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Introduction

Lung cancer is the second most common cancer in both 
men and women, accounting for about 13% of all new 
cancers. The American Cancer Society estimates that for 
year 2015, there will be about 221,200 new cases of lung 
cancer (115,610 in men and 105,590 in women) in the 
United States, with an estimated 158,040 deaths (86,380 in 
men and 71,660 in women) from lung cancer (1). It is the 
leading cause of cancer death among both men and women, 
accounting for 27% of all US cancer mortality (1). Survival 
in lung cancer mainly depends on the extent of spread (stage) 
at the time of treatment. The 5-year survival rate ranges 
from more than 60% for stage I patients, to about 40% 
for stage II patients. It quickly drops to 20% for stage III 
patients, and only 4% for stage IV patients (2). Treatment 
selection is also stage-dependent. Therefore, early diagnosis 

and staging of lung cancer is of critical importance.
The lung cancer diagnosis process is long and complex, 

with substantial variations. It typically starts with an 
abnormal X-ray, followed by computed tomography (CT) 
scan and diagnostic biopsy. After radiologic (noninvasive) 
staging and/or invasive staging, depending on the stage, 
patients may be treated by surgery, chemotherapy, radiation 
therapy, or (as is increasingly the case) a combination of 
these modalities. For surgical patients, medical clearance 
is needed before surgery. However, different patients may 
follow different procedures. For instance, some patients 
may skip some tests, while other patients may need to go 
backward and repeat some tests. Figure 1 illustrates the 
lung cancer diagnosis process with variations for surgical 
patients, where the dashed lines represent unusual practices. 
As one can see, these variations make the diagnosis process 
extremely difficult to be represented using simple routes.
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Figure 1 Lung cancer diagnosis process for surgical patients. CT, computed tomography.

Figure 2 Chest X-ray and CT scan process. CT, computed 
tomography.

Figure 3 Diagnostic biopsy process. CT, computed tomography.

Figure 4 Non-invasive staging process. PET, positron emission 
tomography; CT, computed tomography.
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The whole diagnosis process can be divided into six 
steps. Within each step, the process flow can still have 
many variations. For instance, during the abnormal chest 
X-ray and/or CT scan step (see Figure 2), a patient may 
go to either option or both. Similarly, for the diagnostic 
biopsy step, the biopsy process can be carried out by major 
procedures, such as CT guided biopsy, bronchoscopy, or 
both tests may be used (see Figure 3). The non-invasive 
staging step is much more complex. There are more than 
a dozen combinations of CT scan, positron emission 
tomography (PET)/CT, brain imaging, and bone scan. The 
patient may take only one of them, or two or three of them, 
or even all of them (see Figure 4).

The invasive staging step is much simpler compared 
to non-invasive staging. The major procedures such as 
endobronchial ultrasound (EBUS) staging, mediastinoscopy 
(MED) staging, or both may be used (see Figure 5). For 

Figure 5 Invasive staging process. EBUS, endobronchial 
ultrasound; MED, mediastinoscopy. 
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Figure 6 Medical clearance process.
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simplicity, we have limited the schematic to the two invasive 
mediastinal nodal staging procedures most commonly used 
in community hospitals. Finally, the medical clearance 
step before surgery usually includes pulmonary and 
cardiac clearance, each of which presumably involves visits 
with providers from each of these specialties. A possible 
combination of them provides all the variations in this process 
(see Figure 6). Note that the pulmonary clearance can occur 
well before cardiac clearance, or even before staging tests.

