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Abstract

Background—Previous diffusion tensor imaging (DTI) studies have shown white matter 

compromise in children and adults with autism spectrum disorder (ASD), which may relate to 

reduced connectivity and impaired function of distributed networks. However, tract-specific 

evidence remains limited in ASD. We applied tract-based spatial statistics (TBSS) for an unbiased 

whole-brain quantitative estimation of the fractional anisotropy (FA), mean diffusion (MD) and 

axial and radial diffusion of the white matter tracts in children and adolescents with ASD.

Methods—DTI was performed in 26 ASD and 24 typically developing (TD) participants, aged 

9–20 years. Groups were matched for age and IQ. Each participant’s aligned FA, MD and axial 

and radial diffusion data were projected onto the mean FA skeleton representing the centers of all 

tracts and the resulting data fed into voxelwise group statistics.

Results—TBSS revealed decreased FA, and increased MD and radial diffusion in the ASD 

group compared to the TD group in the corpus callosum, anterior and posterior limbs of the 

internal capsule, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, superior 

longitudinal fasciculus, cingulum, anterior thalamic radiation, and corticospinal tract. No single 

site with inverse effects (increased FA, reduced MD or radial diffusion in the ASD group) was 

detected. In clusters of significant group difference, age was positively correlated with FA and 

negatively correlated with MD and radial diffusion in the TD, but not the ASD group.

Conclusions—Our findings reveal white matter compromise affecting numerous tracts in 

children and adolescents with ASD. Slightly varying patterns of diffusion abnormalities detected 

for some tracts may suggest tract-specific patterns of white matter abnormalities associated with 

ASD. Age-dependent effects further show that maturational changes (increasing FA, decreasing 

MD and radial diffusion with age) are diminished in ASD from school-age childhood into young 

adulthood.

Correspondence to: Ralph-Axel Müller, Department of Psychology, San Diego State University, 6363 Alvarado Ct, Suite 225E, San 
Diego, CA 92120; amueller@sciences.sdsu.edu. 

HHS Public Access
Author manuscript
J Child Psychol Psychiatry. Author manuscript; available in PMC 2015 August 24.

Published in final edited form as:
J Child Psychol Psychiatry. 2011 March ; 52(3): 286–295. doi:10.1111/j.1469-7610.2010.02342.x.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Diffusion tensor imaging; autism spectrum disorder; brain connectivity; fractional anisotropy; 
mean diffusion; axial diffusion; radial diffusion

Autism spectrum disorder (ASD) is characterized by sociocommunicative, cognitive, and 

sensorimotor impairments whose underlying neuropathology is not fully understood. 

Structural magnetic resonance imaging (MRI) findings have shown abnormal patterns of 

white matter growth in ASD. Courchesne et al. (2001) reported atypically increased cerebral 

white matter volume in boys with autism below the age of 5 years, whereas in adolescent 

boys cerebral white matter volume was reduced. Abnormal early growth patterns in ASD 

likely relate to atypical interregional connectivity later in life (Belmonte et al., 2004; Kana et 

al., 2008; Kleinhans et al., 2008; Koshino et al., 2005; Müller, 2007; Rippon et al., 2007; 

Villalobos et al., 2005). Deficiency in interhemispheric information transfer (Nyden et al., 

2004) and interhemispheric functional underconnectivity have also been reported (Just et al., 

2007). Impaired connectivity may be related to social and cognitive symptoms seen in ASD 

(Dawson et al., 1998; Hill, 2004).

Compared with conventional anatomical MRI, DTI provides additional information about 

aberrant white matter microstructure. DTI indices (fractional anisotropy [FA], mean 

diffusion [MD], and axial and radial diffusion) are markers of pathological and 

developmental changes in axonal density and size, myelination, and organizational 

coherence of fibers within a voxel (Basser, 1995; Basser and Pierpaoli, 1996; Song et al., 

2005).

