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Abstract

Neurons in the medullary raphe are critical to opioid analgesia through descending projections to 

the dorsal horn. Work in anesthetized rats led to the postulate that nociceptive suppression results 

from tonic activation of nociceptive-inhibiting neurons and tonic inhibition of nociceptive-

facilitating neurons. However, morphine does not cause tonic changes in raphe neuronal firing in 

unanesthetized rodents. Recent work suggests that a drop in activity of nociceptive-inhibiting 

neurons synchronizes nociceptive circuits and a burst of activity in nociceptive-facilitating 

neurons facilitates withdrawal magnitude. After morphine, the phasic responses of raphe cells are 

suppressed along with nociceptive withdrawals. The results suggest a new model of brainstem 

modulation of nociception in which the medullary raphe facilitates nociceptive reactions when 

noxious input occurs and may modulate other functions between injurious events.

Endogenous pain modulation operates through descending pathways from the brainstem that 

modulate nociceptive transmission within the spinal cord (reviewed in 1-3). Neurons within 

the raphe magnus and adjacent ventromedial reticular formation (collectively termed the 

rostral ventromedial medulla or RVM here) provide a major final common pathway for 

modulatory influences on the spinal cord arising from brainstem and forebrain areas. RVM 

neurons project to the superficial dorsal horn and intermediate gray and their activation 

modulates the activity and responses of nociceptive dorsal horn neurons. The pathway 

through RVM contributes significantly to systemic opioid analgesia and is necessary for 

supraspinal opioid analgesia [4]. This review focuses on an emerging reformulation of how 

RVM neurons participate in the modulation of nociceptive responsiveness.

In the early 1980s, Howard Fields and co-workers recorded the activity of RVM neurons in 

anesthetized rats during the heat-evoked tail flick [5]. The tail flick is a ballistic movement 

that removes the tail, after a few seconds, from a noxious stimulus and is thus analogous to 

the nociceptive flexor withdrawal reflex of the limbs. Fields and co-workers physiologically 

defined two classes of medullary neurons by their discharge during the heat-evoked tail 

flick. They hypothesized that these two neuronal classes were critical to both nociception 

and antinociception, the latter elicited either by opioid administration or midbrain 

stimulation (reviewed in 1). A large body of work from Fields’s and others’ laboratories led 
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to the elaboration of a cellular model for RVM-mediated analgesia and eventually to a 

proposed mechanism for producing hyperalgesia as well [3, 6-7]. The circuit model 

proposed by Fields has been extraordinarily heuristic particularly in spurring advances in 

our understanding of the behavioral and pharmacological mechanisms involved in 

descending nociceptive modulation. Progress on understanding how physiological discharge 

patterns support RVM-mediated nociceptive modulation has been more measured and until 

recently, has been made primarily within the context of the anesthetized rodent. As 

highlighted in this review, physiological recordings from single units in RVM, particularly 

in unanesthetized rodents, challenge several specific components of the existing model and 

constrain future hypotheses.

The current model postulates that the tonic discharge of RVM cells 

modulates nociceptive state

The two RVM cell classes with putative nociceptive modulatory effects are termed ON and OFF 

cells. The definition and name of ON cells derive from this cell class’s consistent excitatory 

response to superficial noxious stimulation [5]. Similarly, OFF cells are defined by the pause 

in their discharge in response to superficial noxious stimulation. In the initial description, an 

analogy was made between OFF cells and the omnipause neurons of the paramedian pontine 

reticular formation, presciently highlighting the putative importance of the OFF cell pause in 

phasically gating movement through disinhibition [5]. Yet, as described below, it was the 

tonic responses of ON and OFF cells to an analgesic dose of morphine in anesthetized rats that 

ultimately lent salience to the classification scheme and received the most attention [8-9].

Without question, the tonic effects of opioids on ON and OFF cell discharge are dramatic in the 

anesthetized rat. On cells stop firing and OFF cells fire continuously after administration of an 

opioid at any dose and by any route that suppresses nociceptive withdrawals [see for 

example 10-13]. The robust and consistent finding that opioids change the tonic firing of ON 

and OFF cells led to the suggestion that the tonic discharge of ON and OFF cells mediates RVM 

modulation of nociception. In this formulation, continuous ON cell firing produces a state of 

heightened sensitivity to noxious stimulation, termed hyperalgesia, and continuous OFF cell 

firing depresses the sensitivity to noxious stimulation, termed antinociception (Fig. 1A). 

