphorylation differs greatly among individuals

(Fig 2B). When we compare the phosphorylation levels before and

after treatment, in un-stimulated cells across all individuals, the

kinases were not activated and thus showed little variability

(Figs 5A and EV4). In contrast, there was extensive individual

variation in phosphorylation levels of the signaling factors follow-

ing insulin treatment. For example, insulin-induced phosphoryla-

tion levels of ERK1/2 at Thr185/Tyr187 are highly variable.

Among the 35 subjects, the individual with the lowest induction

showed a ~4-fold increase while the person with the highest

induction showed a ~26-fold increase in phosphorylation of ERK.

The phosphorylation of Ser473 of AKT increased from 1.7- to

20-fold. All the measurements were made with biological repli-

cates; results between replicates are highly correlated (r > 0.7;

Fig EV2). Variation was significantly higher among individuals

than within replicates for all signaling factors (P < 0.05, ANOVA;

Fig EV4). Using Western blot analysis, we confirmed the individ-

ual variation in insulin-induced phosphorylation of target protein

such as AKT and ERK (Fig EV3A). Moreover, the differences in

phosphorylation of AKT and ERK are not due to differences in

A

B

Figure 4. Insulin-induced changes in protein expression.

A Correlations of protein and gene expression levels before and after insulin treatment. The gene expression levels are averages from our 35 subjects.
B Protein expression changes after insulin treatment quantified by mass spectrometry (SILAC). Examples of proteins with significant changes of expression are

annotated (MaxQuant Significance B statistical test).

Source data are available online for this figure.
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expression levels of total AKT and ERK since those do not vary

among individuals, and showed little changes following insulin

treatment (Fig EV3B and C). These results uncover that upon

insulin binding to its receptor, even in the early steps of activation

of signal transduction pathway, there are significant individual

differences in response to insulin.

To understand the basis of the variation in insulin-induced

signaling, we carried out genetic analysis. To narrow the search,

we tested for allelic associations between DNA sequence variants

within the genes that encode the signaling proteins and the extent

of insulin-induced phosphorylation. SNPs within the 7 signaling

proteins (10 kb upstream of 50 UTR to 10 kb downstream of

30 UTR; minor allele frequency > 5%) were selected from dbSNP

(Smigielski et al, 2000) and genotyped in our subjects. By associ-

ation analysis, we found that the activation of several signaling

proteins was in part cis-regulated (Fig 5B and C). For example,

insulin-induced phosphorylation of STAT3 in cells of TT homozy-

gotes for rs6503697 (chr17:42349561) was 66% higher than

that in the AA homozygotes (Pc = 0.006). Similarly, phosphoryla-

tion of p70S6K was 75% higher in individuals with GG genotypes

at rs1292034 (chr17:59912499) than in the AA individuals

(Pc = 0.03). These results show a genetic contribution to individual

A

B

C

Figure 5. Individual variation in kinase phosphorylation in response to insulin.

A Phosphorylation of signaling factors differs extensively among individuals following insulin treatment compared to those at baseline. The data in Fig 2A are re-plotted
here to contrast the phosphorylation before and after insulin treatment.

B Cis-regulation of the activation of signaling proteins after insulin treatment. Association analysis shows allelic differences in insulin-induced phosphorylation of STAT3
and p70S6K. The extent of phosphorylation for each signaling protein is plotted by genotypes of 34 individuals (one outlier was removed).

C Results from association analysis of additional SNPs. For all SNPs, the order of presentations is AA, AB and BB where A is the common allele and B is the minor allele
(* denotes corrected P-value < 0.03 in association analysis). Significant allelic associations with cis-acting SNPs were found for phosphorylation of STAT3 with
rs6503697 (chr17:42349561; Pc = 0.006) and rs6503695 (chr17:42347515; Pc = 0.013) and for phosphorylation of p70S6K with rs1292034 (chr17:59912499; Pc = 0.028).
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variability in insulin-activated signaling pathways. Further study is

needed in order to identify functional variants that directly affect

phosphorylation levels of target proteins.

