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Abstract
Atherosclerosis is a major complication of diabetes, 
increasing the risk of cardiovascular related morbi-
dities and mortalities. The hallmark of diabetes is 
hyperglycemia which duration is best predicted by 
elevated glycated haemoglobin A1C (HbA1C) levels. 
Diabetic complications are usually attributed to oxidative 

stress associated with glycation of major structural 
and functional proteins. This non-enzymatic glycation 
of long lived proteins such as collagen, albumin, 
fibrinogen, liver enzymes and globulins result in the 
formation of early and advanced glycation end products 
(AGEs) associated with the production of myriads of 
free radicles and oxidants that have detrimental effects 
leading to diabetic complications. AGEs have been 
extensively discussed in the literature as etiological 
factors in the advancement of atherogenic events. 
Mechanisms described include the effects of glycation 
on protein structure and function that lead to defective 
receptor binding, impairment of immune system and 
enzyme function and alteration of basement membrane 
structural integrity. Hemoglobin (Hb) is a major circu-
lating protein susceptible to glycation. Glycated Hb, 
namely HbA1C is used as a useful tool in the diagnosis of 
diabetes progression. Many studies have shown strong 
positive associations between elevated HbA1C levels and 
existing cardiovascular disease and major risk factors. 
Also, several studies presented HbA1C as an independent 
predictor of cardiovascular risk. In spite of extensive 
reports on positive associations, limited evidence is 
available considering the role of glycated Hb in the 
etiology of atherosclerosis. This editorial highlights 
potential mechanisms by which glycated hemoglobin 
may contribute, as a causative factor, to the progression 
of atherosclerosis in diabetics. 
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Core tip: Glycated hemoglobin is a useful marker for the 
diagnosis of diabetes progression. Many studies present 
glycated haemoglobin (HbA1C) as an independent 
predictor of cardiovascular risk in diabetics. Although 
haemoglobin (Hb) is a major circulating protein, limited 
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information is available about the role of glycated Hb 
as such in the etiology of atherosclerosis. This editorial 
highlights potential mechanisms by which glycated 
hemoglobin may contribute, as a causative factor, to the 
progression of atherosclerosis in diabetics. 
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EDITORIAL
Abundant evidence exists that patients with diabetes 
mellitus have an increased risk of atherosclerosis and 
are more vulnerable to its progression into cardio
vascular disease[1]. Several mechanisms were pro
posed to describe the pathogenesis of atherosclerosis 
in diabetic patients. Vascular endothelial cell damage, 
as a result of blood flow shear stress, increased blood 
viscosity and oxidative stress were described in several 
studies[14]. The chronic hyperglycemic state in diabetes 
creates an environment of oxidative stress manifested 
as a glycoxidative state[5]. This state is characterized by 
the accumulation of glycated proteins that are further 
modified into advanced glycation end products (AGEs). 
The discovery of AGEs dates back to 1912 when Louis-
Camille Maillard originally observed a chemical reaction 
between amino acids and reducing sugars that gave 
browned foods their desirable flavor[6]. Human proteins 
normally undergo spontaneous nonenzymatic glycation 
reaction forming low levels of glycated products[7]. 

However, chronic exposure to abnormally high glucose 
levels leads to further modifications. The aldehyde 
group of the glucose molecule combines with the 
amino group of a lysine molecule in a protein to form a 
Schiff base which is a double bond between the carbon 
atom of the glucose and the nitrogen atom of lysine. 
The Schiff bases form Amadori products that undergo 
further molecular rearrangements producing advanced 
glycated end products AGEs. The formation of AGEs 
is accompanied by the release of myriads of oxidants 
and free radicals that cause oxidative damage in the 
cells and extracellular matrix. Subsequent degradation 
of AGEs produces more reactive oxidant species and 
protein reactive aldehydes that contribute to further 
macromolecular alterations[1,8,9]. In diabetes, longlived 
proteins such as collagen, elastin and many enzymes 
are affected by advanced glycation which disrupts their 
structure and function[10]. Accumulation of AGE products 
contribute to a variety of vascular complications through 
the formation of crosslinks between molecules leading 
to hardening of the vascular extracellular matrix (ECM) 
and increasing vascular permeability[9-11]. Modification 
of the extracellular matrix by AGEs traps cholesterol 

rich lipoproteins promoting their oxidation and stimu
lates an inflammatory response that accelerates pla
que formation and advancement of the atherogenic 
process. Evidence of the formation of AGEs and their 
detrimental role in the pathogenesis and development 
of cardiovascular disease is extensively reported in the 
literature[1013]. 

