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Abstract

Myxococcus xanthus cells self-organize into aligned groups, clusters, at various stages of
their lifecycle. Formation of these clusters is crucial for the complex dynamic multi-cellular
behavior of these bacteria. However, the mechanism underlying the cell alignment and clus-
tering is not fully understood. Motivated by studies of clustering in self-propelled rods, we
hypothesized that M. xanthus cells can align and form clusters through pure mechanical
interactions among cells and between cells and substrate. We test this hypothesis using an
agent-based simulation framework in which each agent is based on the biophysical model
of an individual M. xanthus cell. We show that model agents, under realistic cell flexibility
values, can align and form cell clusters but only when periodic reversals of cell directions
are suppressed. However, by extending our model to introduce the observed ability of cells
to deposit and follow slime trails, we show that effective trail-following leads to clusters in
reversing cells. Furthermore, we conclude that mechanical cell alignment combined with
slime-trail-following is sufficient to explain the distinct clustering behaviors observed for
wild-type and non-reversing M. xanthus mutants in recent experiments. Our results are
robust to variation in model parameters, match the experimentally observed trends and can
be applied to understand surface motility patterns of other bacterial species.

Author Summary

Many bacterial species are capable of collectively moving and reorganizing themselves into
a variety of multi-cellular structures. However, the mechanisms behind this self-organiza-
tion behavior are not completely understood. The majority of previous studies focused on
biochemical signaling among cells. However, mechanical interactions among cells can also
play an important role in the self-organization process. In this work, we investigate the
role of mechanical interactions in the formation of aligned cell groups (clusters) in Myxo-
coccus xanthus, a model organism of bacterial self-organization. For this purpose, we
developed a computational model that simulates mechanical interactions among a large
number of model agents. The results from our model show that M. xanthus cells can form
aligned cell clusters through mechanical interactions among cells and between cells and
substrate. Furthermore, our model can reproduce the distinct clustering behavior of
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different M. xanthus motility mutants and is applicable for studying self-organization in
other surface-motile bacteria.

Introduction

Myxococcus xanthus is a model organism for studying self-organization behavior in bacteria
[1]. These rod-shaped bacteria are known for their ability to collectively move on solid surfaces.
Depending on environmental conditions, this collective movement allows cells to self-organize
into a variety of dynamic multi-cellular patterns [2,3]. For instance, when nutrients are abun-
dant, cells collectively swarm into surrounding spaces [1]. When cells come into direct contact
with other bacteria that can serve as their prey, M. xanthus cells self-organize into ripples, i.e.,
bands of traveling high-cell-density waves [4-6]. Alternately, if nutrients are limited, cells initi-
ate a multi-cellular development program resulting in their aggregation into 3-dimensional
mounds called fruiting bodies [7,8].

Self-organization in M. xanthus requires coordination among cells and collective cell motil-
ity [1,5,6,9,10]. Despite decades of research, the mechanisms that allow for motility coordina-
tion in M. xanthus are not fully understood. In particular, the ability of cells to collectively
move in the same direction is crucial to the observed multi-cellular behavior at various stages
of their lifecycle [11-13]. Given that individual rod-shaped M. xanthus cells move along their
long axis, coordination of cell direction in a group can be achieved by forming aligned cell clus-
ters. Such clusters are observed in a variety of environmental conditions: low-density swarming
[13], aligned high-cell-density bands in ripples [12] and long streams of aligned cells during
the initial stages of aggregation [14,15]. However, the mechanisms responsible for this collec-
tive cell alignment are not completely clear.

