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Abstract

African trypanosomiasis, otherwise known as sleeping sickness in humans and nagana in animals, 

is a parasitic protist passed cyclically by the tsetse fly. Despite more than a century of control and 

eradication efforts, the fly remains widely distributed across Africa and coextensive with other 

prevalent diseases. Control and planning are hampered by spatially and temporally variant vector 

distributions, ecologically irrelevant boundaries, and neglect. Tsetse are particularly well suited to 

move into previously disease-free areas under climate change scenarios, placing unprepared 

populations at risk. Here we present the modeling framework ATcast, which combines a 

dynamically downscaled regional climate model with a temporally and spatially dynamic species 

distribution model to predict tsetse populations over space and time. These modeled results are 

integrated with Kenyan population data to predict, for the period 2050 to 2059, exposure potential 

to tsetse and, by association, sleeping sickness and nagana across Kenya.

Keywords

climate change; Kenya; risk projection; spatial models; tsetse

African trypanosomiasis (AT), a neglected tropical disease, is a zoonotic, parasitic infection 

of wildlife, domesticated animals, and humans. Its causative agents (parasites of the 

Trypanosoma brucei species complex) are transmitted by the bite of the tsetse fly (genus 

Glossina). Approximately 8.5 million km2 in thirty-seven sub-Saharan Africa countries are 

infested with tsetse (Allsopp 2001), resulting in approximately 70 million people with 

exposure risk (World Health Organization [WHO] 2010). Two major epidemics occurred in 

Correspondence: Department of Geography, Michigan State University, East Lansing, MI 48824, jpm@msu.edu (Messina); 
moorena@msu.edu (Moore); devisse6@msu.edu (DeVisser); mccordpa@msu.edu (McCord); Department of Entomology, Michigan 
State University, East Lansing, MI 48824, walker@msu.edu (Walker). 

HHS Public Access
Author manuscript
Ann Assoc Am Geogr. Author manuscript; available in PMC 2015 August 25.

Published in final edited form as:
Ann Assoc Am Geogr. 2012 ; 102(2): 1038–1048. doi:10.1080/00045608.2012.671134.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the first half of the twentieth century, one between 1896 and 1906 and the other in 1920 

(WHO 2010). By the mid-1960s, human African trypanosomiasis (HAT) appeared to be 

under control. By the mid-1970s, however, HAT reemerged due to a breakdown in 

surveillance and control programs compounded by drug resistance, genetic changes in the 

parasite, civil conflict, and anthropogenic (land use and cover changes) and natural (climate) 

environmental change. In the mid-1990s it was estimated that at least 300,000 cases were 

underreported due to lack of surveillance capabilities, diagnostic expertise, and health care 

access (WHO 2010). In response to these limitations, the WHO, with public and private 

partnerships, initiated a new surveillance and elimination program, under which 

approximately 25,000 new cases were reported with an annual estimated rate of 50,000 to 

70,000 cases (Weekly Epidemiological Record 2006). In 2010, the number of reported 

human cases of the disease dropped to 7,131, leading some to hope for eventual complete 

control of the human disease complex (WHO 2011). The disease is also considered one of 

the most important economically debilitating diseases in sub-Saharan Africa, with animal 

African trypanosomiasis (AAT) reducing livestock productivity by 20 percent to 40 percent 

in tsetse areas (Hursey 2001). In Kenya, where agriculture accounts for roughly a quarter of 

gross domestic product, the economic burden of African trypanosomiasis is acutely felt at 

both local and national scales (Bourn et al. 2001).

We hypothesize that climate change and anthropogenic activity combine to modify the 

environment to enhance or degrade habitat suitability for tsetse. We know that tsetse occupy 

environmental niches in Kenya that, based on existing biophysical data, they should not, and 

we know that tsetse are missing from areas in Kenya where they should exist in large and 

stable populations. These findings make cost-effective surveillance, control, and 

intervention efforts extremely difficult and traditional epidemiological prediction almost 

impossible. Many studies of tsetse exist (cf. Welburn, Maudlin, and Simarro 2009), but there 

are no disease vector studies that integrate fundamental niche models, species movement 

models, and climate change data. Some studies for other vectors have shown promise (i.e., 

Peterson [2009] for malaria; González et al. [2010] for leishmaniasis), but validation is 

largely limited to existing data sets (Kulkarni, Desrochers, and Kerr 2010) and often only 

linked to temporally static, biophysical variables. Although consistently reported to be 

important, few studies have empirically linked human activities, ecological stressors, vector 

responses, and disease emergence interacting at multiple spatio-temporal scales. In response, 

we quantify systematically the space–time distribution of tsetse across Kenya and 

deterministically predict the changing tsetse distributions expected to emerge with a 

changing climate. Future tsetse distributions are then placed and discussed within the social 

framework of Kenya.

