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Abstract

Osteosarcoma is the most common primary bone tumor in pediatric and young adult patients. 

Successful treatment of osteosarcomas requires a combination of surgical resection and systemic 

chemotherapy, both neoadjuvant (prior to surgery) and adjuvant (after surgery). The degree of 

necrosis following neoadjuvant chemotherapy correlates with the subsequent probability of 

disease-free survival. Tumors with less than 10% of viable cells after treatment represent patients 

with a more favorable prognosis. However, being able to predict early, such as at the time of the 

pre-treatment tumor biopsy, how the patient will respond to the standard chemotherapy would 

provide an opportunity for more personalized patient care. Patients with unfavorable predictions 
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could be studied in a protocol, rather than a standard setting, towards improving therapeutic 

success. The onset of necrotic cells in osteosarcomas treated with chemotherapeutic agents is a 

measure of tumor sensitivity to the drugs. We hypothesize that the remaining viable cells, i.e., 

cells that have not responded to the treatment, are chemoresistant, and that the pathological 

characteristics of these chemoresistant tumor cells within the osteosarcoma pre-treatment biopsy 

can predict tumor response to the standard-of-care chemotherapeutic treatment. This hypothesis 

can be tested by comparing patient histopathology samples before, as well as after treatment to 

identify both morphological and immunochemical cellular features that are characteristic of 

chemoresistant cells, i.e., cells that survived treatment. Consequently, using computational 

simulations of dynamic changes in tumor pathology under the simulated standard of care 

chemotherapeutic treatment, one can couple the pre- and post-treatment morphological and spatial 

patterns of chemoresistant cells, and correlate them with patient clinical diagnoses. This 

procedure, that we named ‘Virtual Clinical Trials’, can serve as a potential predictive biomarker 

providing a novel value-added decision support tool for oncologists.

Introduction

Osteosarcoma (also called osteogenic sarcoma) is an aggressive malignant neoplasm arising 

from osteoblast progenitor. It is the most common primary high grade bone sarcoma. It 

occurs most often in children and young adults in areas where bone is growing quickly, such 

as long bones. Osteosarcoma is not a common cancer, with about 800 new cases diagnosed 

each year in USA; half are in children and teens (1). The diagnosis of this tumor can be 

usually made on clinical and radiological ground with histological confirmation using the 

biopsy specimen. Osteosarcoma exhibits a malignancy that produces osteoid matrix. Among 

various types of osteosarcoma, conventional osteosarcoma is the most common primary 

osteosarcoma. It is composed of osteoblastic (26–80%), chondroblastic (10–13%) and 

fibroblastic (10%) variants (2). The standard therapy consists of multi-agent neoadjuvant 

chemotherapy with doxorubicin and cisplatin often with high dose of methotrexate, followed 

by surgery and adjuvant chemotherapy with the same agents. With this treatment, the 5-year 

survival rate for people with localized osteosarcoma is 60–80%. However, if the 

osteosarcoma has already metastasized, the 5-year survival rate is about 15–30% (1). 

Immediately after recovery from chemotherapy, patients have their tumors resected and the 

effect of the chemotherapy on the cancer cells is ascertained. A careful histologic analysis 

by an experienced pathologist can identify viable osteosarcoma cells, necrotic cells, and 

other changes, such as fibrosis and hyalinization. According to the Huvos grading system 

(3), the percentage of necrosis within the tumor tissue determines the tumor response grade 

and predicts the probability of progression-free survival. Tumors with less than 10% viable 

cells after chemotherapy (grade III or grade IV response) represent a subset of patients with 

a more favorable prognosis on the order of 80% 5 year event free survival (EFS) whereas 

those with greater than 10% viable tumor cells have a similar EFS of closer to 50% (4, 5).