In a first small-sample DTI study of ASD, reduced FA was reported in brain regions related 

to social cognition, such as the ventromedial prefrontal, anterior cingulate, and 

temporoparietal regions (Barnea-Goraly et al., 2004). Several DTI studies have subsequently 

reported reduced FA in children and adults with ASD in corpus callosum (Alexander et al., 

2007; Keller et al., 2007), internal capsule (Brito et al., 2009; Cheung et al., 2009; Keller et 

al., 2007), frontal (Sundaram et al., 2008), and temporal (Lee et al., 2007) regions. Contrary 

to these studies, increased FA in frontal lobe, right cingulate gyrus, bilateral insula, right 

superior temporal gyrus and bilateral middle cerebellar peduncle was reported in one recent 

study of children and adolescents with ASD (Cheung et al., 2009).

Several autism DTI studies (Alexander et al., 2007; Catani et al., 2008; Lee et al., 2007) 

have reported region-of-interest (ROI) analyses, which rely on a priori hypotheses regarding 

regional impairment and are limited to selection of a few among numerous white matter 

tracts. Other studies have implemented voxelwise whole brain approaches (Barnea-Goraly et 

al., 2004; Cheung et al., 2009; Ke et al., 2009; Keller et al., 2007). While these studies are 

not limited to a priori selection of ROIs, they suffer from topological variability of the brain, 

which can cause misregistration of white matter tracts across participants. Spatial smoothing 

applied to compensate for such misregistration can also affect DTI indices (Jones et al., 

2005).
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In the present study, we utilized a comparatively novel tract-based spatial statistics (TBSS) 

approach (Smith et al., 2006) to investigate white matter fiber tract specific changes in 

children with ASD compared to typically developing (TD) children. TBSS provides the 

ability to spatially localize group differences in DTI data in an observer-independent and 

hypothesis-free fashion. TBSS uses nonlinear registration and takes advantage of the spatial 

determinants of major white matter tracts, thus minimizing registration error and bias and 

eliminating the need for arbitrary smoothing. The data-driven approach of TBSS is 

particularly useful in a disorder like ASD, for which regional patterns of brain abnormalities 

are not fully determined.

Our study aimed to examine whether expected white matter compromise in children and 

adolescents with ASD would localize to a limited number of tracts or would be distributed 

across many cortico-cortical as well as subcortico-cortical tracts.

Methods

Participants

Twenty-six children with ASD (15 with autistic disorder, 11 with Asperger’s disorder; 25 

males, 1 female) and twenty-four TD children (23 males, 1 female), matched for age, and 

verbal and nonverbal IQ were included. Clinical diagnoses were confirmed by an expert 

clinical psychologist using the Autism Diagnostic Interview–Revised (ADI-R) (Rutter et al., 

2003) and the Autism Diagnostic Observation Schedule (ADOS) (Lord et al., 2001). 

Children with associated medical conditions were excluded. One ASD participant was 

taking a Selective Serotonin Reuptake Inhibitor and a stimulant, one a stimulant and a 

Serotonin and Norepinephrine Reuptake Inhibitor and seven ASD participants were on 

prescribed psychoactive medications. Medication information was unavailable for five ASD 

participants.

TD children had no reported personal or family history of autism or any other neurological 

or psychiatric conditions. Independent-sample t-tests confirmed that ASD and TD groups 

were matched on age, t(48)=0.3, p=.76, verbal IQ, t(48)=0.8, p=.38 and nonverbal IQ, 

t(48)=0.4, p=.71, as determined using the Wechsler Abbreviated Scale of Intelligence 

(Wechsler, 1999) (WASI; Table 1).

The research protocol was approved by the Institutional Review Boards of the University of 

California, San Diego and San Diego State University. Written informed assent and consent 

was obtained from all participants at the time of their visit.

DTI Scanning Procedure

DTI scans were performed on a 3T whole-body GE MR system (Signa Excite HD; GE 

Healthcare, Milwaukee, USA) at the Center for Functional Magnetic Resonance Imaging, 

University of California, San Diego. A standard 8-channel head coil was used to acquire all 

images. Head movement was minimized using foam pillows around participants’ heads.

