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Formation of inhibitory antibodies is a major complication in the clinical treatment of 

hemophilia A using factor-replacement therapy. Approximately 25% of hemophilia A 

patients develops antibodies after repeated infusion of factor VIII (FVIII) protein. 

Development of inhibitory antibodies significantly increases morbidity and lowers the 

quality of life of hemophilia A patients. The study of patient inhibitors revealed that anti-

FVIII antibodies comprise mostly IgG isotypes and its subclasses IgG1 and IgG4 [1], with 

IgG4 predominantly present in patients with high titer inhibitors. The factors influencing 

antibody formation are complex. Recent evidence [2] has identified several of these factors, 

including (i) amounts of circulating FVIII determined by the type of mutation within the 

FVIII gene, (ii) polymorphic sites within the promoters of IL-10 (positive factor), TNFα 

(positive factor) and CTLA4 (negative factor), (iii) the formulation and intensity of FVIII 

infusions, and (iv) ‘danger’ signals such as inflammation associated with major bleeds 

and/or surgery. Interestingly, no strong correlation has been identified between MHC class 

II profiles and inhibitor formation.

Immune tolerance induction (ITI) protocols have been utilized since the 1970s in efforts to 

tolerize hemophilia patients to infused FVIII. The strategy can not only eliminate anti-FVIII 

antibodies, but also induce FVIII-specific tolerance in patients. However, the protocols 

require long-term and repetitive infusions of FVIII, which are costly and practically 

challenging [3]. Furthermore, one-third of the patients who underwent ITI failed to generate 

tolerance to FVIII. The success rate depends on the pretreatment and peak inhibitor titers of 

the patient and possibly other factors such as the type of FVIII infused. Formation of 

inhibitory antibodies in hemophilia patients increases the risks of morbidity and mortality, 

and management of bleeding episodes in these patients becomes very complicated. Recently, 

new approaches have been developed (see reviews [4–6]) to prevent or modulate the 

formation of anti-FVIII antibodies in either protein replacement or gene therapy-treated 

hemophilia A mice, including methods to manipulate antigen presentation [7,8], 

development of less immunogenic FVIII proteins or formulations [9], gene therapy 

protocols to evade immune responses [10–12], and immunomodulation strategies to target T 

and/or B-cell responses [13–19]. Interestingly, most of the successful protocols involve 

increases in either or both of the percentages and total numbers of CD4+Foxp3+ regulatory T 
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(Treg) cells. It is also important that these induced Treg cells are activated in order to exert 

their regulatory function to suppress FVIII-specific responses. It was demonstrated that a 

shift from an immune-activating environment to a regulatory environment by induction of 

activated Treg cells to suppress T-helper cell function is not only important in blocking the 

initial activation of antibody responses, but also in facilitating the induction and 

maintenance of antigen-specific tolerance. This is similar to the findings in transplantation 

models, where induction of tolerance to grafts is usually associated with increased 

percentages or cell numbers of Treg cells.

Rapamycin is an immunosuppressant drug that was commonly used to prevent rejection in 

organ transplantation. Rapamycin binds the cytosolic protein FK-binding protein 12 

(FKBP12) and the resulting complex inhibits the mammalian target of rapamycin (mTOR) 

pathway. In this issue of the Journal of Thrombosis and Haemostasis, Moghimi et al. [20] 

report that an immunomodulation strategy using transient oral delivery of rapamycin 

combined with repeated injections of low dosages of FVIII prevented induction of inhibitory 

antibody responses in hemophilia A mice. In tolerized mice, Th2 responses were suppressed, 

as shown by inhibition of IL-2, IL-4 and IL-10 expression and nearly complete elimination 

of IL-6 responses to FVIII. On the other hand, Foxp3, CD25 and TGF-b1 transcripts 

indicative of Treg cells were significantly increased. Furthermore, adoptive transfer of 

CD4+CD25+ Treg cells from tolerized mice protected the recipient mice from generation of 

high-titer inhibitory antibodies following immunization with FVIII. These results 

demonstrated that transient treatment of rapamycin prevented inhibitory antibody production 

to FVIII by suppressing the Th2 responses and inducing Treg cell expansion.