Recent efforts in osteosarcoma research have focused on a multinational trial randomizing 

patients to additional therapy based on histologic necrosis (6). Good risk patients, with less 

than 10% viable cells, were randomized to receive maintenance pegylated interferon 

alpha-2b for 74 weeks following completion of standard 6 cycles of doxorubicin, cisplatin, 
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and high dose methotrexate (MAP). Poor risk patients were randomized to additional 

duration of adjuvant therapy, from 18 weeks to 29 weeks and additional ifosfamide and 

etoposide in addition to full doses of MAP (7). While not yet published, the presentations 

have not demonstrated that either investigational arm was superior to standard MAP ((8) and 

personal communication). Preclinical testing of agents through murine models has identified 

some agents with promise and has led to the development of one active trial 

(NCT02097238) in relapsed osteosarcoma patients and as background to several trials in 

development (9, 10). Banking efforts have led to the establishment of a valuable resource for 

ongoing basic science work (11). Sequencing efforts have illustrated the key role of p53 

mutation in this malignancy and investigated the structural variations that characterize this 

disease (12). Metastatic osteosarcoma continues to be a significant challenge and the most 

recent clinical trial demonstrated feasibility of adding zoledronic acid to the 

chemotherapeutic backbone in this setting (13, 14). Efforts to better incorporate the young 

adult population into clinical trials and discern outcomes in this group compared to the 

younger patients are underway as well (15–17).

There are various histological types of osteosarcoma which have variable clinical behavior 

from low grade to high grade. Conventional osteosarcoma is the most common type and 

considered high grade which warrant neoadjuvant chemotherapy. It is known that 

chondroblastic variant has less therapy effect than osteoblastic and fibroblastic variants (18). 

However, the current histologic system does not allow for further predictions of patient 

response and survival probabilities at the time of diagnosis for conventional osteosarcoma in 

general. Being able to predict early, such as at the time of the tumor pre-treatment biopsy, 

how the patient will respond to the standard chemotherapy would provide an opportunity for 

more personalized medical care. For example, this approach would facilitate a trial design 

with modified therapy for patients with unfavorable features, whereas patients with a 

predicted positive response could continue to receive the standard-of-care (SOC) treatment 

or perhaps even less intense therapies.

Hypothesis

The percentage of necrotic versus viable cells in osteosarcomas treated with 

chemotherapeutic agents is a measure of tumor sensitivity to the drugs. Viable cells that 

survived the treatment are treatment-resistant (subsequently called chemoresistant cells). We 

hypothesize that virtual assessment of chemoresistance, based on a combination of advanced 

high content image analyses and feature classification methods applied to patient histology 

samples, as well as quantitative computational simulations of dynamic changes in tumor 

pathology during treatment (Virtual Clinical Trials), can predict the responses to the SOC 

chemotherapeutic treatment of osteosarcoma patients.

Evaluation of the hypothesis

Digital Pathology Evaluation

Pathomics is a modern concept and practice that uses computer assistance to perform 

analysis of pathology images. While high-resolution scanned digital images of patient 

histology samples are being increasingly used by pathologists in ascertaining tumor grades 
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and assisting in cancer diagnoses, prognoses, and therapy choices, the process of evaluating 

pathology samples is still traditionally done manually by pathologists equipped with the 

microscope. However, the computerized analysis of pathology images (pathomics) is slowly 

but steadily gaining its place in cancer translational research providing a powerful tool to 

explore the complexities of large and heterogeneous collections of the cells forming the 

tumor tissue (19, 20). Over the last couple of years, several such quantitative methods have 

been developed for specific clinical applications. For example, a quantitative segmentation 

scheme EMaGACOR (expectation-maximization driven geodesic active contour, (21, 22)) 

has been designed to detect the extent of lymphocytic infiltration of the breast tumor tissue 

(that correlates with HER2-positive breast cancer recurrence) from standard H&E staining 

of histopathology images. These highly effective procedures allow for both the 

quantification of infiltrating lymphocytes and for the exploitation of the differences in 

lymphocyte spatial arrangements. A suite of quantitative algorithms has been developed to 

detect regions containing cancer cells by using the multiresolution digitized images of 

prostate biopsies or prostatectomies (23–25). In this approach, several images of the same 

tissue but of different resolutions are used (similarly to the manual approach employed by 

pathologists), and the most salient features at each resolution are followed and quantitatively 

classified using appropriate biostatistics methods (boosted Bayesian multiresolution 

classifier [BBMC] (23), spatially-invariant vector quantization [SIVQ] (24), or probabilistic 

pairwise Markov models (25)). The machine learning methods have been applied in the 