Beyond the tonic responses of RVM cells to opioid administration, additional findings 

support the interpretation that tonic RVM discharge produce states of nociceptive 

responsiveness. First, withdrawal latency appears to be a function of the tonic discharge 

pattern at the time of stimulus application [14]. Withdrawals occur at a shorter latency, 

reflective of greater nociceptive sensitivity, when ON cells are at peak firing rates and OFF cells 

relatively inactive at the time of noxious stimulation (Fig. 1B). Conversely, when noxious 

stimulation is applied while OFF cells are at peak firing rates and ON cells inactive, withdrawals 

occur at a long latency or not at all. Second, the tonic discharge rate of ON cells is elevated 

during the hyperalgesia associated with acute, naloxone-precipitated opioid withdrawal [15]. 

In sum, the strong association between tonic RVM cell activity and nociceptive sensitivity in 

anesthetized rats supports nociceptive-facilitating and -inhibiting roles for the tonic 

discharge of ON and OFF cells, respectively.
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Because of the tonic response to opioids in anesthetized rats, a shorthand developed. A drug 

or manipulation that excites the tonic firing of OFF cells and inhibits the tonic firing of ON cells 

is potentially antinociceptive whereas a drug or manipulation with the reverse effect is 

expected to produce hyperalgesia. There is indirect evidence in support of the tonic model of 

RVM nociceptive modulation. Since ON but not OFF cells are directly sensitive to mu opioid 

receptor agonists (such as dermorphin) [12], dermorphin-conjugated saporin is thought to 

selectively kill RVM ON cells. According to the shorthand then, injection of dermorphin-

saporin into RVM should prevent the development of hyperalgesia. Indeed, dermorphin-

saporin lesions of RVM prevent the development of several types of hyperalgesia, including 

the neuropathic variety following nerve injury [6, 16]. The interpretation of such studies is 

that without ON cells, there can be no tonic ON cell output and consequently RVM-mediated 

hyperalgesia cannot and does not occur. Tempering the weight ascribed to these findings is 

evidence that dermorphin-conjugated saporin decreases the number of both ON and OFF cells in 

RVM rather than simply excising the ON cell population as intended [17].

RVM ON and OFF cells act through phasic rather than tonic modulation of 

nociception

The first attempt at determining whether opioids act similarly on RVM ON and OFF cells in the 

absence of general anesthesia as in the presence of general anesthesia came when Jean-Louis 

Oliveras and colleagues recorded the activity of RVM cells in the awake rat before and after 

morphine [18]. In this study, only cells with ON-like responses to somatosensory stimulation 

(hereafter referred to as simply ON cells) were studied; no OFF-like cells were isolated 

(presumably because rats were not permitted to enter sleep, the behavioral state when OFF 

cells are primarily active; 19). In response to morphine, the tonic activity of ON cells in the 

awake rat did not change. However, ON cell responses to noxious stimulation were 

suppressed by morphine. These results, reported two decades ago, raised serious concerns 

about the tonic model of RVM nociceptive modulation introduced in the early 1980s and 

dominant to this day. Despite the clear inconsistency of the results from Martin et al [18] 

with the idea that tonic changes in ON and OFF cell discharge produce antinociception, this 

work in awake rat has been largely ignored for the past 20 years. In fact, several recent 

reviews on RVM failed to cite this work while advancing the traditional, tonic model of 

RVM ON and OFF cell function.

Recently, we confirmed and extended the results of Martin et al [18]. We recorded from 

both ON and OFF cells in unanesthetized mice who cycled through wake and sleep states [20••]. 

Morphine suppressed the noxious stimulus-evoked responses of both cell classes while 

producing no change in background discharge rates. Thus, morphine suppressed the ON cell 

burst and OFF cell pause elicited by noxious heat. The same depression of noxious stimulus-

evoked responses coupled with no change in background discharge observed in 

unanesthetized rodents is also found in the anesthetized mouse [21]. Therefore, in both 

unanesthetized and anesthetized rodents, phasic responses of RVM ON and OFF cells to noxious 

stimulation are suppressed by opioids. In contrast to their consistent effects on evoked 

responses, opioids alter the tonic discharge of ON and OFF cells only in the anesthetized rat 

preparation.
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The finding that opioids do not alter the tonic discharge of RVM cells in unanesthetized 

rodents shows that RVM modulates nociception on a phasic basis rather than producing 

tonic states of nociceptive responsiveness. In sum, RVM cells modulate nociceptive events 

on an on-demand basis, only in concert with incoming nociceptive input1.