Previous studies have shown that cells respond to multiple extra-

cellular stimuli through cross talks between different pathways. For

instance, the EGF- and insulin-induced signaling pathways share

some downstream factors in that insulin treatment enhances ERK

phosphorylation stimulated by EGF (Borisov et al, 2009). We

therefore asked whether variants in EGF receptor gene (EGFR)

contribute to different levels of insulin-induced phosphorylation.

We obtained genotype of 17 SNPs within EGFR (minor allele

frequency > 5%) and analyzed the association between these

variants and phosphorylation of ERK and AKT. Individuals carrying

A allele at rs10228436 (chr7:55170575) show higher phosphoryla-

tion of AKT than those carrying G allele (nominal P-value = 0.02).

Similarly, variants at rs4947986 (chr7:55153962) are associated with

ERK phosphorylation (nominal P-value = 0.03). However, these

associations are weak as none of them is significant after correction

for multiple testing. Given the cross talks between pathways, it is

likely that several regulators in addition to EGF receptor affect ERK

and AKT phosphorylation and a larger sample is needed to identify

complex genetic interactions.

Individual variation in insulin-induced gene expression response

Next, we examined whether insulin-induced gene expression

response also varies among individuals. Analysis of gene expression

among the 35 individuals showed that like kinase activation, the

extent of gene expression changes differs among individuals. A total

of 4,455 genes showed at least a 2-fold difference among the individ-

uals with the least and the most induction (or repression) in gene

expression following insulin treatment at one or both time points.

For example, the expression of DUSP6 and COX2 differs by more

than 8-fold across the individuals. The ranges of insulin-induced

changes in gene expression across individuals for some representa-

tive genes are shown in Fig 6A.

Insulin-responsive kinase–gene interactions

Upon activation, kinases such as AKT and ERK regulate cellular

functions through their target genes. Some of the kinase–gene

relationships are known, while others are yet to be determined.

Since we followed the response of the cells from insulin receptor

binding through kinase activations to gene expression changes and

these responses showed extensive individual variability, we were

poised to infer connections between kinases and the target genes.

We determined the correlations between insulin-induced changes in

phosphorylation of signaling proteins and the expression of respon-

sive genes. The activation of the kinases is correlated with the

expression levels of many genes, including susceptibility genes of

type 2 diabetes, such as THADA, CENTD2 and VEGFA (Zeggini et al,

2008; Voight et al, 2010; Fig 6B). These correlated kinase–gene

pairs (r > 0.4) are included in Dataset EV2.

If kinase activity affects gene expression, then the genetic deter-

minants that regulate kinase activities should also influence the

expression levels of the target genes. We had found DNA variants

that act in cis to influence kinase phosphorylation; next, we asked

whether these variants have trans-effects on gene expression. We

analyzed associations between DNA variants within STAT3, p70S6K

and ERK1/2 and gene expression responses that were correlated

with activation of the corresponding kinases. As expected, there

A

B

C

Figure 6. Individual variation in gene expression in response to insulin.

A Example of 10 genes whose gene expression responses following insulin
treatment vary among individuals. Changes in the expression of TBC1D15,
in contrast, are similar among all subjects.

B Insulin-induced changes in expression levels of susceptibility genes for type
2 diabetes (previously identified in genome-wide association studies) are
correlated with phosphorylation of signaling factors. Red line denotes
positive correlation and green line denotes negative correlation.

C SNPs in STAT3 and p70S6K show allelic association with insulin-induced
expression changes of ARL4A and NCBP1, respectively.
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were significant allelic associations with changes in expression

levels of the corresponding target genes (Table 1; nominal

P < 10�4). As shown in Fig 6C, T-allele at rs6503697

(chr17:42349561), a SNP in STAT3 that is associated with higher

insulin-induced phosphorylation of STAT3, is associated with higher

induction of ADP-ribosylation factor-like 4A (ARL4A). Similarly, we

found allelic association at rs1292034 (chr17:59912499) in p70S6K

with its phosphorylation level in cis, and the expression level

of NCBP1 in trans. NCBP1 (also known as CBP80) is a subunit of

the cap-binding complex that binds to the 50 cap of pre-mRNAs

and is involved in RNA processing and translation initiation.

