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Preface

Variation in gene expression is an important mechanism underlying susceptibility to complex 

disease. The simultaneous genome-wide assay of gene expression and genetic variation allows the 

mapping of the genetic factors that underpin individual differences in quantitative levels of 

expression (expression Quantitative Trait Loci, eQTL). The availability of systematically 

generated eQTL information may provide immediate insight into a biological base for disease 

associations identified through genome-wide association studies, and can help to identify networks 

of genes involved in disease pathogenesis. Although there are limitations to current eQTL maps, 

understanding of disease will be enhanced with novel technologies and international efforts that 

extend to a wide range of new samples and tissues.

Introduction

Genome wide association (GWA) studies of common complex or multifactorial diseases 

have been spectacularly successful in the last two years, with many new loci identified with 

levels of probability that were once thought unattainable. However, the extraordinary levels 

of significance of the association signals have yet to be translated into a full understanding 

of the genes or genetic elements that are mediating disease susceptibility at particular loci.

The functional effects of DNA polymorphism on multifactorial disease may be mediated 

through several mechanisms. Polymorphisms that alter protein function can have very 

important effects, such as CARD15 (NOD2) mutations in inflammatory bowel disease 1 and 

FLG mutations in eczema (atopic dermatitis) 2. However, systematic study of complex 

diseases with known non-synonymous SNPs has not in general yielded highly significant 

results 3, and variation in gene expression is probably a more important mechanism 

underlying susceptibility to complex disease. Transcript abundances of genes are directly 
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modified by polymorphism in regulatory elements. Consequently, transcript abundances 

may be considered as quantitative traits that can be mapped with considerable power. These 

have been named expression quantitative trait loci (eQTL) 4,5.

The gap between SNP associations from a GWA study and an understanding of how a locus 

contributes to disease is substantial. Further genotyping and statistical analyses is often 

necessary to identify causal variants, which are then functionally investigated. This review 

explores the value of systematic identification of eQTL as one means of characterising the 

function of loci underlying complex disease traits. The combination of whole-genome 

genetic association studies and the measurement of global gene expression allows the 

systematic identification of eQTL. By assaying gene expression and genetic variation 

simultaneously on a genome-wide basis in a large number of individuals, statistical genetic 

methods can be applied to map the genetic factors that underpin individual differences in 

quantitative levels of expression of many thousands of transcripts.

The resulting comprehensive eQTL maps provide an important source of reference for 

categorising both cis and trans effects of disease-associated SNPs on gene expression. In 

addition to providing information about the biological control of gene expression, such data 

aid in interpreting the results of GWA studies. Once the statistical evidence for association 

of genetic markers to a disease trait has been established, genome-wide eQTL mapping data 

can be examined to see if the same genetic markers are also associated with quantitative 

transcript levels of one or more genes. (Such markers are known as “eSNPs”). The 

availability of systematically generated eQTL information provides immediate insight into a 

probable biological base for the disease associations, and can help to identify networks of 

genes involved in disease pathogenesis.

The potential of genome-wide eQTL identification was shown originally in yeast 6 and then 

in humans, animals and plants 4,7. The history of eQTL mapping has been comprehensively 

reviewed 7–9, and will not be described in detail here. The present review will instead show 

how the combination of genetics and global gene expression may be a powerful tool for 

systematically unravelling the effects of variation in transcription on disease. This review 

first briefly introduces the principles and current methods of eQTL mapping and describes 

the basis of eQTL. We then explore the relevance of these results to disease gene 

identification. The limits of present eQTL mapping data are discussed, as is the expected 

impact of new technologies, international efforts to extend results to new samples and 

tissues and how cell lines might be tested with stimuli relevant to disease.

eQTL mapping

In practical terms, the starting point for eQTL mapping is the measurement of gene 

expression in a target cell or tissue from multiple individuals (Figure 1). This information is 

the substrate for investigating the effects of DNA polymorphism (of whatever type) on the 

expression of individual genes. The use of microarray technology to measure gene 

expression from many thousand of genes simultaneously has been a principal driving force 

for systematic mapping of eQTL 7. The field is benefiting from progressively more 

sophisticated platforms for such studies, which are described in the later sections of this 
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review. Procedures for eQTL mapping rest on the insight that expression levels can be 

analysed with genetic approaches in the same manner as any other quantitative trait 

phenotype, such as body weight or blood lipids. In particular, study designs and statistical 

methods that are used traditionally to map quantitative trait loci can be successfully applied 

to identifying eQTL 10–12. Interpretation of eQTL data can then be developed further by the 

incorporation of additional biological information, such as epigenetic modifications, and 

analysis of regulatory networks, which are discussed later.

EQTLs are influenced not only by genetic polymorphisms, but also a range of other 

biological factors. These may be dissected systematically, starting with the measurement of 

heritability (H2).

Heritability

Family studies have demonstrated that many human eQTL are highly heritable 13,14. The 

linkage approach in which family members are studied has been valuable in demonstrating 

that genetic factors have widespread and identifiable influences on eQTL in humans, and 

such studies have provided broad localisation for some of the underlying genetic 

factors 1516. GWA mapping of common genetic variants that underlie eQTL has recently 

become possible due to the wide availability of high-throughput and low-cost SNP 

genotyping. These results are particularly relevant to disease mapping that is also focused on 

common SNPs characterised with similar SNP arrays. Moreover, the interpretation of these 

eQTL data relies strongly on methodologies that have been developed for disease GWA 13. 