Another important aspect of M. xanthus cell motility is the periodic reversal of its travel
direction by switching the cell’s polarity i.e., flipping the head and tail poles. Recent experi-
ments indicate that the clustering behavior of M. xanthus cells is dramatically affected by varia-
tion in cell reversal frequency [16,17]. Starruf3 et al. [16] observed that, above a certain cell
density, non-reversing M. xanthus mutants (A*S Frz") form large moving clusters, whereas
reversing wild-type cells organize into an interconnected mesh-like structure. In a recent study,
Thutupalli et al. [17] observed that starving wild-type M. xanthus cells increased their reversal
frequency with time, which resulted in a change in their clustering behavior from aggregates
(large clusters) to streams (elongated clusters). In addition, this study indicated that reversing
and non-reversing cells differ in their dynamic behavior inside clusters. Reversing (wild-type)
cells form stream-like clusters that appear stationary, and the cells move within the clusters. In
contrast, non-reversing (AfrzE) mutants form flock-like isolated clusters that move around,
and the cells inside clusters appear to be moving with the same velocity as the clusters.

Therefore, our ability to explain cell alignment into clusters and variation of cell clustering
behavior with changes in reversal frequency is essential for successful models of all self-organi-
zation phenomena. Several prior studies [16,18,19] attempted to understand the cell clustering
process in M. xanthus using mathematical and computational approaches. Starruf3 et al. [16]
developed a kinetic model, inspired from coagulation theory for colloidal particles, in which
cell clusters’ dynamics resulted from their fusion, splitting, and growth-decay processes. Using
this model, they were able to explain the observed cluster size distribution for non-reversing
cells. However, this model could not explain the cell clustering behavior for wild-type (revers-
ing) cells. In another study, Harvey et al. [18] showed symmetry breaking between free cells
(uniform gas phase) and nematically ordered cell clusters (dense phase) using a multi-phase
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continuum model. However, this model did not explicitly study the effects of changing reversal
frequency on clustering, and the equations developed are limited to 1D and quasi-1D settings.
Furthermore, both the models follow phenomenological approaches and do not provide a clear
relationship between the model assumptions and individual cell behavior.

In this study, we overcome the limitations of previous approaches by connecting the indi-
vidual cell behavior with collective cell motility through a biophysical agent-based model. Our
overarching hypothesis is that cell clustering can be explained solely via mechanical interac-
tions among cells and between cells and substrate. In other words, the observed patterns do not
rely on biochemical signals such as chemotaxis. To test this hypothesis, we simulate interac-
tions among a large number of cells through an agent-based simulation (ABS) framework.
Using this framework, we first study the formation of aligned cell clusters in non-reversing M.
xanthus cells and later extend our investigation to reversing cells. Furthermore, we investigate
the effect of cell-substrate interactions, such as slime-trail-following, on the clustering patterns.
The results of our simulation are compared with experimental data from the literature and can
be applicable to other bacteria that display surface motility.

Results
Non-reversing flexible cells form clusters due to steric alignment

First, we investigated whether mechanical interactions among M. xanthus cells would be suftfi-
cient to induce aligned cell cluster formation. This approach was motivated by our previous
study [20], which demonstrated alignment in cell pairs as a result of head-to-side collision, and
soft-condensed matter models for clustering in self-propelled rigid rod particles [21-24]. We
hypothesized that successive collisions of cells with previously aligned cell clusters will result in
the formation of even larger clusters. Thus, we simulated mechanical interactions among non-
reversing cells, similar to self-propelled rod models, but with realistic cell flexibility values. For
this step, we have used the bending stiffness value (k;) for M. xanthus cells from our previous
study [20], which reproduces realistic pair-wise cell collision behavior in model agents. Under
these estimates of k;, we studied clustering behavior of the model M. xanthus cells in our ABS
framework at different cell densities (7, defined as the fractional area occupied by all cells in the
simulation region).