Activated p70S6K following insulin stimulation has been shown to

interact with NCBP1 complex and enhance translation efficiency of

transcripts (Ma et al, 2008). Another example is the sequence vari-

ants in ERK that are associated with its insulin-induced phosphory-

lation in cis, and in trans the expression levels of several genes such

as DEDD and BFAR that are involved in cell death.

Insulin-induced activation of ERK affects gene expression and
cell growth

To focus on one of the kinase–gene clusters identified from the

above analysis, we examined ERK and the genes whose expression

levels are correlated with its activation following insulin treatment.

The expression levels of 203 genes at one hour and 295 genes at 6 h

following insulin treatment are highly correlated (r > 0.4) with ERK

phosphorylation. Fig 7A shows the expression levels of these genes

in our subjects. The genes are significantly enriched for involvement

in cell cycle (CDK10, FZR1, KIF15), apoptosis (BAD, FAS, PAWR)

and gene expression regulation (MYC, PML, SIRT1). ERK activation

explains at least 16% and as much as 44% of individual variability

in insulin-induced changes in expression of these genes. To follow

up these results, we measured the gene expression levels of PER2,

CYR61 and TIGAR in individuals with the highest and those with the

lowest ERK induction using quantitative PCR. The results validated

that expression levels are significantly different between individuals

with high and low levels of ERK induction (P < 0.05, t-test; Fig 7B).

PER2 and other genes in the CLOCK pathways have been shown to

play key roles in metabolism (Turek et al, 2005; Weber et al, 2006;

Marcheva et al, 2010).

While there were significant correlations between activation of

signaling factors and gene expression levels, the correlation alone

does not imply that ERK phosphorylation regulates expression of

these genes. Thus, we treated the cells with an inhibitor of ERK

phosphorylation, U0126 (Favata et al, 1998), to examine the speci-

fic effect of ERK on gene expression. We found that U0126 treat-

ment led to changes in the expression levels of insulin-responsive

genes that co-vary with ERK (Fig 7C). For instance, U0126

repressed the expression of ENC1 and GEM whose expression

levels were positively correlated with ERK phosphorylation

(r = 0.55 and 0.58, respectively; Fig 7D). ENC1 encodes an actin-

binding protein which is involved in adipocyte differentiation

(Zhao et al, 2000). Its overexpression is also associated with vari-

ous cancers (Fujita et al, 2001; Hammarsund et al, 2004; Durand

Table 1. Cis-SNPs that affect kinase activity are associated with gene expression levels in trans.

SNP Chr Position (GRCh38) Nearby gene Reference allele Associated genes P-value

rs11865086 16 30119172 ERK C ANGEL1 7.6 × 10�4

rs2005219 16 30129937 ERK A BFAR 9.1 × 10�5

rs1292034 17 59912499 p70S6K G NCBP1 2.2 × 10�5

rs1292034 17 59912499 p70S6K G INF2 1.2 × 10�4

rs1292034 17 59912499 p70S6K G FADS1 3.3 × 10�4

rs1292034 17 59912499 p70S6K G FADS1 6.0 × 10�4

rs1292034 17 59912499 p70S6K G PMAIP1 8.2 × 10�4

rs180515 17 59946914 p70S6K G RANBP10 7.5 × 10�4

rs180519 17 59938910 p70S6K G NCBP1 2.2 × 10�5

rs180519 17 59938910 p70S6K G INF2 3.1 × 10�4

rs180519 17 59938910 p70S6K G FADS1 6.8 × 10�4

rs180519 17 59938910 p70S6K G KIAA0090 7.3 × 10�4

rs180519 17 59938910 p70S6K G FADS1 8.1 × 10�4

rs8071475 17 59896559 p70S6K C ACSL3 8.5 × 10�4

rs2293152 17 42329511 STAT3 G CHST1 6.1 × 10�4

rs6503695 17 42347515 STAT3 C ARL4A 2.0 × 10�5

rs6503695 17 42347515 STAT3 C UCHL3 3.8 × 10�4

rs6503695 17 42347515 STAT3 C JUN 7.1 × 10�4

rs6503695 17 42347515 STAT3 C KPNA1 9.0 × 10�4

rs6503697 17 42349561 STAT3 T ARL4A 2.0 × 10�5

rs6503697 17 42349561 STAT3 T KPNA1 4.6 × 10�4

rs6503697 17 42349561 STAT3 T UCHL3 6.4 × 10�4
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Figure 7. Individual variation in kinase signaling is propagated to downstream processes.