Single-shot echo-planar diffusion weighted imaging was performed with the following 

parameters: repetition time (TR) = 10000 ms, echo time (TE) = 99.4 ms, field of view 
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(FOV) = 240 mm, slice thickness = 5mm, slice gap = 0, number of slices = 27 (axial), matrix 

size = 128×128. Two degrees of diffusion weighting were used: b = 0 and 2000 s/mm2. Data 

were acquired in 15 non-linear directions with four repetitions. A pair of field maps with 

two different echo times and with identical DTI parameters were also acquired.

DTI Data Analysis

Distortions due to magnetic field inhomogeneities were corrected using field maps derived 

from the phase difference image obtained from a pair of images with different echo times. 

The phase difference image between the two images is proportional to variations in the local 

magnetic field. Custom software using methods described by Jezzard and Balaban (Jezzard 

and Balaban, 1995) was used for field map correction. One child in each ASD and TD group 

was excluded due to image artifacts associated with excessive motion (>2mm). No 

significant group differences were detected for translational motion (0.65±0.09mm [mean

±SEM] ASD and 0.69±0.08mm TD; p = 0.7) or rotational motion (0.015±0.002 rad ASD 

and 0.011±0.003 rad TD; p = 0.4) as determined by the root mean square of the translational 

and rotational motion in three cardinal directions. DTI data were processed using the 

diffusion toolbox of FSL (Smith et al., 2004) version 4.1.0 to generate three eigenvalues 

from which two tensor-derived rotational invariants (FA, MD), axial diffusion (λ1) and 

radial diffusion (λ2+λ3/2) measurements were derived. To measure anisotropy, we 

calculated FA, as previously defined (Basser et al., 1994), which was scaled to a range from 

0 (equal diffusion in all directions) to 1 (diffusion in only one direction).

We used Tract-Based Spatial Statistics (TBSS (Smith et al., 2006)), included in the FSL 

suite (Smith et al., 2004) to carry out voxelwise statistical analyses for FA, MD and axial 

and radial diffusion in ASD and TD groups. All participants’ FA data were aligned into a 

common space using the nonlinear registration tool FNIRT, which uses a b-spline 

representation of the registration warp field (Rueckert et al., 1999). A mean FA image was 

created and thinned to create a mean FA skeleton that represented the centers of all tracts 

common to both the ASD and TD groups. A lower FA threshold of 0.2 was used to prevent 

inclusion of non-skeleton voxels. Each subject’s aligned FA image was then projected onto 

the mean FA skeleton and the resulting data were fed into voxelwise cross-subject statistics, 

which were based on a non-parametric approach utilizing permutation test theory with a 

standard general linear model design matrix. Permutation testing (5000 permutations) was 

performed using the Randomise program, which applies Monte Carlo permutation testing to 

generate random permutations (Nichols and Holmes, 2002). Using the same nonlinear 

registration, skeleton and skeleton projection vectors derived from the FA images, MD, axial 

diffusion and radial diffusion data were equally projected onto the skeleton before voxelwise 

statistical analysis across subjects (Smith et al., 2007). A restrictive statistical threshold was 

used (cluster-based thresholding t > 3, p < 0.05, corrected for multiple comparisons). A 

nonparametric statistical test was selected since it does not require the assumption of 

Gaussian distribution for DTI indices. The John Hopkins University (JHU) white matter 

tractography atlas (Wakana et al., 2004) was used for tract labeling and in the case of 

overlap, voxel assignment was based on >50% chance of being on the labeled tract. Each 

tract was followed up to the end of the skeleton and its label was checked against the atlas 

throughout. All voxels in a given tract were included for the group analysis. Shapiro-Wilk 
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tests carried out to test for normality showed that the diffusion data satisfied parametric 

assumptions and therefore, Pearson correlation analyses were performed to detect possible 

effects of age on DTI indices.

Results

TBSS analysis revealed decreased FA in the ASD compared to the TD group in numerous 

white matter tracts (Table 2). FA reduction was robust in the anterior and posterior limbs 

and retrolenticular part of the internal capsule bilaterally, and body, genu and splenium of 

the corpus callosum. Major white matter fiber tracts with reduced FA in the ASD group 

were bilateral inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, superior 

longitudinal fasciculus, corticospinal tract, cingulum, anterior thalamic radiation, anterior 

corona radiata, right superior corona radiate and forceps major (Figure 1). No tract was 

found to have significantly greater FA in ASD compared to TD group.