To simulate mechanical interactions of cells moving on a 2D surface, we used our previously
developed framework—briefly described below (see Methods for further details). In this frame-
work, each agent consists of multiple segments, enabling a realistic mechanical model of a sin-
gle M. xanthus cell. To this end, we use a connected string of nodes with linear and angular
springs between nodes to simulate elastic behavior. Agents move forward through propulsive
forces acting on the nodes tangential to the cell length (towards the next node). This is similar
to the force generation through multiple motor protein complexes distributed along the cell
length as observed by recent models of M. xanthus gliding motility [25-28]. Agents experience
drag forces opposing their motion due to the surrounding fluid. Adhesive attachments to the
underlying substrate at nodes resist lateral displacement of agents during collisions (the focal
adhesion model of gliding motility [26]). At low densities, M. xanthus are known to move as a
monolayer of cells. Therefore, collisions among agents are resolved by applying appropriate
forces on nodes that keep agents from overlapping. Agents move over a 2D simulation space
with periodic boundary conditions according to the net forces acting on their nodes. We intro-
duce random noise in agent travel direction by altering the direction of propulsive force on the
front node. We observe the agent behavior by solving Newton’s equations of motion on nodes
to obtain their position and velocity at each time step of the simulation. We use the Box2D [29]
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physics library to solve these equations of motion and efficiently handle the excluded-volume
forces.

We start the simulation by initializing the cells one by one in the simulation region at ran-
dom positions and with random orientations until the desired cell density is reached. While
initializing, we accept only the cell configurations that do not result in cell overlap. As soon as
the simulation begins, cells start moving and colliding with their neighboring cells and, as a
result, align along their major axis [20]. This alignment is nematic [30]: aligned cells can move
in the same or opposite directions depending on the initial orientation of cells. When aligned
cells move in the opposite directions, they separate; however, when they move in the same
direction, a small cluster of aligned cells is formed. These clusters grow in size as more cells
join through collisions or due to merging with other cell clusters. Clusters shrink in size as
peripheral cells leave the cluster due to random change in their travel direction (S1 and S2
Movies). We quantify the evolution of clusters through cluster size distribution (CSD, see S1
Text). After approximately 180 min of simulation time, the CSD is stabilized (S1 Fig), and we
observe that cells in the simulation regions are distributed among clusters of different sizes,
while few cells remain isolated.

Depending on the cell density (1), we observe a variation in the cluster size distribution and
in the number of isolated cells. Cells form stable clusters (containing > 107 cells) only for suffi-
ciently high cell densities (7 > 0.16) (Fig 1A-1D), while cells largely remain isolated for lower
densities (17 = 0.08). We have quantified the effect of increasing cell density (1) on clustering
behavior by measuring the mean cluster size (m) (refer to S1 Text for details on the quantifica-
tion procedures) at each cell density value. We observe that an increase in cell density results in
an increase in mean cluster size (Fig 1E). We have quantified the alignment within the cell clus-
ters using a mean cell orientation correlation, C(r) = (cos(2A6,)), as a function of the neighbor
cell distance r (Fig 1F). Here, A0, is the angle deviation between the orientations () of a pair of
agents whose center nodes are separated by a distance r (see Methods). We use 2A0 to ensure
that correlation values in parallel and anti-parallel alignment configurations remain the same
[31]. The orientation correlation results confirm that, in comparison with the initial distribu-
tion, clustering results in longer-distance orientation correlation for high cell densities. We
observe that, immediately after the start of the simulation (1 min), cells exhibit very low corre-
lation with their immediate neighbors (r = 2 — 3 ym). However, after a long simulation time
(180 min), we observe a large increase in cell orientation correlation with neighbor distances
(except for 17 = 0.08, Fig 1F), indicating the formation of larger aligned clusters (refer to S2 Fig
for the evolution of orientation correlation with time).

To test the robustness of our results, we have varied the cell flexibility (k;) values over a
wide range (0.1x - 10x) and studied the cell clustering behavior in our simulations. We
observed that our model agents formed clusters except for the case of very high cell flexibility
values (0.1x, k, = 107"® Num) (S3A-S3F Fig). Furthermore, mean cluster sizes increased with
increases in cell densities for all cell flexibility values (S3G Fig). Interestingly, increases in cell
flexibility decreased the mean cluster sizes.

Thus, we observe that flexible agents can form aligned clusters through mechanical colli-
sions for sufficiently high cell densities (7 > 0.16), similar to self-propelled hard rods [19]. Fur-
thermore, these cell clusters from our simulations are very similar to the isolated cell clusters
experimentally observed for non-reversing M. xanthus (frz") cells [16,19].