A The heatmap shows the expression levels of genes that are correlated (r > 0.4) with phosphorylation of ERK at 1 and 6 h. Columns in the heatmap are sorted
according to phosphorylation level of ERK. Similar correlations between genes and other signaling factors were found (data not shown).

B Quantitative PCR validates that insulin-induced gene expression is significantly different (P < 0.05, t-test) between individuals with high and low ERK
phosphorylation. Insulin-induced ERK phosphorylation in 3 individuals with “high” and “low” induction was quantified by Luminex assay. Gene expression levels were
measured using quantitative RT–PCR. Error bars represent SEM among 3 individuals of each group.

C U0126 treatment led to change in expression level of genes that are correlated with ERK phosphorylation. Lines in scatter plots indicate threshold of 2-fold change.
D Two examples of genes regulated by ERK. Changes in expression levels of ENC1 and GEM1 are correlated with ERK phosphorylation. Following ERK inhibition by

U0126, their expression response diminished. Cells from 4 individuals were treated and average values are shown. Error bars represent SEM among 4 individuals.
E Knockdown of ERK1 inhibits cell cycle progression. Western blot shows that siRNA knockdown of ERK1 and AKT resulted in reduction of protein level. NTC, negative

control siRNA. BrdU incorporation assay shows that ERK1 knockdown reduced insulin-induced DNA synthesis. In contrast, AKT knockdown did not affect BrdU
incorporation. Average values from 4 individuals are shown. Error bars represent SEM. *P < 0.02; paired t-test.

Source data are available online for this figure.

ª 2015 The Authors Molecular Systems Biology 11: 820 | 2015

Isabel Xiaorong Wang et al Genetics of signaling response to insulin Molecular Systems Biology

9



et al, 2011). The positive correlation between ENC1 expression

and ERK phosphorylation in response to insulin suggests a possi-

ble mechanism for higher cancer risk in patients with insulin resis-

tance (Arcidiacono et al, 2012). GEM encodes an RGK family of

GTPase, which regulates voltage-dependent Ca2+ channels. It has

been shown that Gem-null mice were glucose intolerant and have

impaired insulin secretion (Gunton et al, 2012). Here we showed

that gene expression of GEM is regulated by insulin-stimulated

ERK phosphorylation, suggesting a feedback pathway between

insulin secretion and insulin signaling.

Among the genes that correlate with ERK phosphorylation are

ones that regulate the cell cycle. This is consistent with previous

reports that ERK signaling affects insulin-induced cell proliferation

(Samii et al, 1998; Conejo & Lorenzo, 2001). We used short interfer-

ing RNA (siRNA) to knockdown ERK expression in fibroblasts, then

treated the cells with insulin and measured cell cycle progression by

BrdU incorporation (Fig. 7E). The reduction of ERK protein levels

resulted in a significant decrease (P < 0.02, t-test) of BrdU incorpo-

ration. In contrast, siRNA knockdown of AKT did not affect BrdU

incorporation, suggesting that ERK pathway plays more prominent

roles in insulin-induced cell proliferation. This further supports the

biological significance of individual differences in ERK activation

and its contribution to variation in insulin sensitivity among

individuals.