There can be significant waiting time between each two 
steps, some of which may be substantial. Although each 
actual test may only take a few hours, the waiting time 
could last from days to weeks or even months. Because of 
the importance of accurate staging to treatment selection 
and prognosis, reducing the waiting times at various steps 
is of significant importance. Although the importance 
of waiting time reduction is intuitive, how to reduce it 
effectively is not. First, the relationship between the waiting 
times between various steps, and their contribution to the 
overall delay time from initial lesion detection to definitive 
treatment is not clear. Second, although ideally all waiting 
times should be reduced substantially, their reduction 
may have different impact on the total time for diagnosis 
process. How to identify the most critical waiting time so 
that its reduction has the largest reduction of overall process 
time is not known. Third, how to ensure that the waiting 
time can be controlled within a desired time limit has not 
been studied. Finally, even if the mean diagnosis time is 
short, large variability can still lead to a substantial number 
of patients waiting much longer than desired. Therefore, 
the variance of diagnosis time plays a significant role in 
reducing the possibility of treatment delay. How to address 
the above concern in terms of variance is unknown.

To answer these questions, a detailed analysis of the lung 
cancer diagnosis-to-treatment process is needed. Although 
clinical trials can be carried out, that strategy would take 
an inordinate and substantial amount of effort and time. 
The “small tests of change” or plan-do-check-act (PDCA) 

model may not be either appropriate or safe in many cases. 
Therefore, a model based approach is needed. Computer 
process models can provide significant guidance to system 
improvement efforts, before any potentially disruptive 
changes in process are implemented. It can present a fresh 
look at the whole process, offer an alternative method to 
“test” changes (virtually) in practice, and evaluate the impact 
of those changes. In this review, we focus on two types of 
computer process models that can be used for this purpose: 
discrete event simulation (DES), and analytical modeling.

 

Discrete event simulation (DES) models

Literature review

Computer or discrete-event simulation has been a 
prevailing tool in healthcare delivery research. It has been 
successfully implemented in emergency departments (EDs), 
hospital pharmacy units, critical care units, outpatient 
clinics and diagnostic centers. The rapid development in 
information technology and data analytics has substantially 
enhanced the functions and efficiency of simulation tools. 
Using the simulation model, the practitioners can vividly 
emulate the events randomly happening in healthcare 
delivery process, test sophisticated logics and schedules, 
evaluate design options, assess system efficacy, and carry out 
‘what-if’ analyses to investigate the complex relationships 
among system variables, study the impact of potential 
changes, and finally to provide decision support for 
healthcare management. By testing different scenarios of 
patient arrivals, staffing level, workforce and equipment 
configuration, bed capacity, scheduling and team policies, 
lab turnaround time, etc., the simulation models can help 
find solutions to reduce patient length of stay, increase 
bed utilization, identify the most critical constraints  
(or bottlenecks), and improve efficiency and care quality. 

Comprehensive reviews of computer simulation models 
used in health care systems have recently been presented (3-6).  
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In these reviews, simulation studies in multiple healthcare 
organizations are introduced, such as outpatient clinics, 
EDs, surgical centers, orthopedic departments, and 
pharmacies. A substantial number of studies using 
simulations have focused on patient flow and crowding 
reduction in EDs. For instance, Storrow et al. (7) discovers 
that reducing lab turnaround time can help reduce ED 
length of stay and the need for ambulance diversion. Brenner 
et al. (8) and Zeng et al. (9) have identified diagnostic testing 
as the main bottleneck in the EDs under study. Integration 
of registration and triage is also studied in (10). Using DES, 
a decision support framework is introduced in (11), which 
shows that in-patient bed management is the key to unblock 
ED outflows. In addition, Konrad et al. (12) introduces a split 
flow approach to bring patients to resources and providers. 
By verifying through DES, it shows that such an approach 
has the advantage to typical fast-track practice in ED.

In addition to EDs, other hospital departments and 
clinics also received substantial amount of research 
attention. For example, for intensive care units (ICUs), 
a simulation model is developed in (13) to determine 
the number of supplementary nurses in an ICU that are 
required to minimize overall nursing staff costs. Griffiths 
et al. (14) intends to optimize the number of available 
ICU beds in order to maintain an acceptable level of bed 
occupancy. Zhu et al. (15) also studies bed capacity in ICU 
to estimate the proper number of beds needed to meet 
the target service level and the extra number of beds to 
respond to demand growth. Azari-Rad et al. (16) studies 
the perioperative process in a general surgery service using 
simulations to reduce the number of surgical cancellations. 
The results indicate that scheduling surgeons on a weekly 
basis, sequencing surgeries in order of increasing length and 
variance, and adding beds to the surgical ward help reduce 
the number of surgical cancellations.