For example a family study of lymphoblastoid cell lines (LCL) identified nearly 15,000 

traits (corresponding to individual Affymetrix probes) with an estimated H2 of > 0.3, 

indicating that genetic influences on gene expression appear to be widespread 13. Other 

studies have similarly described high heritability of many eQTL in LCL and other 

tissues 4,17,18.

Genetic factors (with both cis- and trans-acting effects, see below), are often identified for 

eQTL that have high heritability. For example, in the LCL study mentioned above 13, eQTL 

for 81% of traits with H2 > 0.8 could be mapped to one or more SNPs at genome-wide 

significance. However, the SNP map on average accounted for less than 20% of the 

estimated trait H2, consistent with results obtained by other studies 16. This demonstrates the 

presence of genetic or other effects affecting familial clustering on transcription that are not 

detectable in these genetic associations. Factors other than SNPs that might affect H2 are 

discussed further below. Further understanding of disease phenotypes may also be gained 

from analysing whether particular types of genes have more heritable variation in expression 

level (Box 1).

Box 1

Gene ontology analyses

Given the heritability of many eQTLs, eQTL databases may also be used to identify the 

types of genes that show most inherited variation in their levels of expression (at least in 

the cell type studied, usually LCL), by applying Gene Ontology (GO) analyses. The most 

highly heritable GO biological process for eQTL in LCL in one study was, unexpectedly, 
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“response to unfolded proteins”, a group containing numerous chaperonins and heat 

shock proteins. The individual variation in response to unfolded proteins may represent 

an evolutionary response to cellular stress, and these genes could be candidates in the 

study of neurodegenerative diseases and aging processes. Genes regulating progression 

through cell cycle, RNA processing, and DNA repair were also exceptionally heritable. 

The evolutionary advantage of individual variation in these genes is unclear. More 

expectedly, genes with significant heritability are also enriched in GO categories of 

immune response 1319. These highly heritable immune genes may be of particular value 

for the study of infectious and inflammatory diseases. These most heritable traits can be 

considered as candidate genes for effects on particular disease traits, but there may also 

be a place for them to be studied in large population samples, such as those contained in 

National Biobanks, to investigate their actions on unexpected phenotypes.

Cis and trans effects

Statistical analyses of eQTL need to take into account that the loci identified can influence 

gene expression either in cis or in trans. The definition of a cis effect is somewhat arbitrary, 

but cis-acting eQTLs are typically considered to include SNPs within 100Kb up-stream and 

down-stream of the gene whose expression is affected by that eQTL. This definition 

becomes more problematic in regions of extended linkage disequilibrium, such as the major 

histocompatability complex (MHC). Detailed analysis of the position of mapped cis-acting 

eQTL effects have shown that these are enriched around transcription start sites and within 

250 bp upstream of transcription end sites, and rarely reside more than 20kb away from the 

gene 20. Cis-acting variants also appear to occur more often in exonic SNPs 20. In general, 

trans effects are weaker than those in cis in humans 4,5 and in rats 21, but are very numerous.

It is not known if trans effects are in general mediated through transcription factor variants 

or other mechanisms. “Master regulators” are trans-acting factors with multiple effects on 

gene expression that have been identified in Saccharomyces cerevisiae 22, rat tissues 21, and 

in the human genome 5. It is of interest that, at least in yeast, master regulators are not 

enriched for transcription factors, and trans-regulatory variation seems to be broadly 

dispersed across classes of genes with different molecular functions 22.

Other types of variant

The function of DNA can be altered by many mechanisms in addition to SNPs. 

Transcription may also be modified by copy number variations (CNV), insertions and 

deletions, short tandem repeats and single amino acid repeats 23. A systematic investigation 

of the effects of CNVs in individuals who are part of the International HapMap project 

showed that SNPs and CNVs captured 84% and 18% of the total detected genetic variation 

in gene expression, respectively, but the signals from the two types of variation had little 

overlap. 24. It has been shown that CNVs in regulatory hotspots in the malaria parasite 

genome dictate transcriptional variation 25. It has also been observed that small-scale copy 

number variation (on the order of a single or few copies) can lead to multiple orders of 

magnitude change in gene expression and, in some cases, switches in deterministic 

control. 26.
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Epigenetic factors

In addition to DNA sequence variants, gene transcription is also modulated by epigenetic 

modifications (see also ‘Limits of mapping studies’, below). For example, non-germline 

epigenetic methylation of CpG residues that regulate gene expression is common in the 

human genome 27. In a limited study of three chromosomes 17% of genes may be 

differentially methylated in their 5′ UTRs and about one-third of the differentially 

methylated 5′ UTRs are inversely correlated with transcription 27. A further level of 

complexity comes from post-translational modifications of histones that modulate DNA 

accessibility and chromatin stability to provide an enormous variety of alternative 

interaction surfaces for trans-acting factors (reviewed in 28).

EQTL and disease-gene mapping

Combining eQTL and genome-wide association studies

One of the most important consequences of eQTL mapping is the link that it provides 

between genetic markers of disease identified in GWA studies and the expression of a 

specific gene or genes. In particular, the power of these studies depends upon the 

identification of specific genetic markers that are simultaneously associated with disease and 

eQTL, whereas simply comparing differences in gene expression in cases and controls may 

not provide sufficient power to detect important differences with the available sample sizes. 

The value of this is illustrated by several recent investigations in which eQTL analysis was 

incorporated directly as a component of the GWA study design (included in Table 1). The 

number of GWA studies continues to rise rapidly. In GWA studies to date, 10–15% of the 

top hits have also impacted on a known eQTL in a public dataset (Table 1). We will 

therefore discuss selected instances of these to illustrate the value of the method.