Periodic reversals destroy clustering

Next, we investigated the effect of cell reversals on clustering behavior. We introduced periodic
reversals of cell travel direction (reversal period = 8 min [32]) in our model agents. Similar to

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004474  August 26, 2015 4/20



©PLOS

COMPUTATIONAL

BIOLOGY Mechanism for Cell Alignment in Myxococcus xanthus
0 0 NN 2 v TSN N AT |
)ﬁ\pfl C - /'/(‘/,l(‘ ! B j\ 5 /ﬁﬂ?—\f\‘ﬁ‘%\\:' 2 600 E
h '\v\)[ NN = /}\/ @*’:/aif( S g f { 8
2~ ? ~ -

\ +*
/ -
[0)

N 400
»
o
%)
=

© 200
c
®
o)
=

0

0 0.1 0.2 0.3
Cell density, n
.1.0
F = n=0.08 —n=0.16

o
)

— 1=0.24 —n=0.32

o
(2}

©
~

o
N

o

Orientation correlation, <cos2A0 >

o

5 10 15
Neighbor distance, r [um]

20

Fig 1. Clustering behavior of non-reversing flexible agents in simulations. (A-D) Snapshots of the simulation region at 180 min of simulation time for
different cell densities, n. (A) n=0.08, (B) n=0.16, (C) n=0.24, (D) n = 0.32. Flexible agents formed aligned clusters at moderate to high cell densities (n >
0.16). (E) Mean cluster sizes, (m), from simulation as a function of cell density, . The error bars indicate the standard deviation in the data. The results are
averaged over 5 independent simulation runs. The mean cluster sizes increased with increases in cell density. (F) Orientation correlation (cos 2A6,) among
cells as a function of neighbor cell distance, r. A6, is the angle deviation between orientations (6) of a pair of neighbor cells separated by a distance r.
Orientation correlation (cos 2A6,) values from all cell pairs are binned based on r (bin width = 1 pm) and averaged. Dashed and solid lines represent
orientation correlation values at 1 min and 180 min of simulation time, respectively. Agents in clusters showed higher neighbor alignment at larger distances
compared to the initial randomly oriented cells. Furthermore, the alignment increases with increases in cell density.

doi:10.1371/journal.pcbi.1004474.9001

M. xanthus cells, each reversal results in a switch of the agent polarity i.e., flipping of the head
and tail nodes. Surprisingly, with the addition of periodic cell reversals, cells failed to form
large clusters even after a long simulation time (180 min) (Fig 2A, S3 Movie). Furthermore, we
observed that increases in cell density did not improve the mean cluster sizes significantly (Fig
2B, black line). Even when we started with cells that initially formed clusters by simulating
non-reversing cells first for 90 min and then turned on cell reversals, we observed the destruc-
tion of existing cell clusters within approximately 30 min (5S4 Fig). Thus, our simulation results
indicate that steric alignment is not sufficient for formation of large aligned clusters in a popu-
lation of periodically reversing agents. However, given that wild-type M. xanthus cells reverse
their polarity but still form clusters, additional interactions must be included in our model to
explain M. xanthus clustering behavior.

In our first attempt to correct this, we tested whether cohesive interactions among M. xan-
thus cells [33] can restore clustering. Studies on colloidal particles indicate that adhesion
between particles can lead to their clustering [34]. M. xanthus cells secrete exopolysaccharide
(EPS) proteins and fibrils on their surface, and these are observed to form a network with the
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Fig 2. Clustering behavior of periodically reversing agents in simulations. (A) Snapshot of the
simulation with periodically reversing agents (n = 0.24) at 180 min of simulation time. Reversing agents did
not show significant clustering. (B) Mean cluster sizes, (m), in simulation as a function of cell density, n, for
agents following slime trails (green line) and agents without slime trails (black line). Agents following slime
trails showed a significant increase in mean cluster size compared to agents without slime-trail-following. (C)
Snapshot of the simulation for periodically reversing cells with the slime-trail-following mechanism (n = 0.24,
Ls=11 pm, &5 = 1.0, refer to Methods for details) at 180 min of simulation time. Agents show improved
clustering compared to those without the slime-trail-following mechanism. (D) Orientation correlation (cos
2A\6,) among agents for reversing cells (black) and reversing cells with the slime-trail-following mechanism
(green). Dashed and solid lines are orientation correlation values at 1 min and 180 min of simulation time,
respectively. Orientation correlation with neighbors improved for larger neighbor distances with the slime-
trail-following mechanism.