In pharmacies, a simulation study introduced in (17) 
discovered that early preparation for the returning patients 
and dedicating an infusion staff member for medication 
delivery could substantially reduce patients’ waiting time 
for antineoplastic medications, with up to 50% reduction 
achieved through such improvement efforts. Reynolds  
et al. (18) investigates the impact of changes in staffing 
levels and skill-mix on prescription workload and 
dispensing robot util ization in hospital pharmacy 
outpatient dispensing systems. Moreover, it is found in 
Zeng et al.’s study (19) that the pharmacist is not the main 
constraint in discharge process delay, but rather, early 
release of discharge orders by physicians is the key to 

speeding up the discharge process.
For outpatient clinics, an orthopedic outpatient clinic is 

studied in Rohleder et al.’s study (20) to optimize staffing 
levels and patient scheduling. Werker et al. (21) describe 
the model to reduce planning time and waiting time in 
radiation therapy process. Berg et al. (22) shows that the 
maximum number of patients served in an endoscopy suite 
is linearly related to the number of procedure rooms, whose 
turnaround time has a significant impact on the utilization 
of procedure rooms and endoscopist. Patient scheduling is 
analyzed through simulations in Ogulata et al.’s study (23)  
to determine appropriate scheduling policy under different 
environmental conditions. Outpatient radiology scheduling 
procedure is analyzed in Lu et al.’s study (24) to reduce the 
number of tests without pre-approvals so that financial 
losses can be minimized. In addition, Villamizar et al. (25)  
analyzes the impacts of changes in patient volume, arrivals, 
and clinic scheduling. Reynolds et al. (26) studies the 
staffing model design for a health clinic for homeless 
people. A complete model of patient flow analysis in (27) 
shows that implementation of “swing” rooms (flexible 
between antepartum and mother-baby rooms) could help 
to balance bed allocation in a women’s health center. More 
DES models in various healthcare systems can be found in 
(28-34).

Discrete event simulation (DES) in lung cancer diagnosis 
process

To study lung cancer diagnosis process using DES, the 
simulation model can be constructed by following the paths 
in Figures 1-6. The following data are needed to define such 
a model.

Waiting time
This is the time between two consecutive steps or tests, 
i.e., the time a patient waits for the next test or diagnosis. 
Examples of the waiting time could be: the time between 
chest X-ray and CT scan in step 1&2; the time between 
CT-based biopsy and bronchoscopy in step 3; the time 
between step 1&2 and step 3, etc.

By checking the time stamps when the patients take each 
test, the waiting times for each patient can be collected. 
Then through statistical analysis, the collected waiting times 
are fitted into a distribution. The mean, the variance and 
other statistical parameters can be obtained. Such functions 
are included in most simulation software. These results are 
the time inputs to the simulation model.
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Routing probabilities
The probability a patient may take one specific route 
or test. Examples of routing probabilities include: the 
probability a patient may only take CT scan in step 1&2; 
the probability a patient may take CT scan and brain 
imaging in step 4; the probability a patient will go to step 5 
directly after step 3, etc.

By counting the number of patients in each possible route 
from one step, and dividing the total number of patients 
leaving that step, such probabilities can be calculated and will 
be the routing inputs to the simulation model.

Using the simulation model, a validation study can be 
carried out by comparing the simulation model output with 
the results obtained through data collection. If the difference 
is small enough, the simulation model is validated and can 
be used for further analysis, such as ‘what-if’ analysis. For 
example, by reducing one waiting time by 10%, we can 
evaluate its impact on the overall diagnosis time. By carrying 
out such activity for all the waiting times, one can compare the 
results and discover the activity leading to the largest reduction 
in overall diagnosis time. Such a waiting time is viewed as a 
‘bottleneck waiting time’ or the ‘system constraint’. Then 
efforts can be focused on reducing the bottleneck waiting 
time. This effort can be repeated continuously until the overall 
diagnosis time reaches the desired value.