For example, a recent study generated genome-wide transcriptional profiles of lymphocyte 

samples from participants in the San Antonio Family Heart Study, and showed that high-

density lipoprotein cholesterol concentration was influenced by the cis-regulated vanin 1 

(VNN1) gene 15. Similarly, a study of post-mortem brain tissue identified eQTL affecting the 

MAPT and APOE genes, which play an important role in Alzheimer’s disease 29.

At the same time as the San Antonio study the results of a GWA study of asthma 1330 

identified a series of SNPs in strong linkage disequilibrium and spanning more than 200 kb 

of chromosome 17q23 and strongly associated with the risk of asthma 30. The region of 

association contains 19 genes, none of which are obvious candidates to be implicated in 

disease. Examination of eQTL data derived from Affymetrix HU133A arrays1330 on the 

same families showed that the disease associated SNPs had highly significant (P < 10−22) 

effects in cis on the expression of one the genes called ORMDL3.

This locus illustrates the utility of combining eQTL and disease mapping studies. Despite 

the highly significant association with both expression and disease, the predicted expression 

differences in cases and controls, which was averaged over all genotypes, was not expected 

to be significant given the sample size: this was in agreement with the observed results 30.
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In these data, borderline significant effects were also seen on expression of the gene 

neighbouring ORMDL3, GSDML 30. Subsequent eQTL studies with the Illumina platform 

and RT-PCR experiments confirmed that the same SNPs determine eQTL with both genes. 

These results focus attention on one or both of these genes as likely candidates for a role in 

disease pathology. Many additional studies are now underway to investigate the biological 

functions of these two genes and their relationship to asthma 3132–35.

Using eQTL to interpret GWA studies

Such findings have motivated the use of these eQTL data as a general tool for interpreting 

results from GWA studies. Recent analyses of Crohn’s disease (CD) illustrate this 

approach 3637. Initially, markers on Chromosome 5 were shown to be strongly associated 

with CD in one GWA scan, but their biological effects could not be readily deduced as they 

reside in a 1.25 Mb gene desert. Examination of the LCL eQTL database showed that one or 

more of these polymorphisms act as a long-range cis-acting factor influencing expression of 

PTGER4, a gene that resides approximately 270 kb proximal to the association region 37. 

The homologue of this gene has been implicated in phenotypes similar to CD in mouse 3738. 

Thus, research is now focused on PTGER4 as a primary candidate gene for this disease 

susceptibility locus.

Subsequently, the eQTL approach has been applied systematically in a meta-analysis of 

GWA studies of CD, and several other interesting results have been obtained 36. For 

example, eQTL were used to address an outstanding question in CD genetics related to the 

identification of the CD susceptibility gene or genes in the cytokine cluster at 5q31, where 

SNPs have an established association with disease 39. The disease-associated SNPs in the 

meta-analysis of this region were all shown to be correlated with decreased SLC22A5 

mRNA expression levels. Another CD locus identified in the meta-analysis coincided with 

the asthma risk locus on chromosome 17, in which the disease markers are also correlation 

with expression of ORMDL3 and GSDML as described above. Thus the same genetic 

variants contribute to susceptibility to both CD and asthma, possibly by perturbing 

expression of one or both of these genes. Several additional examples of eQTL within CD 

susceptibility loci have also been reported 36. These co-localisations greatly exceed the 

number that would be expected by chance, suggesting that many are reflecting underlying 

biological processes involved in disease susceptibility 36.

Examination of public GWAS results (http://www.genome.gov/gwastudies/) identifies many 

other disease associations where eQTL data provides similar insights (Table 1). For 

example, a recent large study of polygenic dyslipidaemia identified 30 loci with highly 

significant effects on blood lipid measurements 40. Examination of gene expression in 

samples of liver from 957 subjects allowed highly significant eQTLs to be identified for 7 of 

the 30 loci 40 (Table 1). In some cases, the eQTL data gives genetic evidence to support a 

candidate gene for which a role was previously hypothesised from location and biological 

hypotheses (such as GNA12 for height on Chromosome 7p22, and BLK and C8orf13 for 

auto-immune systemic lupus erythematosis on 8p23.1). More often the gene expression data 

identifies different genes or suggests a particular gene from a number of candidates. 

Examples of this are the cluster of trans-acting genes from the height locus on 7q21.3, the 
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RPS26 gene from the Type 1 diabetes locus on 12q13.2, and the DCTN5 gene from the 

bipolar disorder locus on Chromosome 16p12.1.

Not all examples of eQTL findings are straightforward, as exemplified by the association 

reported between the SH2B1 locus and body mass index (BMI) 41. In this study, a miss-

sense SNP in SH2B1 was also associated with significant variation in transcript abundances 

of EIF3C and TUFM. When mutated, the mouse homologue of SH2B1 leads to extreme 

obesity in mice, apparently because of a failure for proper regulation of their appetite. The 

authors speculate that the SH2B1 variant has a causal role but happens to be in LD with a 

different variant that influences EIF3C and TUFM mRNA levels; alternatively, regulation of 

EIF3C or TUFM mRNA levels could have a causal role, instead of or in addition to 

variation in SH2B1 41.

eQTL databases

A database of eQTLs from the asthma studies 1330 that allows searches by genes, 

chromosomal regions, and SNPs (http://www.sph.umich.edu/csg/liang/asthma/) illustrates 

how data from this kind of research can be examined. VarySysDB is another public database 

based on 190,000 extensively annotated mRNA transcripts from 36,000 loci (http://www.h-

invitational.jp/varygene/home.htm). VarySysDB offers information encompassing published 

human genetic polymorphisms for each of these transcripts separately. In addition to SNP 

effects on transcription, this database includes deletion-insertion polymorphisms from 

dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/), copy number variations from 

Database of Genomic Variants (http://projects.tcag.ca/variation/), short tandem repeats and 

single amino acid repeats from H-InvDB (http://www.h-invitational.jp/) and linkage 

disequilibrium regions from D-HaploDB (http://orca.gen.kyushu-u.ac.jp/) 23.