doi:10.1371/journal.pcbi.1004474.9002

surface fibrils of other cells that are in close contact, resulting in cell-cell cohesion [35,36].
These cohesive interactions can keep cells together and thus may lead to clustering in reversing
M. xanthus cells. We investigated this mechanism by introducing lateral adhesion forces
between neighboring agent nodes in our simulations (Refer to Methods). However, we
observed that adhesive interactions between neighbor cells did not lead to significant cell clus-
tering for reversing cells, even with high adhesion forces (S5 Fig). Thus, lateral adhesions are
not sufficient to stabilize the clusters of reversing cells.

To understand the rationale behind why cell reversals prevent the formation of large clus-
ters, we examined the cell clustering dynamics in our simulations with and without cell rever-
sals. For non-reversing cells, we observe that clusters grow in size due to collisions with new
cells and that cells inside the clusters are unable to leave their cluster. At steady-state, cluster
size is determined by a balance between the flux of peripheral cells leaving the cluster and new
cells joining the cluster, similar to the kinetic theory developed in Ref. [19]. In contrast, for
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reversing cells, we observed that, even though mechanical collisions often lead to the transient
formation of small clusters, these clusters fail to grow and stabilize. This occurs because, upon
reversal, cells from the cluster interior move past the other cells in the opposite direction and
leave the cluster. Furthermore, random changes in their travel direction prevent them from
returning to their original clusters after another reversal. This also explains why adhesive cell
interactions failed to result in the clustering of cells in our simulation. Lateral adhesive interac-
tions do not stop cells from leaving the clusters after reversal and cannot influence the direction
of cell movement once it leaves the existing cluster.

Slime-trail-following by cells restored clustering for reversing cells

Based on the results thus far, we conclude that an additional mechanism that could reduce ran-
dom orientation changes in the cells could help overcome the destabilizing effects of reversals
on clustering. A possible mechanism for this is suggested by the observation of slime-trail-fol-
lowing by M. xanthus cells. M. xanthus cells secrete slime, a polymeric gel, from their surface,
and it is deposited on the underlying substrate as long trails during cell movement [37]. Fur-
thermore, cells tend to follow their own trails after reversal, and, when in contact with slime
trails deposited by others, cells can reorient and follow these [38]. Accordingly, we hypothesize
that slime trails act as an orientation memory that reduces cells’ ability to randomly change
travel direction and assists in clustering for reversing cells.

We investigated the above mechanism of cell clustering based on slime-trail-following using
our ABS framework. As the mechanistic basis of slime-trail-following by M. xanthus cells is
not fully clear, we opt for a phenomenological model of slime-trail-following by reorienting
part of the propulsive force on a cell’s leading pole (head node) parallel to the slime trail it is
crossing (Refer to Methods for more details). The results of these simulations indicate that the
slime-trail-following mechanism restored clustering for reversing cells (Fig 2C, S4 Movie). This
is reflected by a significant increase in mean cluster sizes (green line in Fig 2B) for slime-trail-
following cells compared to cells that do not follow slime trails (dashed line). Additionally,
slime-trail-following also increased large-distance orientation correlations of cells, indicating
the formation of aligned cell clusters (Fig 2D).

Notably, the cell clusters in our simulations for reversing cells with the slime-trail-follow-
ing-mechanism resemble an interconnected mesh-like structure (Fig 2C). These clusters are
distinct from the freely moving isolated cell clusters of non-reversing cells (Fig 1C). However,
these interconnected cell clusters in our simulations are very similar to the interconnected
mesh-like structure observed for wild-type (reversing) M. xanthus cells in experiments [16].