Tsetse Control

Today, the international public health strategy for many vector-borne diseases has changed 

from eradication to ecological perspective vector control (Torr, Hargrove, and Vale 2005; 

Ferguson et al. 2010). A wide variety of techniques exist to control tsetse populations, 

including insecticide spraying, wild host culling, and land cover modification. The 

combination of ineffective application, emergent resistance, and environmental concerns, 

however, motivated the search for alternative strategies (Grant 2001). The sterile insect 
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technique, one such alternative that has received widespread publicity for controlling tsetse 

in Zanzibar, has been ineffective in other locations. Anthropogenic landscape modification 

(autonomous control) involves the removal of tsetse habitat through the natural expansion of 

human settlement and cropland. This indirect method of control is the most effective and 

least expensive of the land clearing methods; however, it is difficult to quantify the extent to 

which tsetse habitat is reduced and it is not a practical policy solution (Bourn et al. 2001). 

The most frequently used ecologically friendly techniques are point-source control methods, 

which attract the flies with a combination of visual and odor cues to traps or targets (Leak, 

Ejigu, and Vreysen 2008). Although cost effective, widespread implementation of point-

source control methods has been difficult and never effective over the long term. In East 

Africa, governments generally lack the infrastructure to manage and sustain the traps over 

large, diffuse affected areas and often situate traps or targets with only anecdotal evidence of 

tsetse presence (Hide 1999).

Tsetse and Trypanosomiasis in Kenya

Eight species of tsetse are found in Kenya, covering roughly 25 percent of Kenya’s land 

area, including 60 percent of productive rangeland. Tsetse occupy diverse habitats in distinct 

“fly belts”: the North and South belts near Mt. Kenya, the South Rift, Lake Victoria basin, 

Central Kenya, Trans Mara-Narok, and the Coastal belts. These belts are infested with one 

or more tsetse species with distributional limits that are set by intersections of physical, 

biological, and anthropogenic boundaries (Ford 1971). The most common habitats are 

riparian vegetation and woody savannah. Typical environmental limits for tsetse are day 

temperatures below 17°C and above 36°C, annual rainfall less than 300 mm, and lack of 

suitable resting sites (Jordan 1986; Terblanche et al. 2008). Different tsetse fly species can 

coexist in the same areas, making it difficult to assess quickly the causative agent in human 

or animal epidemics (Hide 1999). Tsetse flies are one of the few insect K-strategists, with 

long life expectancy (average of ninety days per female), high survival rates (>90 percent 

daily survivorship in adults), and low reproduction rates of one live pupa deposited in a 

suitable soil every six to nine days. The tsetse fly vector carries the parasites to different 

animal hosts, allowing cyclical transmission, but the primary animal reservoirs are wild 

ungulates and domestic cattle. Humans might also contribute to the reservoir pool (WHO 

2010), and both animals and humans contribute to Trypanosoma genetic exchange (Hide 

1999). Taxonomically, tsetse exist as three distinct clades. We focus on the morsitans or 

savannah group.

Methods

Our modeling environment, ATcast (for African Trypanosomiasis Forecasting System), is 

an integrated space–time projection ecological model (Figure 1). The Tsetse Ecological 

Distribution (TED) model (DeVisser et al. 2010), a spatially explicit dynamic subcomponent 

of ATcast, predicts tsetse distributions at 250-m spatial and sixteen-day temporal resolution 

and can be described in two parts: (1) a spatially explicit fundamental niche model that 

identifies suitable tsetse habitat and (2) a fly movement model that integrates tsetse 

distributions and fly movement rates. The fundamental niche model uses four Moderate 

Resolution Imaging Spectroradiometer (MODIS) data sets: (1) the MODIS Terra 
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Normalized Difference Vegetation Index (NDVI) Vegetation Indices 250 m V005 

(MOD13Q1) product as a surrogate for available moisture (Williams et al. 1992), (2) the 

MODIS Terra Day Land Surface Temperature (LST) 1 km V005 product (MOD11A2), (3) 

the MODIS Terra Night LST 1 km V005 product (MOD11A2), and (4) the 1 km MODIS 

type 1 Global Land Cover product. Each of the four data sets is classified to a suitable 

versus unsuitable habitat classification scheme and combined to create a tsetse fundamental 

niche map every sixteen days. Temperature, moisture, and land cover parameterizations vary 

by species, but here are set for G. morsitans, commonly known as the woody savannah 

species and the most spatially extensive tsetse in Kenya (Bourn et al. 2001).