Computational Pathologist system (C-Path, (26)) to automatically extract the quantitative 

morphologic features of both tumor cells and the surrounding stroma from the H&E-stained 

breast cancer tissue microarrays. As a result, C-Path has identified that features of the 

stromal tissue adjacent to the cancer were better predictors of patient survival than the 

features of tumor cells alone. Similar quantitative algorithms have been developed for the 

automated quantification of IHC-determined protein expressions in melanocytes (27), for the 

automated assessment of the extent of malignant nuclei in colon cancer histology images 

(28), and for quantifying the architectural complexity in breast and prostate cancer 

specimens (29, 30). Our group also used quantitative segmentation algorithms to 

automatically determine scores for HER2-positive, ER-positive, and PR-positive cells within 

digitized histology images of breast cancer tissues (31), to correlate patient ER statuses with 

spatial distributions of ER-positive and ER-negative cells, as well as tumor vascular density 

and vascular area (32), and to determine the extent of the drug-mediated cytotoxic and 

apoptotic effects in osteosarcoma xenotransplants (33).

There are obvious advantages of having an automated system for digital pathology 

quantification. Such systems allow for the analysis of a vast amount of data collected from 

each histology sample. They enable the extraction of accurate, reproducible, quantifiable 

features of both tumor cells and the stroma. They facilitate computer-aided diagnoses and 

sharing with multiple people at different locations for remote consultations, tumor boards, or 

education. There are, however, two drawbacks in current use of digital pathology in clinical 

practice; one is of a technical nature, the other arises from the data availability. For technical 

reasons, scanning of histology slides adds an additional time delay in the tissue preparation 

process. The procedures for image acquisition lack the standardization necessary for 

automatic quantification. A special IT infrastructure is required to enable the timely 
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accessibility of digital pathology images and their storage. Moreover, the sizes of digitized 

histology images present a formidable challenge for computer image analyses, both in the 

number of pixels to analyze (hundreds of millions) and in the time necessary for completing 

the analysis. All such technical limitations are being addressed by the scanner 

manufacturers, by the computer system designers, and by bioinformaticians, and it is only a 

matter of time until faster scanning and analysis systems are available on the market. On the 

other hand, however, each histological sample, whether assessed and scored manually by a 

pathologist or automatically by a computerized system, represents data characteristic only 

for a particular point in the tumor progression (a time of biopsy or tumor recession). These 

so-called static data provide information neither about how this particular tumor reached the 

observed state, nor about how this tumor would progress in response to the administered 

treatment. Obviously, such information could help in determining patient prognosis and in 

choosing appropriate treatment options. We propose to address this limitation by employing 

computational simulations (Virtual Pathology) of how a given tumor can respond to a given 

treatment.

Computational Simulation Evaluation

Tumor dynamic responses to anti-cancer treatments, both in terms of changes in tumor 

structure over time and its spatial evolution, can be simulated using quantitative 

mathematical modeling. When appropriately calibrated, the in-silico models provide a tool 

to test various scenarios of tumor progression, leading to experimentally testable hypotheses. 

Some examples of predictive mathematical models include the following. Haeno et al. (34) 

proposed a mathematical model of metastasis formation calibrated to data from a large series 

of patients with pancreatic cancers, and predicted both the timing and type of clinical 

interventions that can most effectively impact patient survival. In particular, the model 

showed that earlier-applied neoadjuvant chemotherapy provides a significant survival 

benefit, and neoadjuvant radiation therapy prevents further metastases. Powathil et al. (35) 

developed a model of cell-cycle phase-specific radiosensitivity that took into account 

heterogeneity in tumor oxygenation and provided a ranking of different therapeutic regimens 

in terms of overall treatment efficacy for a given patient. Macklin et al. (36) used patient 

histopathology data to calibrate a mathematical model of a ductal carcinoma in situ and 

provided patient-specific quantitative mapping between the calcification geometry observed 

in mammograms and the actual tumor shape and size offering a tool to more precisely plan 

for surgical margins. Our group also used mathematical modeling to investigate how the 

tumor tissue architecture and the extent of extracellular space between the tumor cells 

influence the transport and distribution of drugs or diagnostic imaging agent molecules 