Increased MD and radial diffusion in ASD group compared to TD group were seen in the 

splenium of the corpus callosum, bilateral inferior longitudinal fasciculus, inferior fronto-

occipital fasciculus, superior longitudinal fasciculus, corticospinal tract, cingulum, anterior 

thalamic radiation, anterior corona radiata, right superior corona radiate, forceps major, 

uncinate fasciculus, anterior and posterior limbs of internal capsule and external capsule. 

Increased radial diffusion was found in the genu and anterior body of the corpus callosum 

but not for MD (Figure 1). No tract was shown to have significantly reduced MD and radial 

diffusion in ASD compared to TD group. Also, no significant group differences were 

detected for axial diffusion.

Pearson correlation analyses were performed to detect possible effects of age on FA, MD 

and radial diffusion. FA of the whole brain white matter skeleton was positively correlated 

with age in TD group (r=.61, p=.002) but only marginally in ASD group (r=.12, p=.55). MD 

and radial diffusion of the whole brain white matter skeleton were negatively correlated with 

age in TD group (MD: r=−.57, p=.003; radial diffusion: r=−.58, p=.003) but not in ASD 

group (MD: r=−.19, p=.32; radial diffusion: r=−.20, p=.33; Figure 2). When examining all 

clusters of significant group difference combined, age in the TD group was positively 

correlated with FA (r=.59, p=.002) and negatively correlated with MD and radial diffusion 

(MD: r= −.60, p=.002; radial diffusion: r=−.60, p=.002) whereas correlations were non-

significant in the ASD group (FA: r=.31, p=.12; MD: r=−.21, p=.30; radial diffusion: r=−.

09, p=.65). Although significant correlations with age were found for the TD group and not 

the ASD group in many of the analyses we carried out, a significant group by age interaction 

was found only for the MD of the whole brain (F=2.4, p=.04).

Post hoc analyses of age-related effects for individual white matter tracts were carried out to 

explore patterns of age correlation with DTI indices for individual tracts in which white 

matter abnormalities had been detected for the ASD group. Positive correlations between 

age and FA and negative correlation between age and MD and radial diffusion in the TD 

group, but not in the ASD group, were found for inferior longitudinal fasciculus, inferior 

fronto-occipital fasciculus, superior longitudinal fasciculus, corticospinal tract, cingulum 

and internal capsule. Age was marginally correlated with FA but significantly with MD of 
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the corpus callosum in the TD, but not the ASD group. Although none of these relationships 

were significant after correction for multiple comparisons the consistency of this pattern 

across a number of major white tracts is apparent (Figure 3).

Discussion and Conclusion

In this study we used TBSS, an automated tract-based analysis to investigate microstructural 

changes in white matter fiber tracts in children with ASD. We found decreased FA and 

increased MD and radial diffusion in our ASD compared to our TD group in numerous 

white matter tracts, suggesting widespread white matter compromise in ASD.

Each of the three affected diffusion measures is sensitive to complementary, but slightly 

different aspects of white matter compromise. While reduced FA and increased MD may 

reflect demyelination, axonal damage (Basser, 1995), or loss of white matter coherence 

(Basser and Pierpaoli, 1996; Werring et al., 2000a), increased radial diffusivity is more 

specifically considered a sensitive marker for demyelination (Song et al., 2005). No 

significant findings for axial diffusivity were found. This is consistent with previous ASD 

studies that included axial diffusivity measures, but failed to detect significant group 

differences (Alexander et al., 2007; Fletcher et al., 2010). Although axial diffusivity has 

been associated with axonal injury (Budde et al., 2009), significant differences in radial 

diffusivity without changes in axial diffusivity have been reported (Song et al., 2002) despite 

the fact that radial diffusivity is only about 30% of the magnitude of axial diffusivity (Song 

et al., 2003). Furthermore, the direction of the principal eigenvector associated with axial 

diffusivity may not always be preserved in pathological tissue and may not always be 

aligned with the underlying tissue architecture (i.e., may not reflect the predominant 

orientation of axons) (Field et al., 2004). Therefore, axial diffusivity may be a less sensitive 

marker of white matter abnormalities compared to other DTI indices.