A phasic decrease in OFF cell discharge times withdrawal onset

The studies reviewed above show that tonic OFF cell discharge is not necessary for 

antinociception. Striking evidence that tonic OFF cell activity is also insufficient for 

antinociception comes from the finding that background OFF cell discharge is greater before 

noxious stimulus trials that result in withdrawals than before those that do not produce 

withdrawals in the unanesthetized mouse [20••]. The observation of greater OFF cell activity 

before responding trials than before non-responding trials is frankly inconsistent with the 

tonic model described above which predicts that greater OFF cell activity should lead to 

decreased nociceptive responses (Fig. 1B). Furthermore, since OFF cells always pause in 

response to noxious stimulation that elicits a withdrawal, we can hypothesize that 

withdrawals are facilitated when OFF cells are both active prior to the noxious stimulus 

application and silenced by the noxious stimulus. According to this model, a decrease in OFF 

cell activity, rather than a lack of OFF cell activity, is key to OFF cells’ providing pronociceptive 

modulation (Fig. 2A). A sharp decrease in the discharge of an inhibitory input can result in 

post-inhibitory rebound excitation of a post-synaptic cell and is a common mechanism for 

synchronizing motor reactions [22-23]. Thus, rather than OFF cell silence simply serving a 

permissive role, it is likely that the decrease in OFF cell firing, the pause, provides a 

pronociceptive signal that synchronizes and therefore strengthens ensuing motor circuits in 

the spinal cord. This idea is both too new and sufficiently counter to the current model’s 

predictions that it has not been tested specifically. However, one study provides suggestive 

evidence in support. In the anesthetized rat, the magnitude of the OFF cell decrease in 

discharge elicited by noxious tail heat was greater in trials resulting in a withdrawal than in 

trials without a motor reaction [24].

The ON cell burst facilitates withdrawal magnitude and its absence is key to 

antinociception

Converging evidence suggests that the ON cell burst in response to noxious stimulation 

positively sculpts motor withdrawals (Fig. 2B). In support of this idea, the envelope of the 

fully rectified electromyographic response closely resembles the envelope of the noxious 

stimulus-evoked ON cell burst in both anesthetized and unanesthetized rodent [20••, 24]. 

Further, the peak magnitude of the EMG response correlates with the peak of the ON cell 

burst [20••]. The attenuation of hyperalgesic withdrawals after dermorphin-saporin treatment 

of the RVM lends indirect support to the importance of ON cell activation in facilitating 

nociceptive withdrawals (reviewed in 7). These findings suggest that ON cells strongly 

facilitate motor withdrawals elicited by noxious stimulation.

1To a certain extent, this assertion suffers from the same uncertainty as does the question of the tree falling in the empty forest. In 
other words, asking whether a state of analgesia exists in the absence of noxious stimulation is akin to asking whether the 
aforementioned tree makes a sound when it falls.
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It now appears that ON cell facilitation of nociception is sufficiently effective that a reduction 

in ON cell activity, even in the absence of OFF cell activation, can produce antinociception. For 

example, midbrain administration of the endocannabinoid palmitoylethanolamide (PEA) 

suppresses ON cell discharge without activating OFF cells and causes a significant increase in 

the latency to the tail flick withdrawal; withdrawal magnitude was not measured in this 

study [25•]. Similarly, morphine administration to unanesthetized mice that resulted in 

antinociception suppressed ON cell responses to noxious stimulation without producing tonic 

activation of OFF cells [20••]. In light of these results, it is particularly instructive to consider 

the sequelae resulting from microinjection of kynurenate into RVM. Kynurenate blocks the 

excitatory response of ON cells to noxious stimulation and depresses ON cell background 

activity but does not alter the background activity of OFF cells or the length of the OFF cell 

pause [26]. Notably kynurenate microinjection has no effect on tail flick latency. The 

finding that kynurenate has no effect on withdrawal onset is predicted by the absence of a 

change in OFF cell firing. The behavioral prediction stemming from kynurenate’s reduction in 

the ON cell burst is a withdrawal of greatly reduced magnitude. Indeed, kynurenate 

microinjection greatly reduces movement magnitude in the stimulated limb and even more 

so in the other 3 limbs [27].

In conclusion, antinociception can result from the suppression of phasic rather than tonic ON 

cell discharge. In support of this idea, morphine administration to unanesthetized rodents 

suppresses ON cell bursts without either activating OFF cells or inhibiting ON cells tonically [18, 

20••]. The time course of PEA-induced antinociception matches that of the reduction in ON 

cell burst and precedes the decrease in tonic ON cell discharge [25•]. Thus, a reduction in the 

ON cell burst is sufficient, by itself, to greatly reduce nociceptive responses.

The neurochemistry of ON and OFF cell-mediated nociceptive modulation 

remains a challenge

The connectivity and neurotransmitters involved in the hypothesized OFF cell synchronization 

of dorsal horn circuits through disinhibition and ON cell facilitation of those same circuits are 

unclear. Although serotonin is clearly an important player in spinal nociceptive modulation 

[3], neither ON nor OFF cells contain serotonin [28-30]. Direct inhibition of dorsal horn neurons 

by OFF cells is certainly possible as most OFF cells contain GAD, the synthesizing enzyme for 

GABA [30]. Surprisingly, most ON cells also contain GABA, a result which is harder to 

easily reconcile with the hypothesized facilitatory actions of ON cells on dorsal horn neurons. 