inside the tumor (37). This study indicated that for moderately diffusive therapeutic agents, 

interstitial transport is highly influenced by tumor cell size and packing density, and thus, 

the morphological features of a given tumor should be considered in determining the 

therapeutic treatment. In another computational/experimental study we investigated the 

effects of exogenous pyruvate on transient changes in tumor oxygenation and enhanced 

effectiveness of hypoxia-activated pro-drugs (HAPs) in hypoxic regions of pancreatic 

tumors (38). These results suggested that acute increase in tumor hypoxia can improve 

clinical efficacy of HAPs in pancreatic adenocarcinomas and other tumors. Moreover, we 

developed a mathematical model incorporating G1/S and G2/M cell-cycle checkpoints (39) 
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to test the effectiveness of cyclin-dependent kinase (CDK) inhibitors on tumor growth-

arrest. This in-silico study suggested that when tight tumor cell clusters are exposed to the 

CDK inhibitors, their growth suppression could be an effect of contact inhibition rather than 

of the drug mechanism, which may be important in designing the administration schedules 

and order of inhibitors acting at the G1/S and G2/M cell-cycle checkpoints.

It is evident from the growing literature on mathematical oncology and systems oncology 

(40–51) that in-silico models are becoming the quantitative tools of choice for understanding 

the nonlinear interactions between multiple components of complex systems, such as cancer. 

In particular, these models can address both intracellular and extracellular heterogeneities, as 

well as dynamic changes in the tissue microenvironment and in tumor responses to 

therapies. The computational models are capable of quantitatively integrating data from 

various levels of organization (for example, signaling pathways, cell metabolism, individual 

or collective cell behavior, tumor microenvironment composition, etc.) into a comprehensive 

system that can be used to test various therapeutic treatments in a systematic way, as well as 

to formulate testable treatment hypotheses. Computational models are also flexible and can 

be refined when additional clinical information becomes available. These tools can easily be 

used to examine individualized therapies, as, by their nature, the computational models are 

designed to employ different parameter values and different initial conditions in each 

execution of the model. The parameters can be derived from patient data, such as biopsies, 

SOC medical imaging, gene expressions, or proteomics, and are thus patient-specific. 

However, the main concern that needs to be addressed before such models can be used in 

clinic is their predictability. This is usually achieved via an iterative cyclic process in which 

the model is built and validated against the clinical data for which the patients’ outcome is 

known, and it is refined and crossvalidated again and again until the satisfactory level of 

accuracy is achieved (this is called ‘a learning phase’). After that the model can be used to 

make predictions (‘a translational phase’) based on new clinical data and algorithms 

developed and validated in the learning phase. The important aspect of a clinically relevant 

computational model is the use of the SOC data that is widely accepted and routinely 

collected in all clinics. For this reason, we propose to utilize patient biopsy samples, even if 

they account only for a small subset of a large tumor and may not accurately or consistently 

represent the tumor as a whole. However, in current clinical practice both tumor diagnosis 

and therapy choice are based on such a patient’s biopsy sample. Since both a biopsy sample 

before treatment and a tumor resected after the treatment represent only single time points in 

tumor development, we use computer simulations to provide a dynamics link between these 

two static points. By using computer simulations multiple times, we can determine the most 

possible paths in tumor progression and calculate the likelihood of osteosarcoma 

chemoresistance. Such computer simulations of temporal and spatial changes in tumor 

composition after exposure to various therapeutic options can provide a clinician with a 

decision support tool, the Virtual Clinical Trials.

Plan for hypothesis validation

We propose here the Virtual Clinical Trials procedure for determining the chemoresistance 

of a given osteosarcoma based on the data extracted from a patient’s biopsy. The learning 

phase of our predictor algorithm (Fig. 1A–F) will use retrospective data from patients of a 
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known progression-free survival status. Patient histopathology samples before and after 

treatment will be compared using advanced image analyses (pathomics), feature 

classification methods (biostatistics and morphometry), and computational simulations of 

tumor progressions (virtual pathology). This will lead to the identification of patterns of 

cellular features that are characteristic of chemoresistant osteosarcoma cells (the cells that 

survived the therapy). Once validated, this predictor will be used for prospective studies (the 

translational phase of the predictor, Fig. 1I–IV). In this case, the pre-treatment biopsy 

samples will be analyzed and compared with previously identified features of 

chemoresistant cells, as well as with the previously created library of the simulated results 

that determine tumor response to treatment. This will allow to calculate the likelihood of the 

given tumor being chemoresistant. The details of the construction of our predictor (both 

phases) are given below.