Effective slime-trail-following and long slime trails required for clustering
in reversing cells

To investigate the robustness of clustering to the values of unknown parameters and to demon-
strate key features of the model that are essential for clustering, we investigated effects of varia-
tion in the slime-trail-following ability of cells. For this, we perturbed the parameters that
affect the slime-trail-following mechanism in our model: the slime effectiveness factor (&),
which controls the ability of a cell to follow a slime trail, and the slime trail length (L), which
controls the memory effect of a cell path (refer to Methods for details). High &, values decrease
a cell’s chance of escaping from the slime trail, whereas high L; values increase the chance of a
cell to encounter slime trails from other cells. We have varied both parameters over a wide
range in our simulations: £; (0.1 to 1.0) and L, (0.16 to 11 um).

For short slime trail length (L, = 0.16 ym) and a low slime effectiveness value (g, = 0.1),
reversing cells show a dispersed cell pattern with minimal cell clustering (Fig 3A). This
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Fig 3. Robustness of the slime-trail-following mechanism for cell clustering. (A-D) Snapshots of simulations showing agent clustering behavior (n =
0.24) for variation in the slime effectiveness value and slime trail length at 180 min of simulation time. Only agents with high slime-trail-following efficiency and
long slime trails show significant clustering behavior (D). Inset figures show the slime distribution in the simulation region. The mean cluster sizes in the
simulations (E) as a function of the slime effectiveness factor, &, for different slime trail lengths and (F) as a function of the slime trail length, L, for different
slime effectiveness factor values. Cell clustering improved with increases in the slime effectiveness factor (E), provided the slime trails are sufficiently long,
and with increases in the slime trail length (F).

doi:10.1371/journal.pcbi.1004474.9003

dispersed cell pattern is very similar to the situation for cells without slime-trail-following (Fig
2A). The underlying pattern of slime distribution in the inset shows minimal slime paths in the
simulation, which do not effectively result in cells following others. Increasing the slime trail
length to a higher value (L, = 11 ym) but keeping the slime effectiveness value low (g, = 0.1)
did not improve cell clustering significantly (Fig 3B). Although cells are able to leave longer
slime trails, creating an interconnected slime network (inset), the low slime effectiveness (g;)
value allows cells to easily escape from the slime paths, and the slime-trail-following cannot
effectively stabilize the formed clusters. In the same fashion, an increased slime effectiveness
value (g; = 1.0) but a low slime trail length (L; = 0.16 ym) also did not result in significant cell
clustering (Fig 3C). Here, even though cells are able to follow slime trails effectively, slime trails
are not long enough for other cells to follow, and thus cells are more or less separated except
for small cell clusters. However, with high slime effectiveness (&; = 1.0) and long slime trails

(Ls =11 um), cells are able to produce the normal cell clustering pattern for reversing cells (Fig
3D). Here, long slime trails allow for cells to follow other cells’ slime trails, thus producing an
interconnected slime network, and the high slime effectiveness factor prevents cells from escap-
ing from slime paths and thereby results in a mesh-like clustering of cells. Thus, we observe
that high slime-trail-following efficiency and sufficiently long slime trails allow for reversing
cells to form cell clusters.
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To further investigate the robustness of the slime-trail-following mechanism on agent clus-
tering behavior, we have measured the mean cluster sizes via simulation for variations in slime
effectiveness and slime trail length over a wide range of values (¢, = 0.1-1.0; L, = 0.2—11 um-
64x change in slime production rate; see Methods for details). Our results indicate that except
for very short slime trails (L, < 1 pm), increases in the slime effectiveness value increased the
mean cluster sizes (Fig 3E). Similarly, increases in the slime trail length resulted in significant
increases of mean cluster sizes except for very low slime effectiveness values (Fig 3F). Thus,
reversing agents along with the slime-trail-following-mechanism can form clusters over a wide
range of model parameters.