Long-distance cortico-cortical white matter tracts including bilateral inferior longitudinal 

fasciculus, inferior fronto-occipital fasciculus, and superior longitudinal fasciculus showed 

reduced FA and increased MD and radial diffusion in ASD group. One previous study had 

also reported white matter compromise in ASD in inferior fronto-occipital fasciculus 

(Kumar et al., 2009). The inferior longitudinal fasciculus connects occipital lobe with 

parahippocampal gyrus and lateral temporal lobe and is thought to facilitate consolidation of 

visual memory as well as the attribution of emotional content in visual processing (Catani et 

al., 2003; Shinoura et al., 2007). Both the inferior longitudinal fasciculus and the inferior 

fronto-occipital fasciculus are visual pathways, specifically considered important for visual 

recognition and memory (Catani et al., 2002; Wakana et al., 2004). The superior 

longitudinal fasciculus connects frontal lobe to temporal and parietal lobes (Wakana et al., 

2004) and is important for information exchange between Broca’s and Wernicke’s areas 

(Paus et al., 1999). White matter compromise in the superior longitudinal fasciculus, as 

observed in the present study, may be associated with impaired functional connectivity 

between frontal and parietal lobes in ASD (Just et al., 2007; Koshino et al., 2005; Monk et 

al., 2009). These findings suggest that atypical functional connectivity may be associated 

with impaired anatomical connectivity.
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Related to our findings for the superior longitudinal fasciculus, Fletcher and colleagues 

(Fletcher et al., 2010) reported significantly increased MD and radial diffusion in the left 

arcuate fasciculus as well as atypical hemispheric asymmetry for these measures in 

adolescents with high-functioning autism, which the authors suggested may be related to 

language impairment in ASD. The arcuate fasciculus is a white matter fiber bundle that lies 

in the inferior portion of the superior longitudinal fasciculus, superior to the insula and 

extreme capsule, connecting cortical language regions such as Wernicke’s area in the 

posterior superior temporal gyrus, Broca’s area in the inferior frontal gyrus, and 

Geschwind’s area in the inferior parietal lobule (Catani et al., 2005; Fletcher et al., 2010).

In the corpus callosum, reduced FA and increased radial diffusion were observed in genu, 

body, and splenium, indicating global callosal impairment. Increased MD, however, was 

detected only in the splenium, which may suggest that white matter compromise may be 

slightly more pronounced in posterior callosal segments consistent with previous anatomical 

MRI findings (Alexander et al., 2007; Badaruddin et al., 2007; Egaas et al., 1995; Hardan et 

al., 2000; Vidal et al., 2006). Areas showing reduced FA in the ASD group included 

posterior midbody and isthmus of the corpus callosum, which likely contain 

interhemispheric connections for frontal and parietal regions (Schmahmann and Pandya, 

2006). Reduced diffusion anisotropy in damaged white matter areas such as corpus callosum 

may indicate disorganization or maldevelopment of projectional, commissural and 

association fibers associated with impairments in functional domains that rely on effective 

interhemispheric information transfer (Ewing-Cobbs et al., 2006; Werring et al., 2000b) 

such as reading, calculation and working memory (Ewing-Cobbs et al., 2006).

We also found reduced FA, as well as increased MD and radial diffusivity in the cingulum 

bundle, which is the most prominent tract connecting limbic system and cerebral cortex, 

particularly the cingulate gyrus (Choi et al., 2009). The anterior cingulum is known to play 

an important role in executive control of attention, while the posterior cingulum has spatial 

attention and orienting functions (Hirono et al., 1998; Small et al., 2003). Deterioration in 

these regions may be related to executive dysfunction (Hill, 2004) and social attention 

impairments (Dawson et al., 2004) seen in ASD.