Major Histocompatability Complex

Analysis of eQTL within the MHC is of particular interest for studies of diseases in which 

infection and autoimmunity is a major component42, Intense study of the MHC over many 

years has revealed many genes that are duplicated or polymorphic and DNA variants in the 

MHC have been associated with more diseases than any other region of the human 

genome 42. Many disease associations have been attributed to selective binding of processed 

antigen within the antigen-presenting grooves of human leukocyte antigen (HLA) variants.

The results of eQTL studies within the MHC must be interpreted with caution because the 

high degree of genetic variability and linkage disequilibrium across the MHC locus could 

introduce some spurious results due to polymorphism in sequences corresponding to probes 

used for expression measurements (see 43 and below). Nevertheless, global gene expression 

data has shown very strong effects of particular SNPs on the level of expression of the 

classical MHC antigens HLA-A, HLA-C, HLA-DP, HLA-DQ and HLA-DR (P<10−20– 

10−30) 13. This confirmed the effect of genetic variation on the level of HLA-DQ expression 

observed previously 44. The strength of these effects suggests that associations of MHC 

class I and class II polymorphism may be anticipated to depend on the level of gene 

transcription as much as restriction of response to antigen 13. An example of this may be 
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Type I diabetes, in which the functional effects of the long-recognised association to the 

class II MHC genes 45 have not been elucidated, despite combined P values < 10−100.

These results suggest that even in this intensively studied region, the investigation of eQTL 

could add further to understanding of the many known genetic associations.

Additional biological interpretation and validation

A genome exerts its functions not through particular genes or proteins, but instead through 

highly complex networks that produce a range of responses 46. As perturbations of such 

networks underlie the pathogenesis of many diseases 47,48, network analysis incorporating 

eQTL data has recently given important novel insights into mechanisms underlying 

multifactorial diseases 16,17,49(Box 2).

Box 2

Networks and other analytical tools

Traditional genetics and cellular biology has rested on the assumption that a single 

stimulus (or DNA variant) when applied to a cell (or gene) will have a single outcome. 

The reality is that even a simple stimulus will induce changes in transcription in many 

genes that interact in complex networks, with an outcome that affects many different 

transcripts and processes.

The networks may be considered to be made up of multiple pathways that may act at 

genetic, genomic, cellular, tissue and whole organism levels 46. The technology that is 

already available to gather global information on gene expression, proteins and 

metabolites is now making possible the systematic identification of the networks of genes 

that interact in disease processes 9293. Analysis of genetic variants that perturb networks 

through eQTL effects has recently given important novel insights into mechanisms 

underlying multifactorial diseases 16,17,49. This type of analysis may also lead to 

systematic identification of transcription modules 94 and the construction of regulatory 

networks 95. The potential of using genetic mapping approaches to identify networks of 

genes operating on hematopoietic stem cells 96 and immune responses 97 are amongst the 

examples that have been discussed.

The impact of combining eQTL analysis with an investigation of gene networks is 

illustrated in the recent detection of genetic variants associated with transcript abundance 

of a macrophage-enriched network and obesity-related traits in human subjects. Parallel 

studies in mouse and human identified a network module for obesity-related traits that 

was enriched for genes involved in the inflammatory and immune response. EQTL 

mapping was then used to identify cis-acting genetic variants associated with this 

network of genes. The authors characterised these genetic variants in a large cohort of 

individuals, and showed statistical enrichment for variants that were associated with 

obesity-related biometrical traits 16. This approach allowed identification of genetic 

variants that had minor individual effects on the trait, but which can be identified as a 

group because of the overall perturbation of the network. Three genes in this network, 

lipoprotein lipase (Lpl), lactamase β (Lactb) and protein phosphatase 1-like (Ppm1l), 
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were validated by gene knockouts, strengthening the association between this network 

and metabolic disease traits 49.

A bibliography and a range of statistical routines for network analysis can be found at 

http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/.

Extensive investigations of human populations, animal models and cellular systems are 

generally required to provide biological validation of the relationship between specific genes 

and multifactorial disease traits even when identified through eQTL analysis. Given the 

substantial effort that is required for validation, careful selection of only the strongest 

candidates is essential. As illustrated in the above examples, the combination of GWA 

studies and eQTL analysis is a powerful tool for identifying a small number of candidate 

genes and pathways. With the deployment of new technologies, such as exon arrays and 

RNA resequencing, and expansion of the tissues covered as described below, we expect 

future eQTL databases to be even more powerful tools for such identifications.

Potential limitations and future directions

Despite the power of eQTL mapping to help identify the genetic basis of disease, there are 

many limitations to current methodologies and potential for considerable improvements as 

technologies develop. The best appreciated technical barriers to optimal eQTL mapping 

reside in the use of microarrays to measure gene expression (Box 3). Other problems and 

their potential solutions are given below.