Habitat suitability alone is a poor predictor of tsetse presence, so a fly movement model was 

developed to identify potential tsetse distributions within the fundamental niche. The fly 

movement model does not predict the movement rates of individuals but rather models tsetse 

distributions as a dynamic population-scale “fly front” (Hargrove 2000). If ecologically 

suitable tsetse habitat predicted by the fundamental niche model is encountered by the 

expanded tsetse distributions, then tsetse are allowed to persist in that location. This results 

in individual binary presence–absence maps at sixteen-day intervals, from 1 January 2001 to 

the acquisition date of the most recently available MODIS data products used in the model 

(here 15 October 2010). The probability of tsetse presence is the product of the sum of the 

binary distribution maps divided by the total number of scenes. The maximum extent of 

tsetse distributions is also produced and identifies any cells in which tsetse were predicted 

present during the time period analyzed (Figure 2). The formal validation of the TED model 

is presented in DeVisser et al. (2010). Figure 3 is the limiting variable map constructed by 

using one landscape variable (i.e., day LST, night LST, NDVI, or Land Cover) at a time to 

model sensitivity of the tsetse fundamental niche. The maximum extents of tsetse 

distributions were then calculated for each of the four maps and compared to the normal 

TED model maximum extent map, identifying locations where one or more landscape 

variables are limiting tsetse distributions. The limiting variable map helps identify those 

areas immediately susceptible to change (Figure 3). For example, if under a future climate 

scenario moisture were to increase, these areas might become suitable for tsetse. 

Alternatively, areas where land cover is the limiting variable would likely become suitable if 

the land was abandoned. The minimum and maximum temperature limiting variables are 

explicitly modeled in the following climate projection section.

To model climate change, we loosely coupled the Regional Atmospheric Modeling System 

(RAMS) version 4.4 (Cotton et al. 2003) with TED. The RAMS model is a state-of-the-art 

atmospheric model that numerically solves the fully compressible nonhydrostatic equations 

described by Tripoli and Cotton (1982) and captures exchanges of heat, momentum, and 

radiation between the surface and atmosphere. The modeled spatial extent spanned Kenya, 

Tanzania, Uganda, Rwanda, and Burundi and the vertical domain had thirty-three levels 

stretching to 32,581 m high. Surface and vegetation dynamics were governed by the 

LEAF-2 submodel (Walko et al. 2000). Land cover was taken from Torbick et al. (2006) 

with land cover parameters including albedo and fractional cover linked to appropriate 

global land cover classes. The RAMS parameterization was similar to that described in 

Moore et al. (2010), which documents extensive validation against observation and explains 
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how MODIS vegetation time-series spline functions replaced more generic latitude–

longitude functions to represent leaf area index and fractional cover for East Africa. For 

validation, six-hourly boundary conditions were obtained from the National Centers for 

Environmental Prediction (Kalnay et al. 1996).

The RAMS-derived climate simulations spanned two decades: 2000–2009 and 2050–2059, 

driven with boundary conditions supplied from the Community Climate System Model 3.0 

SRES Scenario A1B (cf. Gent 2006); CO2 levels with RAMS were updated in concordance 

with the boundary conditions. To explore possible changes in tsetse distributions given 

potential climate change, projected change in mean monthly minimum and maximum 

temperature between 2001 and 2009 and 2051 and 2059 from RAMS were added to the 

mean MODIS LST data and used as inputs in the TED model. The change in mean monthly 

minimum temperature was added to the mean nighttime LST data under the assumption that 

minimum temperatures most often occur at night. The change in mean monthly maximum 

temperature was subsequently added to the mean daytime LST data. Given the use of mean 

LST data, mean NDVIs in conjunction with the mode land use–land cover (LULC) class of 

each cell were used in lieu of projected NDVI and LULC data. The tsetse percentage 

probability map and maximum extent map from the TED model using the RAMS-projected 

changes in mean monthly temperature were then compared to the maps generated using the 

mean day and night LST, mean NDVI, and mode LULC data from 2001 to 2009, and 

potential changes in tsetse distributions were then identified.