Analytical models

Markov chain model

To study the lung cancer diagnosis process, two types of 
analytical models could be useful. One is referred to as 
Markov chain, the other is closed formula.

Continuous time Markov chain (CTMC)
To briefly introduce the Markov chain model (35-37), 
consider a continuous time stochastic process X(t), t≥0, 
taking non-negative integer values. If for all s, t, u≥0, and 
non-negative integers i, j, k, the following property holds:

( ) ( ) ( )( ) ( ) ( )( ), , 0P X t s j X s i X u k u s P X t s j X s i+ = = = ≤ < = + = =

( ) ( ) ( )( ) ( ) ( )( ), , 0P X t s j X s i X u k u s P X t s j X s i+ = = = ≤ < = + = =

then such a process is a CTMC. In other words, in such 
a process, the conditional distribution of a future state at 
time t+s, given the current state at time t and all past states, 
only depends on the current state and is independent of the 
past states. Such a property is referred to as the Markovian 

property.
Introduce 

( ) ( ) ( )( )ijP t P X t s j X s i= + = =

to denote the probability that the process is in state j at time 
t+s, given that it is in state i at time s. Such a probability 
is referred to as the transition probability of the CTMC. If 
Pij(t) is independent of s, then the CTMC has stationary 
or homogeneous transition probabilities. When t→∞, the 
probability that a CTMC will be in state j often converges 
to a limiting value Pj, independent of the initial state, i.e., 

( )limj t ijP P t→∞=

Such limiting probability exists if, given a process starts 
in state i, there exists a positive probability it is in state j 
and it takes a finite time returning to state i. Probability Pj 

represents the proportion of time the process is in state j.
For a CTMC, the amount of time the process stays 

in state i before transitioning to another state follows 
exponential distribution with rate νi. Then the transition 
rate that the process will transit from state i into state j is 
denoted as qij, i.e., 

ij i ijq v P=

Then the rate that the process transits into state j equals 
to the rate that the process transits out of state j, i.e.,

, ,j j i j i ijv P Pq j≠= ∀∑
where the left-hand side is the rate that the process leaves 
state j (flow-out), and the right-hand side is the rate that 
the process enters state j (flow-in). As one can see, such 
equations balance the flow-in and flow-out rates, so they are 
often referred to as balance equations. In addition, the sum of 
all the state probabilities equals to 1,

1j jP =∑
By solving these balance equations, Pj, the probability 

that the process is in state j can be obtained, which will lead 
to the performance measure of interest.

In addition to CTMC, discrete time Markov chain can 
be defined similarly. Consider a stochastic process X(n) 
at time n, n=1,2,..., taking a finite or countable number of 
values and satisfying:

where X(n)=i implies that the process is in state i at time n. 

( ) ( ) ( ) ( ){ }
( ) ( ){ }

1 , 1 , ,

1 ij

P X n j X n i X n r X n l s

P X n j X n i p

+ = = − = − =

= + = = =


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The transition probabilities and balance equations can be 
derived as well (35-37).

An illustrative example
To illustrate such a method, consider the two-service model 
introduced in (38), where a patient needs to go through 
nurse check and physician diagnosis within the patient 
room (or on patient bed). Denote the two services as s1 (nurse 
check) and s2 (physician diagnosis). Since both physician 
and nurse need to take care of multiple patients and they 
also have other duties in addition to meeting with patients, 
the status of their service is characterized by mi=1, i=1,2, if 
they are available and mi=0 otherwise. Let p1 represent the 
number of patients waiting for or being served by service s2.  
Since only one patient is allowed in the patient room,  
p1 could be either 0 or 1. Then, the states of the system are 
defined as {p1;m1,m2}. The probability the process stays in 
these states is denoted as P(p1;m1,m2).