Whereas net facilitation can result from disinhibition, the primary post-synaptic elements in 

the dorsal horn targeted by RVM cells are non-GABAergic dendrites, making ON cell 

inhibition of an inhibitory interneuron unlikely [31•].

Implications of phasic rather than tonic RVM-mediated modulation

The data reviewed above suggest that RVM cells do not produce tonic states of nociceptive 

responsiveness but rather that they modulate nociceptive responsiveness if and when the 

need should arise. The restriction of RVM cells’ serving a nociceptive modulatory function 

to periods of injury means that RVM cells may perform other functions when no noxious 

stimulus is present. That ON and OFF cells do contribute to functions beyond nociceptive 
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modulation is supported by their discharge patterns. Even in the absence of intentional 

somatic stimulation and in the relatively constant conditions of light anesthesia, ON and OFF 

cells discharge in bursts alternating with silent periods [32-33]. On and OFF cells in 

unanesthetized animals also discharge spontaneously in irregular patterns of bursting and 

silence [19, 34]. In fact without knowing the times of noxious stimulus application, 

discriminating between a stimulus-evoked change in discharge and a change in discharge 

that occurred “spontaneously” is impossible. Thus, inputs unrelated to nociception influence 

ON and OFF cell discharge. Some of these non-nociceptive inputs are known; for example, 

blood pressure changes [35], sleep-wake state [19], active body movements [36-37], voiding 

[38], and eating [39] all influence RVM cell discharge. It is likely that additional non-

nociceptive variables influence RVM cell discharge as well.

Despite their discharge being influenced by non-nociceptive inputs, RVM cells may have 

only one efferent function: nociceptive modulation. For example, the sleep-active discharge 

pattern exhibited by OFF cells [26] may act to modulate nociception in accordance with 

behavioral state rather than to modulate behavioral state per se. On the other hand, RVM 

cells may modulate non-nociceptive as well as nociceptive functions. For example, indirect 

evidence suggests that ON cells facilitate the response to cold challenge by facilitating both 

tail vasoconstriction [40••] and thermogenesis from brown adipose tissue [41]. A major 

challenge for the future is a full understanding of how and if individual ON and OFF cells 

influence nociceptive and non-nociceptive functions alike.
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Highlights

• opioid analgesia depends on descending modulation from the medullary raphe

• opioids produce analgesia without altering the tonic discharge of medullary 

neurons

• normally, phasic neuronal responses of brainstem cells facilitate nociception

• morphine produces analgesia by blocking the phasic responses of brainstem 

cells

• brainstem cells may modulate non-nociceptive functions during pain-free 

periods
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Figure 1. 
The tonic model of descending nociceptive modulation posits that different patterns of tonic 

activity in RM cells produce different states of nociceptive responsiveness. A: On cells tend 

to fire together as do OFF cells whereas ON (middle trace) and OFF cells (top trace) show 

reciprocal patterns of tonic activity. According to the model, ON cell activity combined with 

OFF cell inactivity produces an elevation in nociceptive responsiveness (bottom trace) that is 

marked by short withdrawal latencies (diamonds). In contrast, OFF cell activity combined with 

ON cell inactivity depresses nociceptive responsiveness so that withdrawals occur at long 

latencies or not at all. B: According to the tonic model of RM nociceptive modulation, the 

pattern of tonic discharge in ON and OFF cells (top two traces), just prior to noxious stimulation 

(marked heat stimulus), determines the ensuing withdrawal (WD) latency. If noxious 

stimulation is applied when OFF cells are active and ON cells inactive (solid lines), 

antinociception, marked by a long withdrawal latency, results. In contrast, if noxious 

stimulation is applied when ON cells are active and OFF cells inactive (dashed lines), 

Mason Page 10

Curr Opin Neurobiol. Author manuscript; available in PMC 2015 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hyperalgesia, marked by a short withdrawal latency, results. In this way, the withdrawal 

latency is expected to be directly proportional to the tonic level of OFF cell discharge prior to 

the stimulus (graph at right) and inversely proportional to pre-stimulus ON cell discharge (not 

shown).
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Figure 2. 
The phasic model proposes modulatory roles for the responses of ON and OFF cells evoked by 

noxious stimulation. A: In the phasic model proposed here, the greater the magnitude of the 

decrease in OFF cell discharge (top trace) elicited by noxious stimulation, the greater the 

synchronization of the withdrawal, leading in turn to a larger withdrawal magnitude (bottom 

trace labeled WD). A large evoked decrease in OFF cell activity is associated with a rapidly 

rising, large magnitude withdrawal whereas a small evoked decrease in OFF cell activity is 

associated with a slowly rising, low magnitude withdrawal or no withdrawal at all (not 

shown). B: The ON cell burst (top trace) evoked by noxious stimulation is proposed to sculpt 

the ensuing withdrawal, with larger bursts associated with larger magnitude withdrawals.
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