At mesoscales, model assessment and validation were divided into design evaluation, 

sensitivity, and application error and uncertainty (cf. Santner, Williams, and Notz 2003). 

The projection components were particularly challenging to evaluate. There are very few 

studies that address uncertainty attendant to regional climate model choice due to the 

complexities of multiple comparable simulations (model intercomparison projects excepted). 

The few that have indicate that the choice of regional climate model has a large impact on 

measures of uncertainty, particularly in areas where parameterizations are poorly 

characterized. Because climate uncertainty propagates into forecast models, this additional 

constraint allowed for defining the limits of the ATcast projections (cf. Moore and Messina 

2010). To reduce model-driven uncertainty in the results, the climate projections focused on 

the use of temperature data alone. Moisture, population, and land cover projections could all 

be used, but the cone of uncertainty would surely exceed the parameter space of even this 

deterministic model implementation.

Results and Discussion

The risk of acquiring AT is largely dependent on the intensity and duration of tsetse 

exposure and the susceptibility of the host population. Figure 4 presents those areas with 

emerging tsetse populations and those areas that should experience a decline in tsetse, with 

the important Highlands region identified. Slightly less than 20 percent of Kenya’s land is 

considered high- or medium-potential agricultural land (Alila and Atieno 2006). Because 

most of Kenya’s croplands are concentrated in the higher and historically more reliable 

rainfall zones of the Highlands, Lake Victoria basin, and a narrow strip along the coast, 

cropping and mixed farming have a distinct spatial distribution across Kenya. In fact, more 
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than 90 percent of Kenya’s croplands are found in these areas, and specifically for all areas 

identified as impacted by changing tsetse distributions in Figure 4, agriculture is the 

predominant occupation (World Resources Institute et al. 2007). Figure 5 is a bivariate plot 

map comparing current and future tsetse distributions, focusing on the Highlands region, 

with human population quantiles derived from the 2008 gridded global population data 

(Landscan 2008).

Following van de Steeg et al.’s (2010) Highland districts definition, Table 1 identifies 

districts of greatest tsetse expansion and, of these, all but Koibatek and Elgeyo are found in 

the Highlands. Further, of the districts where expansion is taking place, only Narok and 

Koibatek have a population density lower than Kenya’s population average. Of the districts 

where the greatest amount of contraction is taking place, only Machakos is found in the 

Highlands and only Makueni and Machakos have population densities greater than Kenya’s 

average population density.

Of the districts with the greatest net change (Table 2), only Kitui and Kajiado are 

experiencing a net decrease in tsetse distributions, both rangeland districts with relatively 

low human population densities. Of the districts with the greatest net change, all districts 

experiencing a net increase in tsetse distributions are found in the Highlands (notice that the 

two non-Highland districts where expansion was taking place—Koibatek and Elgeyo—are 

no longer listed). Additionally, apart from Narok, all districts with a net increase have a 

population density greater than Kenya’s average population density. Figure 6 presents an 

alternative view of the distribution of expansion and contraction zones. Although the 

Highland region is not all at similarly high elevations, it represents a general physiographic 

description of the region. That the link between elevation change and expansion or 

contraction is strong is not surprising given that the dynamic variable was temperature. It 

does provide additional support for the concern that tsetse will expand into the economically 

critical higher elevation areas of Kenya.

Susceptible human populations are those who live in proximity or travel into ecosystems 

suitable for tsetse habitation in which there are inadequate control or population preventative 

measures. It is likely that males and females within different age groups have different 

occupation and mobility patterns, resulting in similar levels of risk within ecosystems but 

differential levels of risk across ecosystems. Further, infected populations with lower 

incomes are at higher risk of debilitating sequelae because of limited access to preventative 

and curative resources. Finally, varying levels of population density are associated with 

varying levels of human risk depending on the threshold level of the ecosystem and tsetse 

prevention and control efforts. Specifically, emerging epidemic or endemic ecosystems 

require different thresholds of tsetse vectors and infective reservoirs to support the 

transmission cycle. For example, in densely populated Highland areas trypanosomiasis 

transmission might have high potential in emerging ecosystems (i.e., new tsetse niches) if 

there is a growing human-infection reservoir base in addition to animal reservoirs and 

prevention and control measures have not been initiated.