Assume there is unlimited patient arrival. Each service 
has exponential service time with rate ci, and the providers 
have exponential available time and non-available time with 
rates λi and µi, respectively. From the Markov property that 
the rate of the system leaving a state should be equal to the 
rate of the system entering that state, the following balance 
equations are obtained (Box 1):

In addition, we have

( )1 1 1
0 0 0 ; , 1k i j P k i j= = = =∑ ∑ ∑

Solving these equations, all state probabilities P(k;i,j) can 
be obtained. According to Little’s law (39), flow time equals 
to number of patients divided by throughput. Since there is 
only one patient in the room, the patient length of stay Ts 

can be calculated as the inverse of throughput, i.e., the rate 
that the patient finishes physician diagnosis service.

( ) ( )2 2

1
1;0,1 1;1,1sT

P c P c
=

+

Markov chain model in healthcare systems
Markov chain model has been used extensively in many 
engineering and science fields, such as informatics, 
manufacturing, finance, medicine, physics and chemistry. 
In recent years, application of Markov chain in healthcare 
delivery systems has attracted a lot of research efforts.

As illustrated above, Wang et al. (38) models the care 
delivery activities inside a patient room in ED to evaluate 
patient length of stay and provider utilization. For general 
emergency medical service systems, Wiler et al. (6) reviews 
the available models for ED, including Markov chain and 
DES models. A two-dimensional Markov chain model 
is introduced in (40) to characterize the number of busy 
ambulances and whether the system is in compliance or not. 
The model can provide accurate estimates of response time 
distribution and number of busy ambulance distribution. 
Similarly, Almehdawe et al. (41) derives the steady state 
probability distributions of queue lengths and waiting times 
for ambulance patients. A three-hospital EMS-ED model 
is presented to analyze the impact of system resources on 
offload delays.

Patient flow and care deliveries have been studied 
using Markov chain models. A care activity model with 
multiple patient rooms and limited number of care 
providers in primary care clinics is presented in (42). 
Wang et al. (43) study work flow and staffing level in a CT 
test center and identify the imaging formatting process 
as the main constraint in the system. The patient flow in 
a gastroenterology clinic is evaluated in (44) based on a 
Markov chain model. Using this model, various policies on 
check-out scheduling are investigated. In addition, using 
a single room Markov chain model as a building block, an 
iterative method is introduced in (45) for a mammography 
imaging center with multiple rooms to study the work 
flow with a shared Technologist Assistant. In home care, 
Lanzarone et al. (46) introduces a Markov chain model of 
patient care pathway to provide predictions on number of 
patients who are followed up, the duration of each care and 
the amount of required visits, which can provide support for 
human resource planning.

Using the Markov chain model, hospital admissions 
have been studied. For example, Tang et al. (47) evaluate 
patient length of stay and use it to admit acute myocardial 
infarction patients into the hospital. It shows that the phase-
type distribution can help account for the heavy skewness 
and heterogeneity in the data. The phase-type distribution 
is a convolution of exponential distributions, resulting from 
one or more inter-related Poisson processes occurring in 

Box 1 Balance equations
P(0;0,0)(µ1 + µ2) = P(0;1,0)λ1 + P(0;0,1)λ2, [1]

P(0;0,1)(µ1 + λ2) = P(0;1,1)λ1 + P(0;0,0)µ2 + P(1;0,1)c2, [2]

P(0;1,0)(c1 + λ1 + µ2) = P(0;0,0)µ1 + P(0;1,1)λ2, [3]

P(0;1,1)(c1 + λ1 + λ2) = P(1;1,1)c2 + P(0;0,1)µ1 + P(0;1,0)µ2, [4]

P(1;0,0)(µ1 + µ2) = P(1;1,0)λ1 + P(1;0,1)λ2, [5]

P(1;0,1)(µ1 + λ2 + c2) = P(1;1,1)λ1 + P(1;0,0)µ2, [6]

P(1;1,0)(λ1 + µ2) = P(0;1,0)c1 + P(1;0,0)µ1 + P(1;1,1)λ2 [7]

P(1;1,1)(λ1 + λ2 + c2) = P(0;1,1)c1 + P(1;0,1)µ1 + P(1;1,0)µ2 [8]
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sequence or phases. A survey of phase-type distribution 
modeling in healthcare systems is presented in (48) and 
ideas for further utilization are proposed (49); also studies 
hospital admission control and proposes a new gateway to 
improve admission through adding an expedited patient 
care queue. Using a Markov chain model of patient flow (50),  
discusses admission scheduling, resource requirement 
forecasting and resource allocation to satisfy demand and 
resource constraints.