Induction and activation of antigen-specific T cells were initiated by recognition of the 

antigen by the T-cell receptor (TCR) in the presence of costimulation signals, leading to 

production of IL2 and downstream activators of proliferation (Fig. 1A). Rapamycin, an 

inhibitor of the mTOR pathway, preferentially expands Treg cells compared with effector T 

(Teff) cells by several mechanisms [21,22] (Fig. 1B), firstly through the differential effect of 

IL-2 receptor (IL2R) signaling. IL2R stimulation promotes activation of JAK/STAT, MAPK 

and the P13K/Akt/mTOR pathways. Phosphatase and tensin homolog (PTEN) is an inhibitor 

of P13K. PTEN is constitutively expressed in Treg cells, leading to down-regulation of the 

P13K/Akt/mTOR pathway. In contrast, PTEN activity is low in Teff cells, resulting in 

significant activation via mTOR pathways in response to IL-2 receptor signaling. Thus, 

rapamycin treatment has little effect on expansion of Treg cells due to its insensitivity to the 

mTOR pathway compared with significant inhibition of the expansion of Teff cells. The 

second mechanism is differential expression of pro- and anti-apoptotic proteins. In the 

presence of rapamycin, high levels of anti-apoptotic proteins were expressed in Treg cells, 

whereas low levels of anti-apoptotic proteins and high levels of pro-apoptotic proteins were 

expressed in Teff cells. Treg cells become more resistant to apoptosis relative to Teff cells. 

Thirdly, alternative pathways independent of mTOR in Treg cells are activated via the 

PIM-2 pathway. The expression of PIM-2 is regulated by Foxp3 and it is constitutively 

expressed in Treg cells. Teff cells lacking PIM-2 are highly sensitive to the anti-proliferative 

effects of rapamycin, whereas Treg cells are resistant to these effects. However, recent 

evidence [23] also suggests that the mTOR pathway may be important in maintaining both 
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homeostasis and alloantigen-driven proliferation of Treg cells. Upon withdrawal of 

rapamycin, an increase in mTOR activation augments Treg cell expansion in the presence of 

high levels of IL2 [24].

Thus, following short-term rapamycin treatment, a shift from an immune activating to an 

immune regulatory environment occurred, which created a regulatory milieu facilitating 

tolerance induction. Rapamycin is already used in the clinic and can be readily tested to treat 

hemophilia inhibitors. However, several questions still remain worthy of further 

investigation. As rapamycin induced ‘peripheral tolerance’ of a specific antigen, how long 

will the tolerance to FVIII persist? Is antigen presentation needed at all times for 

maintenance of antigen-specific tolerance? Will secondary challenge of antigen break the 

tolerance after withdrawal of antigen for a period of time? How can complete tolerance of 

full length FVIII (FL-FVIII) be achieved? Will tolerance of FVIII be achieved by using 

rapamycin combined with small peptides that encode CD4+ T-cell epitopes of FVIII? Can a 

lower dosage and shorter treatment of rapamycin be used to reduce the undesirable side 

effects and toxicity?

Prophylactic tolerance induction protocols involving a short immunosuppressive regimen 

with minimum side effects and toxicity are highly promising strategies for patients at high 

risk of inhibitor formation. Rapamycin, as used in Moghimi et al.'s study [20], and several 

other immunomodulation agents, including agents to block costimulatory pathways such as 

CTLA4-Ig combined with anti-CD40L [13,18] and anti-ICOS [14], agents to deplete T cells 

such as anti-CD3 [15,16], or agents to induce Treg cell expansion such as IL2-IL2mAb 

complexes [19], can be administered in combination with repeated injections of low doses of 

FVIII to induce long-term tolerance of FVIII. Transient immunosuppression did not hamper 

the immune system and prevent subsequent responses to other antigens or pathogens, as 

shown in several studies [14,15,19,20]. These evolving new strategies for tolerance 

induction can not only reduce the costs, but also shorten the treatment time and increase the 

success rate. Clinical testing of some of these regimens is highly anticipated.
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Fig. 1. 
Activation signals for effector and regulatory T-cell division and proliferation. (A) Signals 

required for activation of antigen-specific T cells. Interaction of the T-cell receptor (TCR) 

with antigen presented in the context of MHC molecules sends the first signal for T-cell 

activation. MHCI/peptide complexes were recognized by the CD8 TCR and MHCII/peptide 

complexes by CD4 TCR. Costimulation provides the second signal to promote T-cell 

activation and IL2 production. IL2 in turn binds to IL2-receptor (IL2R) and induces T-cell 

proliferation. (B) Differential activation pathways used for proliferation of effector (Teff) 

and regulatory T (Treg) cells. For Teff cells, IL2R stimulation promotes preferentially the 

activation of the P13K/Akt/mTOR pathway, which is sensitive to the effects of rapamycin. 

In contrast, for Treg cells, IL2R stimulation induces preferentially the activation of the JAK/

STAT signaling pathway due to high expression of PTEN, which blocks the P13K/Akt/

mTOR pathway. The JAK/STAT/PIM-2 pathway is insensitive to rapamycin. Thus, 

administration of rapamycin suppresses the proliferation of Teff cells while allowing 

expansion of Treg cells.
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