At the contextual level, political commitment, the transportation network, and the 

socioeconomic infrastructure in which populations reside and travel can directly or 
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indirectly impact the transmission cycle at different scales. Structural factors at both national 

and local scales include policies related to resource allocation for trypanosomiasis 

prevention and control programs, health care, and laboratory facilities dedicated to the 

diagnosis and treatment of trypanosomiasis infection. Further, the proximity of major and 

minor towns (i.e., distance and time) to tsetse or animal reservoir control programs 

influences the likelihood of correct diagnosis. Area poverty might increase the risk of tsetse 

exposure and human trypanosomiasis via the poor quality of the local environment (e.g., 

presence of wild animal reservoirs and overgrowth of brush). Finally, it is likely that future 

contextual factors (i.e., structural factors and area poverty) will indirectly impact tsetse 

exposure and trypanosomiasis infection by exacerbating population-level risk factors in 

certain ecosystems. These demographic and social variables and their direct and indirect 

interactive effects on the risk of human trypanosomiasis infection should drive specific risk-

reduction control strategies.

Tsetse flies are a particularly attractive vector insect for disease ecology space–time 

modeling. First, tsetse fly populations of the various known species tend to have low vagility 

(i.e., low dispersal rate) and tend to cluster in favorable habitats. Second, tsetse population 

density varies substantially seasonally, and there is only modest evidence for density-

dependent control of population density, suggesting that density-independent factors operate 

primarily in regulating population size (Rogers and Randolph 1985). Thus, both locally and 

regionally, populations can be expected to vary spatially in density as a function of the 

availability and dynamics of adequate habitat for adults and for their live-born progeny. This 

largely explains the mystery surrounding emergent and disappearing populations, but scalar 

climate impacts alter the ability of tsetse to move into historically occupied spaces and also 

open historically inhospitable spaces. This is not endogenously predictable and is 

completely missed by the traditionally relied upon presence-only sampling.

Climate change will alter many infectious disease systems and impact heretofore 

unsuspecting and vulnerable populations (cf. Sutherst 2004). We certainly agree with Rogers 

and Randolph’s (2002) assertion that proposals for the eradication of tsetse typically ignore 

historical, political, and ecological precedents. Tsetse flies exist in a complex space–time 

dynamic directly driven by ecological and anthropomorphic conditions. Reflecting this, 

ATcast produces spatio-temporal map products identifying the realized niche for tsetse and 

populations at risk given the complex multiscale interactions of climate, people, and the 

environment.

Tsetse and AT are very likely to (re)emerge under climate change scenarios as significant 

disease challenges. Planning, mapping, and monitoring efforts benefit from collaborations 

among interested organizations, although much remains to be done (Simarro et al. 2010). 

The probable expansion of tsetse into the Kenyan Highlands directly threatens the core of 

the agricultural dairy industry and places what is currently a large population of people at 

new exposure risk. By effectively preparing the health care system, veterinary services, and 

control measures, these potentially serious impacts might be mitigated.
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Figure 1. 
The African Trypanosomiasis Forecasting System (ATcast) modeling framework. MODIS = 

Moderate Resolution Imaging Spectroradiometer; NDVI = Normalized Difference 

Vegetation Index; LST = Land Surface Temperature; RAMS = Resional Atmospheric 

Modeling System; TED = Tsetse Ecological Distribution.
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Figure 2. 
The Tsetse Ecological Distribution (TED) model percentage probability map overlaid on a 

physiographic map of Kenya. The location of several of the largest cities and district 

boundaries are included as indicators of higher human population densities. (Color figure 

available online.)
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Figure 3. 
The spatial location where an environmental variable (i.e., land cover, minimum 

temperature, maximum temperature, and moisture) limits tsetse distributions within the 

Tsetse Ecological Distribution (TED) model. Combination classes indicate locations where 

more than one variable limits tsetse distributions (e.g., moisture + maximum temperature 

predicted to be both too hot and too dry at some point in the year for tsetse distributions to 

persist). The tsetse present >10% class indicates the locations where the TED model 
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percentage probability map predicts a greater than 10 percent probability of tsetse always 

being present. (Color figure available online.)
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Figure 4. 
The Tsetse Ecological Distribution (TED) model–projected change in the percentage 

probability of tsetse occurrence based on projected change in temperature from Regional 

Atmospheric Modeling System. An expansion of tsetse indicates a location where tsetse 

were not predicted in 2001–2009 but are projected by 2051–2059. A contraction in tsetse 

indicates a location where tsetse were predicted in 2001–2009 but not projected as present 

by 2051–2059. A positive value indicates a location where the probability of tsetse 

occurrence is projected to increase by the displayed percentage. Conversely, a negative 
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value indicates a location where the probability of tsetse occurrence is projected to decrease 

by the displayed percentage. The region referred to as the Kenyan Highlands is outlined in 

blue. (Color figure available online.)
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Figure 5. 
Present tsetse distributions (2001–2009) and future tsetse expansion areas (2051–2059) with 

corresponding distributions of human population. The future expansion of tsetse 

distributions will take place primarily in the Highlands, the most populated areas of Kenya. 