Patient safety has been studied using Markov chain 
in (51), where the state space includes normal and risk 
status of patients, nurse check, physician intervention, 
and rapid response team (RRT) diagnosis. Through a 
recursive procedure, the limited availability of providers is 
considered when multiple patients are present. In addition, 
to improve patient safety in surgeries, the disruptions in 
surgical work flow are also modeled by Markov chain in (52),  
and bottleneck analysis is carried out to identify the most 
impeding disruption, removing which can reduce the impact 
of surgical disruptions in the strongest manner.

In addition, Markov chain has been used to model 
biologic processes, such as lung cancer growth and 
metastasis. In paper (53), the metastatic progression for 
primary lung cancer is modeled based on a Markov chain, 
which offers a probabilistic description of the time history 
of the disease unfolding through the metastasis cascade. 
This enables evaluation of disease progression pathways 
and timescales of progression from the lung to other sites. 
In (54), the progression of the disease is divided into four 
phases and calculated using a Markov chain model for 
familial nasopharyngeal carcinoma. Then four screening 
policies [(A) annual screening; (B) biennial screening; 
(C) triennial screening; and (D) triennial screening for 
participants who tested Epstein-Barr virus (EBV) negative 
and annual screening for participants who test EBV positive] 
are compared. The results show that screening policy (D) 
has the highest efficacy. Additional Markov chain models in 
health care applications can be found in (55-60).

Markov chain model of lung cancer diagnosis process
Using the CTMC outlined above, the lung cancer diagnosis 
process can be modeled. The system states can be defined as 
follows: Let the patient’s waiting for a test be a state of the 
process. For example, waiting for CT scan after chest X-ray 
in Figure 2, waiting for CT-based biopsy in Figure 3, and 
waiting for bone scan after brain imaging in Figure 4, can be 
defined as the states for the diagnosis process. Similarly, all 
other states can be defined.

From the collected data, the average waiting time can 
be calculated for each state. Reversing them we obtain 
parameter νi. The transition probability from one state 
to another one, Pij, will be the routing probability from 
one test to another. With these parameters, the balance 
equations can be obtained. Solving the equations, the 
overall diagnosis time is calculated.

Closed formulas

Due to the special feature in lung cancer diagnosis process, 
it is possible to develop closed formulas to evaluate the 
overall waiting time and the variability. It has been shown 
that for a serial process with multiple independent stages, 
the mean and variance of overall flow time will be equal to 
the sum of all process times and the associated variances, 
respectively. In other words, consider a serial process with 
M independent stages, if each stage i, i = 1,...,M, takes an 
average time τi and variance vari to finish, then the mean T 
and variance Var of the overall diagnosis time will be:

1 1
, Var var

M M

i i
i i

T τ
= =

= =∑ ∑

Such an approach has been used in studying the ‘Rapid 
Response’ process to improve patient safety in acute 
care. In papers (61-63), when deterioration in a patient’s 
clinical condition is detected, the primary nurse may call 
the intern, resident, or RRT for help. The provider can 
either make a decision or call for further help from the 
upper level physicians (e.g., intern to resident, RRT to 
resident, resident to fellow, fellow to attending). Thus, the 
response process can be modeled as a complex network with 
split, merge, and parallel structures. By considering the 
combination of possible routes (e.g., RN-intern-resident-
fellow-attending), the closed formulas can be developed to 
evaluate the decision time and its variability.