GLYCATED HEMOGLOBIN AS A 
DIAGNOSTIC MARKER AND ADVANCED 
GLYCATION PRODUCT
The extent and duration of hyperglycemia is best 
predicted by increased levels of glycated hemoglobin 
(glycated Hb) of which HbA1C is considered a reliable 
marker[14,15]. HbA1C in the medical literature is commonly 
described as a useful measure to reflect the duration of 
increased blood glucose levels up to several months[14]. 
Numerous studies have shown positive associations 
between elevated HbA1C levels and cardiovascular 
disease including acute coronary syndrome, acute 
myocardial infarction and heart failure[15,16]. Large 
prospective cohort studies showed that HbA1C is not 
only a diagnostic marker of diabetes progression, but 
also an independent cardiovascular risk predictor[17]. As 
mentioned earlier, prolonged sugar exposure produces 
early and AGEs affecting different proteins. A major 
example of early glycated proteins is HbA1C which is 
further modified, through a series of reactions, into Hb-
AGE[18]. Under normal conditions Hb-AGE constitutes 
0.42% of circulating Hb levels which increases to 0.75% 
in diabetic subjects[19]. In spite of extensive reports 
showing positive associations between increased HbA1C 
levels and cardiovascular risk in diabetics, the role of 
HbA1C and Hb-AGE as potential etiological culprits in 
diabetic disease progression has been rarely discussed. 
This editorial highlights mechanisms by which glycated 
Hb may contribute, as a causative factor, to the initiation 
and development of atherosclerosis in diabetics. 

HB GLYCATION ACCENTUATES 
INTRACELLULAR OXIDATIVE STRESS 
AND INCREASES ERYTHROCYTE 
FRAGILITY
Besides albumin, hemoglobin comprises a major 
fraction of circulating proteins that are susceptible 
to early and advanced glycation events. Glycation is 
accelerated in diabetics[11] where glucose uptake by 
erythrocytes is insulin independent and highly uncon
trolled. Furthermore, glycated Hb is more readily 
oxidized and degraded by erythrocyte proteolytic 
enzymes than unglycated Hb[20,21] enhancing oxidative 
stress by increasing the release of heme and free iron 
in association with free radicles[22-25]. The released 
ferrous iron (II) reacts with hydrogen peroxide via the 
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Fenton reaction forming ferric iron (II) and hydroxyl 
radicals[26]. These reactive species contribute to further 
oxidative stress damaging lipids and proteins that 
alter cell membrane properties and lead to increased 
erythrocyte fragility[27,28]. High exposure to oxygen 
during gas transport render erythrocytes even more 
vulnerable to oxidative damage. However, damage 
is normally prevented by antioxidant factors that 
maintain a balanced intracellular oxidation status. This 
balanced environment maintains an intact Hb structure 
which itself exerts a stabilizing effect on erythrocyte 
membrane structure. When Hb structure is altered due 
to persistent glycooxidative stress, Hb becomes more 
susceptible to degradation decreasing the life span of 
erythrocytes. Studies have shown a decreased life span 
of 6.9 d for 1% increase in glycated Hb levels[29]. 