Box 3

Pitfalls with microarrays

The use of microarrays to measure gene expression has led directly to the development of 

eQTL analyses. However, the microarray approaches that underlie most eQTL studies to 

date provide only partial gene coverage and have a limited dynamic range for 

quantitative detection of expression. Specific problems inherent in the use of these 

microarrays include the systematic bias that may be introduced during sample 

preparation, hybridisation and measurement of expression, batch to batch variation in 

array manufacture, and day to day variation in laboratory conditions 98. These types of 

effects are probably under-recognised, as exemplified by a report of large scale 

differences in gene expression between ethnic groups 9899. In this case the highly 

significant differences in gene expression that the data had suggested between the 

groups 98 were found to be due to the separate processing of expression measurements in 

LCL from subjects of European and Asian ancestry.

Cis-eQTL artefacts may also arise from the overlap of SNPs with transcript probes 100. 

Alterations in hybridisation efficiency due to the SNP may give an erroneous impression 

of differences in transcript abundance attributable to the SNP (and other DNA variants 

with which it may be in linkage disequilibrium) 100. It has been estimated that 15% of 

microarray probes for any given gene will overlap with SNPs that are polymorphic in the 

population under study 100. However, most coding SNPs in the human genome are 

uncommon, and it also appears that measurements of abundances are robust against 
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mismatches between the probe and RNA sequences 101. While evidence for the impact of 

these artefacts has been presented 43, it is reassuring that in a large study in humans, 

Emilsson et al. 16 found no evidence of systematic or specific hybridisation artefact from 

SNPs in their eQTL data. Nevertheless, important findings from microarrays need 

confirmation by specific assays such as qPCR that avoid polymorphic sequences 

Statistical methodology to account for batch effects, polymorphism and other sources of 

artefact is discussed by Alberts et al 102

Most human studies of eQTL have been performed in LCL, primarily because LCL were 

often created as a source of nucleic acids for genetic studies. However, LCL may exhibit 

progressive genomic instability with multiple passages of storage and re-growth.

Comparisons between microarray platforms

It has been assumed that different microarray platforms give broadly comparable results 50. 

However, numerous studies are now showing that the overlap in transcript detection 

between platforms is only of the order of 30–40%, whether considered as presence or 

absence of detectable transcripts or the absolute level of transcript abundance 51505253. The 

same level of discordance appears whether comparisons are made between Affymetrix 

arrays and SAGE 52, Affymetrix and Illumina arrays 50, Affymetrix and ABI arrays 53, or 

across multiple platforms 51.

Some of this discrepancy may be because individual genes are commonly interrogated by 

different sequences on different platforms. The situation can be improved when matching of 

genes is sought using genomic sequence rather than sequences inferred from the Unigene 

database of transcripts (http://www.ncbi.nlm.nih.gov/unigene)54. Concordance between 

platforms is improved further when probes are compared only when they target overlapping 

transcript sequence regions on cDNA microarrays or gene-chips 55.

These discrepancies may follow from the complex and unpredictable factors that determine 

hybridisation of particular nucleic acids to complementary array bound sequences 56,57. In 

addition, the selection of sequences on microarrays has been strongly biased to the 3′ end of 

genes, simply because public cDNA databases were first populated with genes identified by 

3′ tags.

A consistent conclusion of comparison studies has been that different platforms provide 

complementary results 5152, probably because they are all sampling only a selected fraction 

of the total transcriptome from the cells or tissue under study. The use of multiple platforms 

to extract all the expression information from a cell or tissue is impractical.

New platforms for measuring gene expression

A more comprehensive measurement of gene expression comes from arrays which 

interrogate all known human exons. Affymetrix have produced global exon arrays58 which 

show a high degree of correspondence in terms of fold changes with their pre-existing 

“classical microarrays”, suggesting that the additional probesets on the exon arrays will 

provide reliable as well as more detailed coverage of the transcriptome 59. The use of exon 
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arrays allows the identification of tissue-specific alternative splicing events as well as 

significant expression outside of known exons and well-annotated genes 60. Exon arrays on 

other platforms are likely to provide similarly robust results.

Many of the problems inherent in the use of microarrays can be solved by massively 

parallel, ultra-high throughput DNA sequencing systems (reviewed in reference 61). These 

systems allow direct ultra-high throughput sequencing of RNA, which can then be mapped 

back to the genome. Sequencing RNA provides a generic tool which can support a family of 

assays for measuring the global, genome-wide profiles of mRNAs, small RNAs, 

transcription-factor binding, chromatin structure, DNase hypersensitivity and DNA 

methylation status 61. RNA splices may also be effectively mapped by sequence-based 

methods.

Despite the formidable promise, ultra-high throughput sequencing is still not without 

problems. The machines can produce terabytes of data daily, and make profound demands 

on bioinformatics for data storage and assembly of reads. Short reads may pose severe 

problems for interpretation of transcripts arising from gene families with high homology or 

repetitive regions of the genome. Nevertheless, it can be anticipated that within 2 years 

many studies will rely on this technology, and that alternative or complementary approaches 

such as large-scale real-time PCR based expression assays (e.g. Watson et al. 62 http://

www.wafergen.com) will continue to evolve.

Limits of mapping studies

As discussed in the section on heritability, presently mapped loci account for only a portion 

of the estimated heritability of eQTL. A similar degree of unattributed or “dark” heritability 

has been observed in GWA studies of common complex traits and diseases. A large GWA 

meta-analysis, for example, recently identified 20 variants significantly associated with adult 

height. The combined effects of the 20 SNPs explained only 3% of height variation, taking 

into account such factors as age and population 63. Similarly, a large GWA meta-analysis of 

Crohn’s disease identified 32 loci significantly impacting on the disease, which together 

explained only 10% of the overall variance in disease risk and 20% of the genetic risk 36.