Cortico-subcortical white matter tracts were also found to be compromised. The posterior 

part of the internal capsule contains a number of white matter tracts, including posterior 

thalamic radiation, superior longitudinal fasciculus, inferior longitudinal fasciculus, and 

inferior fronto-occipital fasciculus (Schmahmann and Pandya, 2006). Abnormalities in the 

right posterior limb of the internal capsule, as observed here and in other studies (Brito et al., 

2009; Keller et al., 2007), may be associated with motor and sensory deficits due to 

compromised fronto-thalamic pathways (Schmahmann and Pandya, 2006). Reduced 

structural integrity of this region in the ASD group may therefore affect long-range 

communication in the right hemisphere among a large number of cortical regions including 

frontal, parietal, temporal, and occipital areas. Furthermore, changes in white matter 

underlying the left central sulcus and in the posterior limb of the internal capsule could 

reflect loss of integrity of fibers belonging to corticospinal tracts crucial for somatosensory 

and tactile sensation (Schmahmann and Pandya, 2006). White matter abnormalities in the 
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corticospinal tracts have also been observed in a previous study by Brito and colleagues 

(2009).

Our findings of age-related increases in FA and decreases in MD suggest continued white 

matter maturation during later childhood and adolescence in typically developing children, 

consistent with previous studies (Alexander et al., 2007; Ben Bashat et al., 2007; Lee et al., 

2007). In contrast, ASD participants failed to show significant age-related changes for either 

FA or MD. This pattern of findings is mostly consistent with those from Alexander et al. 

(2007). However, these latter investigators were able to detect a correlation between MD 

and age in both their autism and control groups. This difference in findings may relate to a 

comparatively wider age range (7–33 years) in the ASD group studied by Alexander and 

colleagues.

Two other ASD studies have reported correlations between age and DTI measures. Pugliese 

et al. (2009) found overall similar age-related decreases in MD for several limbic pathways 

in a group with Asperger’s disorder compared with healthy controls, but failed to detect 

significant correlations between age and FA. Since this study included participants in a 

much wider age range than ours, from 9 to 54 years, age-dependent effects of adolescent 

development may have been compounded with aging effects in participants older than 40 

years. Examining participants between the ages of 7 and 33 years, Lee et al. (2007) reported 

increase of FA with age in a TD control group, but not in participants with ASD, for 

superior temporal white matter; however, decreases in MD and radial diffusion with age 

were found for both groups. Our findings, together with those from previous studies, suggest 

that age-dependent white matter changes in school-age children and adolescents with ASD 

are similar in direction (increasing FA, decreasing MD and radial diffusion) compared to 

those in typical development, but diminished and affected by greater variability. Strong 

cognitive and neurofunctional variability has been previously reported (Bertoglio and 

Hendren, 2009; Müller et al., 2003) and may be attributed to the known heterogeneity of the 

disorder (Geschwind and Levitt, 2007; Happé et al., 2006).

In a recent TBSS study, Cheng et al. (2010) remarkably reported numerous tracts with 

greater FA in adolescents with ASD, compared to a TD group, whereas only few sites of 

decreased FA were identified. These results are not only largely inconsistent with our 

findings, but also with the existing DTI literature in older children, adolescents and adults 

with ASD, which has exclusively reported reduced FA (Alexander et al., 2007; Barnea-

Goraly et al., 2004; Brito et al., 2009; Catani et al., 2008; Ke et al., 2009; Keller et al., 2007; 

Lee et al., 2007; Pardini et al., 2009; Thakkar et al., 2008). Partially divergent findings have, 

to our knowledge, been limited to younger children (Cheung et al., 2009; Kumar et al., 

2009; Sundaram et al., 2008) and infants (Ben Bashat et al., 2007). Although our results 

strongly diverge from those reported by Cheng et al. (2010), we are therefore confident that 

they are representative of white matter compromise in school-age children and adolescents 

with ASD, given the broad consistency with previous studies.