Discussion

In summary, our results reveal extensive individual variation in

insulin-induced signaling. To maintain proper functions, cells must

respond to cellular and environmental inputs. Signal transduction is

the key step in transmitting environmental cues to cellular

processes. We found that insulin-induced signal transduction

through proteins such as ERK, AKT and p70S6K varies greatly

among individuals. We showed that like gene expression (Cheung &

Spielman, 2009; Smirnov et al, 2009), there is a genetic component

to the individual variation in signal transduction. Induction of the

signaling proteins differs in individuals with different polymorphic

forms of the proteins. The variability in signaling response to insulin

leads to differences in expression of genes which direct downstream

cellular processes. Specifically, we found that individual differences

in insulin-induced ERK phosphorylation resulted in variation in

expression levels of genes that regulate metabolic and mitogenic

processes, and downstream cell cycle progression. Our study was

carried out using samples from newborns. It would be interesting to

carry out similar analyses in adults which would provide additional

information on how environmental factors, such as adult diets,

influence the genetic effects.

By identifying signal transduction as a contributing factor to indi-

vidual differences in insulin response, our findings offer an opportu-

nity to tailor pharmacologic correction of insulin resistance.

Identifications of the roles of abnormal kinase activities in cancer

have promoted the development of protein kinase inhibitors such

as ST1571 (Gleevec; Druker et al, 1996) and ZD-1839 (Iressa;

Ciardiello et al, 2000) as therapeutics. Here, we show that kinase

modulators are potential therapeutics for insulin resistance. Current

pharmacologic treatment of diabetes relies on two main classes of

drugs, insulin mimetics and insulin sensitizers. In many patients,

these drugs do not provide optimal hyperglycemic control. Our

results suggest that some of these patients may carry genetic vari-

ants that lower their signaling response to insulin and its mimetics.

Knowledge of the specific kinases that are more or less active in

patients will guide more tailored treatments; for instance, patients

can be given the modulators that stimulate their less efficient

kinases.

Genome sequencing is already used increasingly for diagnostic

purposes. The extension of genetics in medicine from diagnosis to

treatment relies on knowledge of the molecular effects of sequence

variants. As our ability to carry out functional analyses advances,

it is now becoming feasible to assess the influence of DNA

variants on cellular phenotypes. As we demonstrate here, it is

possible to identify sequence variants that affect insulin response

and the pathways that these variants act on. A combination of

genetics, functional genomics and cell biology will improve clinical

medicine by enabling not only more precise diagnosis but also

targeted therapy.

Materials and Methods

Cell culture

Foreskin tissues were collected from circumcisions of 35 healthy

and unrelated 3-day-old newborns (anonymous donors at the Hospi-

tal of the University of Pennsylvania). Our Institutional Review

Board approved our samples as exemption from human subject

research, and no informed consent was required. The samples are

discarded foreskin samples from anonymous donors that cannot be

traced. Primary fibroblasts were isolated from these foreskin tissues.

Briefly, the tissues were sectioned and epidermis removed. The

remaining dermis was incubated in 1 ml of 3 mg/ml collagenase

(Roche) in HBSS buffer with calcium and magnesium (Mediatech)

at 37°C for 30 min. One milliliter of 0.5% trypsin/EDTA (Invitro-

gen) was then added, and the tissue was incubated at 37°C for

10 min. Trypsin was inactivated by adding 1 ml MEM medium

(Invitrogen) with 10% fetal bovine serum (Hyclone); then, the undi-

gested tissue pieces were removed, and fibroblasts were collected

from suspension by centrifugation. Passage-1 fibroblasts were

subsequently cultured at 37°C in 5% CO2 in MEM medium supple-

mented with 10% fetal bovine serum, 2 mM L-glutamine, 100 U/ml

penicillin and 100 lg/ml streptomycin and were passaged every

3 days.

To minimize technical variability, fibroblasts of the same passage

(passage 4) from the 35 individuals were treated and harvested in

one batch for signaling assays and microarray experiments. Fibro-

blasts were seeded at a density of 3 × 104/cm2 and incubated for

24 h at 37°C to ~70–80% confluency. Cells were then washed once

with phosphate-buffered saline and incubated for another 18 h in

serum-free medium.