Learning phase Fig. 1A, Pre- and post-treatment tissues—Pre-treatment biopsy 

samples and post-treatment tissue resection samples from patients that responded well to 

SOC chemotherapy (<10% of cells are viable), and from poorly responding patients (>10% 

of cells are viable) will be selected. All tissue slices will be stained with H&E, as well as 

with IHC markers for proliferation (Ki67), hypoxia-inducible factor (HIF-1), glucose 

transporter (GLUT-1), tumor protein p53, and endothelial cells (CD34). The 40x 

magnification with 0.25μm/pixel resolution slide scans will be taken for advanced image 

analysis.

Learning phase Fig. 1B, Analysis of digital images of tumor tissue—High-

resolution digitized images of tumor histology will be analyzed using advanced image 

analysis techniques (Pathomics) to identify and quantify morphological and 

immunochemical features of individual tumor cells. First, the regions of interest from the 

whole tumor tissue image will be determined, and the spatial zones of a low-to-high 

intensity of staining will be selected; then, the segmentation of individual cell nuclei and cell 

cytoplasms will be performed, and both the physical and molecular features in each 

individual cell will be extracted. The physical features of each cell will include 

morphological or textural parameters, such as and nuclei size, shape, compactness, density, 

and the cytoplasm to nucleus ratio. The molecular futures evaluated from the IHC-stained 

slices will include cell and cytoplasm staining intensity for each individual cell, as well as 

the localization of tumor tissue vasculature. These will be used in the quantitative 

classification.

Learning phase Fig. 1C, Quantitative analysis of cellular features—Quantitative 

multi-parametric feature sets extracted from individual tumor cells will be collected and 

used to detect and characterize cells that cluster around particular phenotypes 

(chemoresistant or chemosensitive). Of particular interest is whether cells will be uniformly 

distributed in the multi-dimensional morphospace, or whether they will form discrete and 

detectable sub-populations that cluster around particular morphological archetypes 

(morphotypes). This analysis will allow for the consideration of multiple features of millions 

of individual cells that otherwise are difficult to assess visually.
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Learning phase Fig. 1D, Identification of features of chemoresistant cells—
Comparison of the quantitative features of individual osteosarcoma cells before and after the 

treatment will lead to the identification of features that are characteristic of the cells that 

remained viable after chemotherapy, which are considered chemoresistant. Similarly, a set 

of cellular features that are present in tumors prior to treatment but not after treatment will 

be considered typical of chemosensitive cells.

Learning phase Fig. 1E, Computer simulations—To determine the likelihood of 

osteosarcoma tumors being chemoresistant based solely on their pre-treatment histology, 

multiple computer simulations will be run using patient’s histology data (Virtual Pathology) 

to provide dynamic response of this specific osteosarcoma tumor to SOC chemotherapeutic 

treatment. The model will be calibrated to reflect patient-specific features of chemosensitive 

and chemoresistant cells, as described above. The vasculature identified by CD34 will act as 

a source of chemotherapeutic agents, oxygenation and nutrients; Ki67 staining determines 

the tumor proliferative index and defines the initial population of proliferating cells; HIF1a 

and GLUT1 will definite the cellular metabolic state. Different runs of the model will 

account for heterogeneous cell-cell and cell-microenvironment interactions, and the 

percentage of viable cells after each simulation will be counted and reported together with 

tumor morphology (chemo-charts).

Learning phase Fig. 1F, Predictions—An analysis of simulation outcomes, such as the 

extent of tumor necrosis in terms of the necrotic ratio relative to the tumor area, the 

quantitative area of detectable necrosis and a spatial necrosis map, and the spatial 

localization of remaining viable (chemoresistant) cells, will determine the likelihood of a 

patient tumor being chemoresistant (calculated as a percentage of computer simulations 

classified as chemoresistant). For the learning stage, model feasibility will be tested by 

comparing model simulations with patient post-treatment histologies, and by comparing 

with its clinical classifications into chemoresistant or chemosensitive (learning phase, Fig. 