While whole brain and ROI-based studies of white matter in ASD have been carried out in a 

number of studies (Alexander et al., 2007; Barnea-Goraly et al., 2004; Ben Bashat et al., 

2007; Brito et al., 2009; Catani et al., 2008; Cheung et al., 2009; Ke et al., 2009; Keller et 
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al., 2007; Lee et al., 2007; Pardini et al., 2009; Sundaram et al., 2008; Thakkar et al., 2008), 

only few have presented tract-based analyses (Cheng et al., 2010; Kumar et al., 2009; 

Pugliese et al., 2009). TBSS is a tract-based technique that optimizes spatial normalization 

and permits exploratory analyses without the need for a priori ROI selection, which is 

beneficial in ASD research, given that the pattern of tract-specific impairments in this 

disorder is not fully understood. Our findings suggest that white matter compromise in ASD 

is robust across a large number of fiber tracts, and can be identified by reduced FA as well 

as increased MD and radial diffusion for most of these. Our results therefore indicate that 

ASD is not a disorder characterized by dysfunction of one or a few functional networks, but 

by white matter abnormalities affecting many or almost all networks. In view of the high 

general functional level of our ASD cohort, with mean IQ above 100, such widespread white 

matter compromise is remarkable, possibly suggesting compensatory processes undetected 

by DTI measures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key points

• Previous DTI studies have shown white matter compromise in ASD; however, 

tract-specific evidence remains limited.

• In this study, we applied an unbiased whole-brain quantitative estimation of DTI 

indices of the white matter tracts in children and adolescents with ASD.

• Results indicate compromised white matter integrity in the ASD group in 

several major fiber tracts. In tracts for which significant group differences were 

detected, age was positively correlated with FA and negatively correlated with 

MD and radial diffusion in the TD, but not the ASD group.

• Our findings reveal white matter compromise affecting numerous tracts in 

children and adolescents with ASD. Age-dependent effects further suggest that 

maturational changes are diminished in ASD from school-age childhood into 

young adulthood.
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Figure 1. 
Tract-based spatial statistics (TBSS) revealed regions of reduced FA (A), increased MD (B) 

and radial diffusion (C) in children with ASD compared to the TD group. Red color 

symbolizes significant voxels at p<.05 (corrected for multiple comparisons at cluster level). 

Mean skeleton of detected fiber tracts is overlaid in green on standard T1-weighted 

anatomical image). Abbreviations are: ilf: Inferior longitudinal fasciculus, ifo: Inferior 

fronto-occipital fasciculus, slf: Superior longitudinal fasciculus, cs: Corticospinal tract, cing: 

Cingulum, bcc: Body of corpus callosum, gcc: Genu of corpus callosum, scc: Splenium of 

corpus callosum, aic: Anterior internal capsule, pic: Posterior internal capsule, ec: External 

capsule, fmajor: Forceps major, acr: Anterior corona radiate, scr: Superior corona radiate, 

atr: Anterior Thalamic Radiation, uf: Uncinate fasciculus.
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Figure 2. 
Pearson correlation analyses between age and FA (A), MD (B) and radial diffusion (C) for 

all detected tracts in whole brain white matter skeleton in ASD and TD groups. (*, p<.05).
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Figure 3. 
Pearson correlation analyses between age and FA, MD and radial diffusion of white matter 

tracts in ASD and TD groups. (*, p<.05; uncorrected).
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Table 1

Demographic data.

ASD (n = 26) TD (n = 24)

Mean (sem)
Range

Mean (sem)
Range

Age (years) 12.8 (0.6)
9–20

13.0 (0.6)
9–19

Verbal IQ 104.3 (3.4)
71–147

108.2 (2.6)
74–130

Nonverbal IQ 108.8 (3.3)
69–140

110.3 (2.5)
85–129

Handedness 23 right, 3 left 22 right, 2 left

J Child Psychol Psychiatry. Author manuscript; available in PMC 2015 August 24.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shukla et al. Page 18