Human population in areas of no tsetse is represented with colors ranging from light gray to 

black. Human population in areas of present tsetse distributions is represented with colors 

ranging from light purple to dark purple. Human population in areas of future tsetse 

expansion is represented with colors ranging from light red to dark red. Ancillary data 

sources: Population (Landscan 2008), lakes (World Resources Institute et al. 2007). (Color 

figure available online.)
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Figure 6. 
The frequency of cells with projected expanded/contracted maximum extent tsetse 

distributions from the Tsetse Ecological Distribution (TED) model using projected change in 

temperature from Regional Atmospheric Modeling System, plotted against elevation in 1-m 

increments.
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Table 1

Districts with greatest expansion and contraction in tsetse distributions from 2001–2009 period to 2051–2059 

period

Expansion

District/area of district (km2) Expansion (km2) Population density Predominant livelihood strategy

Narok/17,731.80 1,866.41 33.39 PA/WLUL/MF-H

Uasin Gishu/3,373.89 962.35 232.35a MF-H/WLUL

Nakuru/7,605.95 708.68 180.00a MF-H/MF-M/WLUL

Kericho/2,581.04 638.84 285.50a MF-H/WLUL

Bomet/2,369.87 600.74 247.72a MF-H/MF-M/WLUL/FMF

Nyandarua/3,270.53 574.98 170.68a MF-H/MF-M/WLUL

Nyeri/3,370.60 567.72 219.09a MF-H/MF-M/FMF/WLUL

Nandi/2,873.14 485.81 218.81a MF-H

Koibatek/2,996.59 394.29 53.88 MF-H/MF-M

Elgeyo/1,450.21 278.84 113.31a MF-M/PA

Contraction

District/area of district (km2) Contraction (km2) Population density Predominant livelihood strategy

Kitui/30,391.70 662.81 30.88 MF-M/WLUL/FMF

Kajiado/21,847.20 511.92 18.63 PA/MF-M/WLUL

Turkana/61,037.30 397.87 8.3 PA/WLUL

West Pokot/9,284.93 303.62 36.86 PA/MF-M

Makueni/8,281.20 206.32 105.92a MF-M

Baringo/7,943.17 187.35 34.72 PA/MF-M

Machakos/6,021.20 167.22 176.78a MF-M/WLUL

Koibatek/2,996.59 144.88 53.88 MF-H/MF-M

Samburu/21,189.30 131.52 7.96 PA

Isiolo/25,114.10 115.09 4.65 PA

Note: Expansion represents the potential increase in tsetse distributions within a district from the 2001–2009 period to the 2051–2059 period. 
Contraction represents the potential decrease in tsetse distributions within a district from the 2001–2009 period to the 2051–2059 period. 
Population figures calculated using Landscan (2008) product for Kenya. MF-H = mixed farming—high potential; MF-M = mixed farming—
marginal; PA = pastoral or agropastoral; WLUL = waged labor or urban livelihood; FMF = forests or mixed fishing. Livelihood strategies 
determined using World Resources Institute et al. (2007).

a
Indicates that district population is greater than the 2008 average population density of 68 people/km2 (Landscan 2008).
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Table 2

Districts with the greatest net change in tsetse distributions from 2001–2009 period to 2051–2059 period

Net change

District/area of district (km2) Net change (km2) Infested % 2001–2009 Infested % 2051–2059

Narok/17,731.80 1,840.83 56.64 67.02

Uasin Gishu/3,373.89 957.35 20.78 49.15

Kitui/30,391.70 −662.81 19.39 17.21

Kericho/2,581.04 638.84 49.78 74.53

Nakuru/7,605.95 629.44 27.92 36.20

Bomet/2,369.87 600.74 57.72 83.07

Nyandarua/3,270.53 574.98 5.07 22.65

Nyeri/3,370.60 567.72 37.77 54.62

Kajiado/21,847.20 −511.92 14.06 11.72

Nandi/2,873.14 485.81 38.07 54.98

Note: Net change represents the districts with the greatest total change in potential tsetse distributions from the 2001–2009 period to the 2051–2059 
period.
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