Luminex signaling assay

Fibroblasts of passage 4 were serum-starved for 18 h and treated

with mock or 100 nM insulin for 10 min. Cells were then lysed in

1× MILLIPLEX lysis buffer (Millipore). Phosphorylation of signaling

factors was measured using the Luminex Multi-pathway Signaling
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Kits (Millipore; Bio-Rad): INSRb (Tyr1146), IRS1 (Ser636/Ser639),

MEK1 (Ser217/Ser212), AKT (Ser473), ERK1/2 (Thr185/Tyr187),

STAT3 (Ser727), JNK (Thr183/Tyr185), p70 S6 kinase (Thr412),

IkBalpha (Ser32), STAT5A/B (Tyr694/699), CREB (Ser133), p38

(Thr180/Tyr182), GSK-3a/b (Ser21/Ser9), c-Jun (Ser63) and HSP27

(Ser78). Total protein levels of p38, ERK1/2, AKT, STAT3, JNK,

p70 S6 kinase and CREB were measured using the Luminex assay

(Millipore). GAPDH protein level was measured as a loading

control for total protein input. Cells from each individual were

treated and assayed twice independently. Fold change was calcu-

lated by taking the ratio between phosphorylation levels from

insulin-treated cells and those from mock-treated cells. Fold differ-

ence in total protein levels was calculated by taking the ratio

between a given individual and the individual with the lowest

protein level. We report the average fold changes from the biologi-

cal replicates.

As a measurement of individual variation relative to technical

variability, for each signaling protein, we calculated variance ratio,

the ratio between variance of insulin-induced phosphorylation

among individuals and the variance within individuals (replicates).

For all signaling proteins, the variance among individuals was

significantly higher than that within replicates (P < 0.05).

Gene expression measurement by microarray

Fibroblasts of passage 4 from 35 individuals were serum-starved for

18 h and treated with 100 nM insulin for 0, 1 and 6 h. In the ERK

inhibition studies, cells from 4 individuals were treated with 10 lM
U0126 (Cell Signaling) or DMSO (Sigma-Aldrich) for 1 h before

100 nM insulin or ddH2O (mock treatment) was added. Total RNA

was extracted using RNeasy Micro Kit (QIAGEN). cDNA was synthe-

sized using oligo (dT) primer following the manufacturer’s protocol

(TaqMan Reverse Transcription Reagents; Applied Biosystems).

Real-time PCR was performed on 7900HT Real-time PCR System

using Power SYBR Green Master Mix (Applied Biosystems). PCRs

were performed in duplicates and average fold changes of 4 individu-

als are shown, along with standard error of the mean (SEM). For

microarrays, cRNA was amplified, labeled and hybridized to Affy-

metrix Human U133A 2.0 arrays. The array data were analyzed

using Expression Console software (Affymetrix). Expression values

were scaled using MAS5 algorithm and log2-transformed. A total of

11,845 probesets were determined as “expressed” in fibroblasts

(80% of the samples based on presence call values). To identify

probesets whose expression levels changed among 3 time points,

we carried out analysis of variance with correction for multiple test-

ing (P < 10�6; ANOVA).

Stable isotope labeling by amino acids in cell culture (SILAC) and
mass spectrometry

Primary fibroblasts from one individual was cultured in D-MEM

supplemented with 10% dialyzed fetal bovine serum (Invitrogen),

1× L-glutamine, 100 U/ml penicillin and 100 lg/ml streptomycin,

(MS10030, Invitrogen). For “light” medium, L-arginine and L-lysine

were added; for “heavy” medium, [U-13C6]-L-lysine HCl and [U-13C6,
15N4]-L-arginine were added. Cells were passaged six times in each

medium, and whole cell extracts collected from equal number of cells

were mixed 1:1 and fractioned using GelC method. One fraction was

analyzed by mass spectrometry to confirm “heavy” isotope labeling

efficiency is > 96%. Fibroblasts were then serum-starved for 18 h,

and cells in heavy medium were treated with 100 nM insulin for 6 h

before harvesting. Whole cell lysates from equal number of cells in

light and heavy medium were mixed 1:1, separated into 23 fractions

by GelC, trypsin-digested, and extracted tryptic peptides from each

fraction were injected onto a nanocapillary reverse-phase column

(75-lm column terminating in a nanospray 15-lm tip) directly

coupled to a LTQ-Orbitrap mass spectrometer (Thermo Scientific).