T
ab

le
 2

T
B

SS
 f

in
di

ng
s 

fo
r 

th
e 

A
SD

 g
ro

up
 a

nd
 g

ro
ss

 c
ha

ra
ct

er
iz

at
io

n 
an

d 
fu

nc
tio

na
l r

ol
e 

of
 m

aj
or

 w
hi

te
 m

at
te

r 
fi

be
r 

tr
ac

ts

T
ra

ct

F
in

di
ng

s 
fo

r 
A

SD
 g

ro
up

G
ro

ss
 c

ha
ra

ct
er

iz
at

io
n

F
A

M
D

R
ad

ia
l D

if
fu

si
on

In
fe

ri
or

 lo
ng

itu
di

na
l f

as
ci

cu
lu

s
↓

↑
↑

C
on

ne
ct

s 
vi

su
al

 c
or

te
x 

in
 th

e 
oc

ci
pi

ta
l l

ob
e 

to
 th

e 
te

m
po

ra
l p

ol
e

In
fe

ri
or

 f
ro

nt
o-

oc
ci

pi
ta

l f
as

ci
cu

lu
s

↓
↑

↑
C

on
ne

ct
s 

fr
on

ta
l l

ob
e 

to
 o

cc
ip

ita
l a

nd
 te

m
po

ra
l l

ob
es

Su
pe

ri
or

 lo
ng

itu
di

na
l f

as
ci

cu
lu

s
↓

↑
↑

C
on

ne
ct

s 
fr

on
ta

l l
ob

e 
to

 te
m

po
ra

l a
nd

 p
ar

ie
ta

l l
ob

es

C
in

gu
lu

m
↓

↑
↑

C
on

ne
ct

s 
th

e 
lim

bi
c 

lo
be

 w
ith

 n
eo

co
rt

ex

G
en

u 
of

 c
or

pu
s 

ca
llo

su
m

↓
n.

s.
↑

Pr
ov

id
es

 in
te

rh
em

is
ph

er
ic

 c
on

ne
ct

io
ns

 b
et

w
ee

n 
fr

on
ta

l r
eg

io
ns

B
od

y 
of

 c
or

pu
s 

ca
llo

su
m

↓
n.

s.
↑

Pr
ov

id
es

 in
te

rh
em

is
ph

er
ic

 c
on

ne
ct

io
ns

 b
et

w
ee

n 
pa

ri
et

al
 r

eg
io

ns

Sp
le

ni
um

 o
f 

co
rp

us
 c

al
lo

su
m

↓
↑

↑
Pr

ov
id

es
 in

te
rh

em
is

ph
er

ic
 c

on
ne

ct
io

ns
 b

et
w

ee
n 

po
st

er
io

r 
pa

ri
et

al
 a

nd
 o

cc
ip

ita
l r

eg
io

ns

A
nt

er
io

r 
lim

b 
of

 in
te

rn
al

 c
ap

su
le

↓
↑

↑
C

on
ta

in
 a

sc
en

di
ng

 a
nd

 d
es

ce
nd

in
g 

ax
on

s

Po
st

er
io

r 
lim

b 
of

 in
te

rn
al

 c
ap

su
le

↓
↑

↑

E
xt

er
na

l c
ap

su
le

n.
s.

↑
↑

C
on

ne
ct

s 
ve

nt
ra

l a
ss

oc
ia

tio
n 

ar
ea

s 
to

 th
e 

pu
ta

m
en

 a
nd

 ta
il 

of
 th

e 
ca

ud
at

e 
nu

cl
eu

s

C
or

tic
os

pi
na

l t
ra

ct
↓

↑
↑

C
on

ta
in

s 
m

ot
or

 a
xo

ns

U
nc

in
at

e 
fa

sc
ic

ul
us

n.
s.

↑
↑

C
on

ne
ct

s 
pa

rt
s 

of
 th

e 
lim

bi
c 

sy
st

em
 s

uc
h 

as
 h

ip
po

ca
m

pu
s 

an
d 

am
yg

da
la

 in
 th

e 
te

m
po

ra
l l

ob
e 

w
ith

 th
e 

or
bi

to
fr

on
ta

l c
or

te
x

A
nt

er
io

r 
th

al
am

ic
 r

ad
ia

tio
n

↓
↑

↑
C

on
ne

ct
s 

do
rs

om
ed

ia
l a

nd
 a

nt
er

io
r 

th
al

am
ic

 n
uc

le
i w

ith
 th

e 
pr

ef
ro

nt
al

 c
or

te
x

(n
.s

. n
ot

 s
ig

ni
fi

ca
nt

).

J Child Psychol Psychiatry. Author manuscript; available in PMC 2015 August 24.