A large portion of the unattributed heritability is expected to result from the effects of 

multiple loci that are too weak to detect using current sample sizes 18. This explanation 

would be consistent with data in yeast, where only 3% of highly heritable transcript 

abundances are explained by single-locus (monogenic) inheritance and 50% are consistent 

with more than five controlling loci of equal effect 64. Although present SNP arrays provide 

relatively comprehensive coverage of the genome (more than 80%), some of the unattributed 

heritability will be due to genetic factors that reside in unmapped regions, or variation that is 

not effectively tagged at present, such as copy number variants (CNVs). Dominance and 

interaction effects may also account for some of the unattributed heritability, as these may 

be confounded with additive genetic effects in the heritability estimates with some study 

designs.

A previously described global eQTL study was based on sib pairs, allowing estimates of 

heritability for all the transcripts measured 13. The study suggested that dominance had a 
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minimal effect on gene transcription 13. Interestingly it appeared that genetic interactions 

may have important influences on regulation of expression for some genes, but inclusion of 

interaction effects had a minimal impact on the overall attributable heritability 13.

Epigenetic modifications and other factors that affect transcript abundance may not be 

accounted for in SNP-based association studies (see ‘The basis of eQTLs’ above). Genomic 

imprinting is a particular case of an epigenetic effect with a parent-of-origin dependent 

pattern. Monoalleleic expression is established at imprinted loci, via epigenetic marks 

transmitted through the germline. Several common complex diseases exhibit parent of origin 

effects that might indicate underlying imprinting, including asthma 65, Type I diabetes66,67, 

rheumatoid arthritis68, psoriasis69, inflammatory bowel disease70 and selective IgA 

deficiency71, but systematic analysis of parent of origin effects in eQTL data has not yet 

been reported.

Finally, transcript abundance is a function of transcript stability as well as transcript 

production. Many factors mediate transcript stability, particularly in trans, either through 

protein-RNA interaction of through mechanisms mediated through small interacting RNAs 

(siRNA) 72. It seems clear that future studies of disease susceptibility as well as eQTL will 

need to take these mechanisms into account.

Gene expression in tissues

While RNA for eQTL analyses would ideally be obtained from a wide variety of tissues, the 

majority of human studies of eQTL have been performed in LCL, primarily because LCL 

were often created as a renewable source of nucleic acids for genetic studies. Gene 

expression in LCL however represents the particular circumstances of EBV infection of B-

cells and their subsequent uncontrolled growth. LCL may also exhibit extreme clonality with 

random patterns of monoallelic expression within single clones 73.

Although only 60% of genes from any particular cell type will also be found in LCL 4,13, it 

has been established that LCL provide information about gene expression for some genes 

whose primary function is not in these cells 4,74–76. In addition, a recent comparison of 

eQTL derived from the analysis of blood and adipose tissue showed little difference in the 

number of eQTL that could be mapped, and there was about 50% overlap of mapped loci 

from the two RNA sources 16. Similarly, comparison between four different tissues showed 

no statistically significant differences in the number of mapped transcripts in experiments 

involving mapped recombinant inbred strains of mice 18.

Despite the continued utility and convenience of LCL studies of gene expression, it is 

evident that many of the transcripts expressed in LCL may represent general housekeeping 

genes, and transcripts that determine specialised cell functions (and modify disease) may be 

more parsimoniously distributed. In addition LCL are removed from the stimuli that may 

induce disordered gene transcription in disease, exemplified by the differences that may be 

observed in gene expression between LCL derived from asthmatics and genes known to be 

expressed in asthmatic airways 30. These factors all indicate that the direct examination of 

tissues that may be involved in disease may provide much more information than the LCL 

alone.
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Some eQTL studies of human tissue have already been carried out, notably of liver 17, 

adipose tissue 4916 and human brain 29. These show that approximately 60% of the 

transcriptome is expressed in each tissue and that eQTL from these tissues may be a very 

valuable source of information for genetic mapping. Data from animal models suggest that 

tissue samples may allow detection of trans-eQTL that are important in determining the 

composition of individual tissues 18. Tissue samples also promise the use of network 

analyses to identify the complex interactions that may underlie disease 174916 (Box 2).

The costs of reagents and limited availability of appropriate tissues have to date restricted 

studies in humans to at most several hundreds of subjects. While a formal evaluation of 

optimal study sizes is difficult because of unknown trait heritability we know empirically 

that studies with a few hundred subjects have consistently identified numerous eQTL with 

vanishingly small P values 4,5,75. It is also clear that subtle effects, particularly in trans, 

would be detected more reliably with larger samples.

It is therefore timely that the promise of eQTL as tool for disease genetics has been 

sufficiently exciting to prompt an NIH proposal for an ambitious genotype-tissue expression 

database that might include 1000 samples from each of 30 different tissues. The GTEx 

project is currently running as a 2-year pilot with the primary goal of testing the feasibility 

of collecting high-quality RNA and DNA from multiple tissues from approximately 160 

donors identified through low post-mortem interval autopsy or organ transplant settings. If 

the pilot phase proves successful, the project will be scaled up to involve approximately 

1000 donors, with the eventual creation of a database to house existing and GTEx-generated 

eQTL data (http://nihroadmap.nih.gov/GTEx/).