HB GLYCATION AFFECTS BLOOD 
VISCOSITY AND CONTRIBUTES TO 
ENDOTHELIAL INFLAMMATION AND 
VASCULAR DYSFUNCTION
Intracellular glycooxidative stress may contribute 
to vascular endothelial damage through several 
mechanisms: (1) accumulation of intracellular free 
radicals alters erythrocyte membrane properties 
leading to erythrocyte aggregation, increased blood 
viscosity and impaired blood flow. Shear stress, due 
to thicker abrasive blood consistency, affecting the 
vascular endothelium and triggering an inflammatory 
response that contribute to subsequent atherogenic 
events[3,4,27,28,30]; (2) buildup of free radicles promotes 
the oxidation of ferrous Hb (Hb-Fe2+) into ferric Hb 
(Hb-Fe3+) (methemoglobin), which is further modified, 
through several oxidation steps, into ferryl hemoglobin 
(Hb-Fe3+/Fe4+). The ferryl iron (Fe4+) is unstable and 
regains the Fe3+ state by reacting with specific amino 
acids in hemoglobin forming covalently crosslinked 
Hb multimers[31]. The altered Hb structure promotes 
cellular damage and releases ferryl Hb into the 
subendothelial matrix. Silva et al[32] demonstrated 
that ferryl Hb, rather than Hb, or methemoglobin, 
increased endothelial permeability and production 
of proinflammatory monocyte adhesion proteins 
that promote macrophage accumulation and a local 
inflammatory reaction preceding plaque formation; (3) 
Free Hb penetrates the vascular smooth muscle layer[33] 
and inactivates endotheliumdependent relaxation 
induced by acetylcholine[34] possibly through binding 
to nitric oxide (NO) which is a potent vasodilator which 
initiates vasorelaxation in response to stimuli. Nitric 
oxide also inhibits formation of oxidized LDL[35] which 
detrimental to endothelial integrity. Inactivation of NO is 
a major marker of endothelial dysfunction manifested in 
impaired vasoactive responses[35]. RodríguezMañas et 
al[36] demonstrated that highly glycosylated Hb inhibited 
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nitric oxide mediated relaxation to a larger extent than 
low glycated and unglycated Hb. The authors suggested 
that Hb-AGEs may exacerbate this effect as abundant 
in vitro and in vivo evidence demonstrates that AGEs 
inhibit nitric oxide production and function[36]; and (4) 
Furthermore, accelerated degradation of erythrocytes 
releases heme which sensitizes endothelial cells to 
oxidative damage and promotes oxidation of endothelial 
proteins and low density lipoproteins (LDLs)[31]. 

Altogether, these adverse modifications trigger 
a proliferative inflammatory response in the suben
dothelial space which involves recruitment of a myriad of 
inflammatory and immune factors including monocytes, 
platelets, lymphocytes and increased production of 
various growth factors and cytokines such as IL-1 
and TNFα and adhesion molecules[37]. Oxidized LDL 
particles are subsequently scavenged by macrophages 
forming lipid rich foam cells that contribute to the 
formation of fatty streaks and subsequent buildup of 
plaque. As atherosclerotic plaque builds up, further 
insult to the endothelium activates a vicious cycle of 
inflammatory/oxidation events and further progression 
of atherosclerosis[38]. The list of endothelial mediators 
that contribute to this inflammatory/atherogenic process 
continues to grow. Interleukin-17 (IL-17), produced by 
T-helper cells, induces chemokines such as IL-6, IFN-γ 
and TNFα to recruit monocytes and neutrophils to the 
site of inflammation. Recent evidence points to additional 
allergic/hypergic responses, induced by IL-17, which 
involve cytokines such as IL-8 and eotaxin believed 
to play a role in atherogenesis. IL-17 induces eotaxin 
secretion from smooth muscles, macrophages and fat 
tissue in the atheromatous plaque[39]. The recruitment 
of eosinophils by eotaxin during the inflammatory 
process was recently linked to vascular inflammation 
and cardiovascular disease[40]. Exploring the relation 
between these inflammatory mediators and oxidative 
modification of glycated Hb may provide new avenues 
for understanding the progression of atherogenic 
events.

In summary, accumulating evidence suggests that 
glycation of Hb and formation of Hb-AGE in diabetics 
exacerbate cellular oxidative stress releasing potent 
oxidants which contribute to endothelial oxidative 
damage and trigger a vicious cycle of oxidative/inflam-
matory responses. Recruitment of inflammatory 
mediators contributes to the progression of athero
genesis and the development of diabetic vascular 
complications. Designing preventive and therapeutic 
measures that target hemoglobin glycooxidative 
pathways may be useful tools for the management and 
control of atherosclerosis progression and cardiovascular 
disease in diabetics.
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