1A–F).

Translational phase Fig. 1I–IV—In the translational phase, pre-treatment data (Fig. 1-I) 

will be used to perform a pathomics analysis (Fig. 1-II), as well as to compare to the features 

of chemoresistant cells already identified during the learning stage (Fig. 1-III). Then, 

information on the tumor tissue morphological structure and information on the identified 

set of cellular features will be used to map these parameters on the chemo-charts created 

during the learning stage. This will allow for the determination of the likelihood of tumor 

tissue chemoresistance (Fig. 1-IV). The simulated results can support both sarcoma 

pathologists and sarcoma clinicians in grading osteosarcomas, making therapeutic decisions 

and in clinical trial design.

Consequences of the hypothesis and discussion

We proposed here a general framework of the Virtual Clinical Trials, a combination of a 

quantitative analysis of patient histology samples and a predictive modeling of tumor tissue 

response to treatments, that can be used to predict whether a given patient’s tumor will be 

sensitive to the SOC chemotherapeutic treatment. Having such a high content analysis 
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system that can be assessed at diagnosis will aid in a better prognostic ability. For example, 

patients with unfavorable predictions from the Virtual Clinical Trials system could be 

randomized to receive a modified therapy critical for therapeutic success.

We based our Virtual Clinical Trial concept on the SOC clinical data and clinical practice 

where therapeutic decisions are based upon examining patients’ biopsy data. We are aware 

that tumor heterogeneity exists in osteosarcoma. While, in our practice, the pre-treatment 

biopsy specimens from osteoblastic and fibroblastic variants of osteosarcoma were 

representative of the post-treatment resection specimens, further studies are needed to 

examine this heterogeneity in more detail. It is worth noticing, that recently patients were 

randomized based on the onset of necrosis (the current best predictive biomarker) for a 

clinical trial conducted through a multinational collaboration from 2003–2011. 

Unfortunately the experimental arms of this study have been presented in a preliminary form 

without demonstrating an improvement over doxorubicin, cisplatin, and high dose 

methotrexate. However, a computer-assisted analysis of tumor cellular features, such as the 

one described in this paper, has the potential to be translated to the clinic to aid in the 

prediction of osteosarcoma response to SOC treatment.

The proposed hypothesis was generated using a small number of osteosarcoma cases. We 

are currently in the process of collecting more data to further test the hypothesis presented in 

this paper. The challenge with gathering larger data lies in the fact that osteosarcoma tumors 

are rare (about 800 cases annually in the USA) and a typical measure of progression free 

survival is five years after diagnosis, during which the patients’ outcome needs to be 

monitored. However, the feasibility of our methods, both the Pathomics analysis (32, 52) 

and Virtual Pathology (37, 38, 52) simulations, has been demonstrated in some non 

sarcoma-related projects. Combining both approaches is a novel angle we bring to 

personalized medicine applications.

Once validated, the proposed predictive system would provide a more precise analysis of 

osteosarcoma biopsy samples, and quantitative assessment of patients’ risk for tumor 

recurrence or metastasis. This will improve osteosarcoma trial development, and it can be 

used to provide an accurate objective means for patients’ stratification. Ultimately, the 

Virtual Clinical Trials system can have a translational potential for improving patient care 

and may be incorporated into the pathologist and clinician’s decision-supporting toolboxes.
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Fig. 1. Schematic of a Virtual Clinical Trial Predictor of Tissue Chemoresistance
Learning phase: A Pre- and post-treatment data; B Pathomics: feature selection and 

analysis; C Biostatistics and morphometry analysis; D Identification of features of 

chemoresistant cells; E Virtual Pathology: simulations and predictive reports; F Likelihood 

of tumor tissue chemoresistance; Translational phase: (I) Collection of pre-treatment data; 

(II) Pathomics analysis; (III) Comparison with previously identified features of 

chemoresistant cells; (IV) Comparison with virtual pathology reports for predicting the 

likelihood of a tumor tissue being chemoresistant.
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