The MS/MS data were acquired using a top six method. Each fraction

was injected and analyzed in duplicates.

Raw files acquired from LC/MS-MS were analyzed by MaxQuant

(version 1.1.1.25; Cox & Mann, 2008) using the following parame-

ters: peptide FDR 0.01; protein FDR 0.01; minimal peptide length = 6;

variable modifications: oxidation (M), acetyl (protein N-term); fixed

modifications: carbamidomethyl (C); special AAs: KR; MS/MS tol.

(HCD), 20 ppm; decoy search enabled; and database: ipi.HUMAN.

v3.68.fasta. Only protein groups with at least two unique peptides

identified were retained for further analysis. Significance of normal-

ized H/L protein ratio was calculated taking into account peptide

intensity (Significance B, MaxQuant; Cox et al, 2009).

Immunoprecipitation and Western blot

Primary fibroblasts were serum-starved for 18 h before treatment

with 100 nM insulin for 5 min. Cells were lysed in 1× lysis buffer

(20 mM Tris–HCl (pH 7.5), 150 mM NaCl, 1 mM Na2EDTA, 1 mM

EGTA, 1% Triton; Cell Signaling) supplemented with 1× COMPLETE

protease inhibitors (Roche) and 1× phosphatase inhibitors I and II

(Sigma-Aldrich). Cell lysates containing 150 lg of total protein were

incubated with 5 lg a-INSR antibody (Cell Signaling, 3025), or 5 lg
a-IGF1R antibody (Cell Signaling, 3018) at 4°C overnight. Immuno-

complex was pulled down using Protein A-Sepharose (GE Health-

care). Input and immunoprecipitation samples were analyzed by

Western blot using a-phosphotyrosine antibody (1:1,000; Millipore,

4G10 Platinum), or the above a-INSR (1:1,000) and a-IGF1R
(1:1,000) antibodies. Twenty percent of input lysates were loaded as

a control.

siRNA knockdown and BrdU assay

Primary fibroblasts from 4 individuals were transfected with

100 nM pooled siRNA specific for ERK1/2 or AKT (Cell Signaling,

#6560; #6211) or negative control siRNA, respectively, using

lipofectamine RNAiMAX (Invitrogen). Western blot analyses with

antibodies specific for ERK1/2 and AKT (Cell Signaling) were used

to confirm the reduction of protein levels following gene knock-

down. Twenty-four hours post-transfection, cells were serum-

starved for 18 h and treated with 100 nM insulin for 22 h. BrdU

was then added to medium, and cells were incubated for another

2 h before cells were fixed and assayed using the Cell Proliferation

ELISA kit (Roche) following manufacture’s protocol. The average

values from 4 individuals were shown.

Association analysis

SNPs within the genes coding signaling proteins (10 kb upstream of

50 UTR to 10 kb downstream of 30 UTR; minor allele frequency
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> 0.05) were identified based on dbSNP. Genome location of each

SNP is based on the latest build in dbSNP (GRCh38/hg38). DNA

samples from the 35 individuals were genotyped using ABI TaqMan

SNP genotyping assays on the 7900HT real-time PCR system

(Applied Biosystems). Association analysis was carried out using

PLINK (version 1.07; Purcell et al, 2007). Phosphorylation of each

protein, as dependent variable, was regressed on SNP genotypes

(coded 0, 1 and 2). One outlier in signaling assay was removed; thus,

only 34 individuals were included in the following analysis. We also

compared the results with those from non-parametric analysis of

Kruskal–Wallis test, and similar results were obtained. SNPs within

genes are correlated; to adjust for this correlation in correction for

multiple testing, we used the method developed by Nyholt (2004).

Data availability

Data were deposited in Gene Expression Omnibus (GSE21891) and

PeptideAtlas (Dataset Identifier: PASS00688, Dataset Password:

YP6525d).

Expanded View for this article is available online:

http://msb.embopress.org
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