The use of tissues poses a number of problems that need to be resolved. Normal and 

diseased tissue samples may be difficult to access and their use requires careful attention to 

ethical, legal and social issues. Samples taken at post-mortem from many tissues robustly 

retain their histological architecture and contain RNA which may be of sufficient quality for 

measurements of gene expression. However, the changes in gene expression that may 

accompany death or surgical resection have not yet been documented in any detail. Tissues 

typically consist of different cell types, and their composition may vary inconsistently in the 

presence of disease. Finally, tissue-specific DNA methylation profiles may affect 20% of 

genes 27 and will be expected to be important in understanding tissue eQTL.

Although some of these problems may be expected to degrade the information available 

from the study of any particular tissue, it should be appreciated that they will not 

systematically lead to false-positives in eQTL analyses 17, emphasising the robustness of the 

eQTL approach.

Exercising the genome

Tissue biopsies and other samples extend the “expression space” that may be examined by 

eQTL studies. They nevertheless still have limitations for functional analyses (particularly in 

humans as opposed to model organisms) when compared to cells that can be grown freely in 

culture and manipulated by systematic knockdowns.
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Although the transcripts in a particular cell under particular conditions reflect only part of 

the function of a particular genome, the range of transcripts from a given cell type can be 

widened by stimulating the cell in a variety of ways. The experimental extension of the 

genome expression space has been called “exercising the genome” 77, and this strategy can 

be used to learn much more about gene expression and integrated gene functions. 

Experimentally, evidence is already emerging that environmental actions on gene expression 

are profound in humans 78 and model organisms 7980 (reviewed in 81), and it is reasonable to 

assume that these components of gene expression may be fruitfully accessed through 

exposure to relevant stimuli. It is of interest in model organisms that environmentally 

induced changes in gene expression seem to act through prominent trans effects 7980 that 

may not be present in unstressed cells and tissues.

It is therefore desirable that the genome of human LCL or primary cells of particular interest 

be exercised by stimulating their gene expression in different ways. Model stimuli that could 

be tested in these systems include pro-inflammatory stresses, metabolic stresses (high or low 

glucose or hypoxia), the response to radiation, the response to signalling molecules 

(neurotransmitters, hormones, peptides) and the response to therapeutic and 

chemotherapeutic agents.

Conclusions

It is now well established that transcript abundances of genes may be considered as 

quantitative traits that can be mapped with considerable power, and that the assaying gene 

expression and genetic variation simultaneously on a genome-wide basis in a large number 

of individuals will provide valuable tools for indentifying the function of previously mapped 

susceptibility alleles underlying common complex diseases.

Although eQTL have rapidly been shown to be effective in mapping complex traits there are 

many levels of information that are inherent in the measurement of global gene expression 

that have yet to be accessed, such as the effects of transcript stability, epigenetic effects, or 

environmental stimuli. In addition, larger studies involving thousands of subjects may be 

necessary to identify relatively weak trans effects with the same precision as the more 

powerful effects often observed in cis. Although trans effects may be relatively weak, the 

genes they modify (the trans-transcriptome) are likely to contain master regulators with 

wide effects on key processes that may also appear more strongly in tissues and in cells 

subjected to particular environmental stimuli. Many genes are only expressed in particular 

tissues or at particular times during development. Thus, although systematic studies of 

eQTL are already being planned for a wide variety of tissues, other strategies will need to be 

formed to study particular cell types and tissues at specific stages of differentiation and 

development.

The genome of cancer cells and tissues is particularly challenging to understand, because the 

primary lesions that first drive cellular proliferation are difficult to find when uncontrolled 

division results in progressive secondary damage to the genome and the transcriptome. 

EQTL analyses may be of particular value in malignant disease, because they allow a more 

integrated picture of what is happening in cancer cells (Box 4).
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Box 4

eQTL and network analyses of cancer

Mutations that disrupt cell growth control mechanisms are a feature of cancer. In 

addition, the unchecked cell division that is characteristic of cancer may in time result in 

many secondary mutations and progressive genomic disorganisation 103. Genetic studies 

of cancer tissue (“somatic cell genetics”) have been used to try and identify the most 

common mutations in various tumours. Global gene expression studies have also been 

used in many cancer types, typically to identify gene signatures that may predict the 

clinical outcome 104. However, most signature-based outcome predictions have not been 

replicated by independent studies 104, perhaps due to the innate heterogeneity of 

cancerous tissue and the problems of deriving statistically stringent results from the 

measurement of thousands of transcripts in limited numbers of samples. EQTL analyses 

may be a powerful tool to identify the functional consequences of the numerous CNVs, 

deletions and epigenetic modifications that are a feature of neoplastic cells. EQTL 

mapping allows not only the identification of genes underlying malignant processes 105 

but also genes modifying disease progression 106 and genes modulating individual 

responses to chemotherapy 107. Network analyses have not yet been widely applied to the 

study of cancer, but have already led to interesting findings, such as the identification of 

the ASPM gene as a molecular target in patients with glioblastoma. The application of 

network analyses to cancer eQTL may be expected to greatly alleviate problems with 

multiple comparisons and to lead to easier biological interpretation of results 108,109. 

Direct comparison of the transcript network architecture of cancerous tissue against 

normal tissues may also allow much deeper understanding of cancer biology.

Good progress is being made in terms of cataloguing the SNPs and other polymorphisms 

that regulate transcription, and this may be the basis for a systematic listing of regulatory 

sequences and regulatory proteins. Greater difficulties seem likely in identifying epigenetic 

effects, particularly if these are mediated through histone modifications (which are difficult 

to detect on a large scale) rather than through differential CpG methylation.