As shown in section 1, similar to the rapid response 
process, the lung cancer diagnosis process is very 
complicated and can also be modeled by a complex network. 
However, for one specific patient, he/she can only take one 
possible route. Thus, from his/her point of view, a serial 
process will be taken during the whole diagnosis period. 
Thus, by assuming all testing steps are independent, the 
closed formula can be applied for his/her route. To consider 
many patients, by including the routing probabilities, 
the whole diagnosis process can be represented by a 
combination of a set of specific routes, each being weighted 
through its routing probability. Figure 7 illustrates such 
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an approach. The complex diagnosis process can be 
decomposed into a set of possible routes that the patients 
may go through. Four examples are illustrated in the figure. 
Then for a particular route j, the mean diagnosis time Tj and   
the variance Varj  can be calculated. Calculating the product 
of all probabilities going to the next test after each one in 
this route, we obtain the probability αj of a patient taking 
such a route, which will be the weight of route j. Then 
αjTj and αjVarj provide the weighted mean and variance, 
respectively. Summing them up, we obtain the final mean 
and variance of the overall diagnosis process.

, Var Varj j j j
j j

T Tα α= =∑ ∑

Discussion

Both the DES and analytical models are useful in studying 
the lung cancer diagnosis-to-treatment process. The 
simulation model can provide more detailed and more 
vivid analysis as well as user friendly graphic interface 
and animation. There are many DES software programs 
available, such as Simul8, Arena, Flexsim, ProModel  

(or MedModel). However, it takes longer time to develop 
and execute the simulation model, needs more inputs, and 
relies on the software environment. For complex processes 
and extensive scenarios, computation intensity may become 
an issue. More importantly, most simulation models are 
case-study based, which makes it difficult to discover some 
common features of the system.

The analytical models, on the other hand, can provide 
quick analysis, which is extremely useful during what-
if analyses. In addition, it is possible to derive system 
properties, such as monotonically increasing property 
with respect to process parameters and bottlenecks. Also it 
requires less data inputs and is not dependent on software. 
However, the results are less detailed and do not have 
animation capability. The assumptions in the models may 
also limit their applications.

Concerning the analytical model for lung cancer diagnosis 
process, the Markov chain model assumes exponential 
service time, and may need a large number of states, 
which make the analysis difficult to proceed. Typically, 
empirical formulas need to be developed to approximate 
the performance in non-exponential scenarios (42-45).  

Figure 7 Illustration of possible routes. CT, computed tomography; MED, mediastinoscopy; EBUS, endobronchial ultrasound.
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For small variations, i.e., the coefficient of variation (CV), 
defined as standard deviation divided by the mean, is small or 
less than 1, the average performance usually only depends on 
the mean and CV. In addition, it will be difficult to evaluate 
the variance. The closed formulas can handle any service 
time distributions and evaluate variance. However, the 
number of possible routes can be very big so that it may need 
to ignore some routes which have very small probabilities 
and have almost no impact on system performance. In both 
approaches, an independent assumption is introduced. In 
practice, a patient’s probability of receiving a certain test is 
usually conditioned on the previous test results. Thus the 
waiting time is also conditioned on the previous diagnostic 
results. Therefore, both the state dependent Markov chain 
and closed formula should be developed.

Conclusions

In this paper, computer process modeling methods are 
introduced for the lung cancer diagnosis-to-treatment process. 
Both DES and analytical models (including Markov chain 
model and closed formulas) can be used to estimate patients’ 
diagnosis-to-treatment time. Using these models, the complex 
relationship between waiting times and overall process time 
can be investigated, ‘what-if’ analyses can be carried out to 
determine the most critical waiting time that impedes early 
detection and staging in the strongest manner. Such methods 
provide quantitative tools and an alternative way to improve 
care quality in the lung cancer management process.

The methods introduced here are not only applicable to 
the lung cancer diagnosis process, but also useful in many 
healthcare delivery processes, such as patient or work flow, 
care transition, information transfer, as well as clinical 
decision process. The developed models can be used for 
staffing analysis, resource management, scheduling and 
decision support, among other things.
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