The remarkable diversity of human transcriptional regulation raises new questions about the 

evolutionary value of unexpected variation in genes that mediate basic mechanisms, such as 

heat shock proteins or genes influencing cell cycle and DNA repair. “Inverse genetics”, 

could be used to study the SNPs with the strongest effects on expression of such genes to 

investigate their actions on unexpected phenotypes measured in epidemiological samples.

New analytical techniques, particularly network analyses, promise rapid advances in 

reducing the complexity of expression data. Modules of co-expressed genes mediating 

complex functions may also be identified by time-series studies of the response of particular 

cell types to environmental stimuli 82.

In future, integration of eQTL with data from large-scale approaches for genome 

resequencing, proteomic and metabolomic analyses, epigenomic studies and functional 

screening of genes may provide a powerful set of tools to power a systems biology approach 
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to multifactorial disease, and providing a toolbox for identification and biological validation 

of susceptibility genes 83.

In the future integrated public databases will be needed for the use of complex disease 

geneticists. Existing databases include http://www.sph.umich.edu/csg/liang/asthma/ and 

VarySysDB (http://www.h-invitational.jp/varygene/home.htm). A more comprehensive 

database planned as part of the NIH Genotype-Tissue Expression (GTEx) project (http://

nihroadmap.nih.gov/GTEx/), which will house existing as well as GTEx-generated eQTL 

data. Future databases should include eQTL maps with SNPs, epigenetic marks, trans and 

cis effects, and effects specific for particular cells, tissues, and environmental stimuli. 

Ultimately, they will also allow browsing for networks, modules and comparisons with 

model organisms.
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GLOSSARY TERMS

Genome-wide 
association study 
(GWA study)

An examination of common genetic variation across the 

genome designed to identify associations with traits such as 

common diseases. Typically, several hundred thousand SNPs 

are interrogated using microarray or bead chip technologies

Heritability (H2) The heritability of an individual trait (H2) is estimated by the 

ratio of genetic variance to total trait variance, so that 0 

indicates no genetic effects on trait variance and 1 indicates 

that all variance is under genetic control

Gene ontology A widely used classification system of gene functions and 

other gene attributes that uses a standardised vocabulary. The 

system uses a hierarchical organization of concepts (ontology) 

with three organizing principles; molecular functions (the 

tasks done by individual gene products), biological processes 

(for example, mitosis) and cellular components (examples 

include the nucleus and the telomere)

Epigenetic A mitotically stable change in gene expression that depends 

not on a change in DNA sequence, but on covalent 

modifications of DNA or chromatin proteins such as histones

Major 
histocompatibility 
complex (MHC)

A complex locus on chromosome 6p, which comprises 

numerous genes, including the human leukocyte antigen 

genes, which are involved in the immune response
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Human leukocyte 
antigen (HLA)

A glycoprotein, encoded at the MHC locus, found on the 

surface of antigen-presenting cells that present antigen for 

recognition by helper T cells

SAGE (Serial analysis 
of gene expression)

A method for quantitative and simultaneous analysis of a large 

number of transcripts

short sequence tags are 
isolated

concentrated and cloned; their sequencing reveals a gene-

expression pattern that is characteristic of the tissue or cell 

type from which the tags were isolated

Additive genetic effects A mechanism of quantitative inheritance such that the 

combined effects of genetic alleles at two or more gene loci 

are equal to the sum of their individual effects
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ONLINE SUMMARY

• Genome wide association (GWA) studies have identified many new loci, but the 

association signals have yet to be translated into a proper understanding of 

which gene or genetic elements are mediating disease susceptibility at particular 

loci.

• The functional effects of DNA polymorphism on multifactorial disease are 

infrequently mediated through mutations that alter protein function, and 

variation in gene expression is likely to be a more important mechanism 

underlying susceptibility to complex disease.

• Transcript abundances of genes are directly modified by polymorphism in 

regulatory elements and transcript abundances may be considered as 

quantitative traits that can be mapped with considerable power. These have been 

named expression quantitative trait loci (eQTL).

• This review explores the value of systematic identification of eQTL as one 

means of characterising the function of loci underlying complex disease traits.

• The combination of whole-genome genetic association studies and the 

measurement of global gene expression allows the systematic identification of 

eQTL.

• The resulting comprehensive eQTL maps provide an important source of 

reference for categorising both cis and trans effects on disease-associated SNPs 

on gene expression.

• In addition to providing information about the biological control of gene 

expression, such data aid in interpreting the results of GWA studies. The 

availability of systematically generated eQTL information provides immediate 

insight into a probable biological base for the disease associations, and can help 

to identify networks of genes involved in disease pathogenesis.

• This review first briefly introduces the principles and current methods of eQTL 

mapping and describes the basis of eQTL. We then explore the relevance of 

these results to disease gene identification.

• The limits of present eQTL mapping data are discussed, as is the expected 

impact of new technologies, international efforts to extend results to new 

samples and tissues and how cell lines might be tested with stimuli relevant to 

disease.
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Figure 1. eQTL mapping
Expression QTL mapping begins with the measurement of gene expression in a target cell or 

tissue from multiple individuals. This information is the substrate for investigating the 

effects of DNA polymorphism (of whatever type) on the expression of individual genes. 

Other factors which may alter transcription, such as epigenetic CpG methylation may also 

be mapped. Network analyses builds upon the strong correlations that are present between 

transcripts, and allows the identification of modules of genes that mediate complex 

functions. This information can then be made available to interpret genetic associations and 

mapping information from the study of complex disease.
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