Mechanical clustering model reproduces many features of observed M.
xanthus cell behavior

To further assess our clustering model, we decided to quantitatively compare our model pre-
dictions with the available experimental data on clustering behavior for both reversing and
non-reversing strains of M. xanthus. To this end, we quantified the cell clustering behavior in
our simulations by measuring the cluster size distribution, cell path maps, and cell visit fre-
quency distribution from our simulations and compared our results with experiments report-
ing similar metrics [16,17].

First, we compared the cell cluster size distribution from our simulations with experiments
of Starruf3 et al. [16]. For this, we performed simulations with the same cell density as in the
experimental conditions for both reversing and non-reversing cells. We measured the cluster
size distribution (CSD) from our simulations and plotted the probability, p(m), of finding a cell
in a cluster of size m as a function of cluster size (solid lines in Fig 4A and 4B) and compared
with the experimentally observed distribution (symbols). We observe that our simulation
results qualitatively follow a similar trend to that of the experimental data. We chose model
parameters (slime effectiveness, £ slime trail length, L) to produce an approximate match.
Global parameter optimization could further improve the agreement but was not performed.
At small cell densities (17 = 0.08), both reversing and non-reversing cells show a monotonically
decreasing CSD with a large number of cells either being isolated or belonging to small clusters
(m ~ 10 — 10%). However, no clusters larger than 102 cells are observed. Nevertheless, with
increases in cell density (7), non-reversing cells show a power-law distribution for CSD (m”,

B =-0.90 - closely matches with the result # = —0.88 from Starruf3 et al. [16]), and a significant
number of cells now belong to large clusters (m ~ 10> — 10%). In contrast, reversing cells show
a decreasing CSD with increases in cluster size, and the largest clusters formed are limited

to < 400 in size even at high cell densities.

Next, inspired by recent experimental studies indicating that wild-type (reversing) and
AFrzE (non-reversing) M. xanthus mutants form distinct cell clusters that differ in their shape
and dynamic behavior [17], we investigated these phenomena in our simulations. For this, we
traced the cell paths over time and plotted the cell visit frequency of sites in the simulation
region as a heat map for 2 consecutive hours after an initial transition period of 60 min (Fig 4C
and 4D). We observed localized high-frequency visit areas and changing shapes of cell trace
paths over time for non-reversing cells (Fig 4C), indicating the formation of large clusters that
move all over the simulation region (S5 Movie). In contrast, reversing cells organized into
interconnected clusters that resemble a mesh-like structure, and the shape of the structure itself
remained approximately the same over time (Fig 4D, S6 Movie). Furthermore, the gap regions
in the mesh structure (white areas) mostly remain free of cells or show very low visit frequency,
indicating that reversing cells are confined within the cluster network (clearly seen for high-
slime-trail-following-efficiency parameters, e.g., L, = 11 um, £, = 1.0; see S4 Movie).
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Fig 4. Comparison of cell clustering behavior in simulations with experiments. (A-B) Comparison of cluster size distributions (CSD) from simulations
(lines) with experimental data (symbols, digitized from Starruf3 et al. [16]) for non-reversing (A) and reversing (B) cells. Probability, p(m), of finding a cell in a
cluster is plotted as a function of the cluster size m. We use different sets of slime-trail-following mechanism parameters for non-reversing (Ls = 0.6 um, &5 =
0.5) and reversing (Ls = 11 ym, &s = 0.2) agents. CSD results from simulations show a similar trend to that of the experimental data. (A) Non-reversing cells
show a power-law-like CSD, whereas reversing cells show a monotonically decreasing CSD (B). (C-D) Heat maps of cell visit frequencies over the simulation
region for 2 consecutive hours (n = 0.24). The color bar represents the number of cell visits per hour at a particular location. Non-reversing cells show a
dynamic cluster pattern with changes in cell traces (C), whereas reversing cells show a static cluster pattern with the pattern of cell traces remaining
approximately the same over time (D). (E) Probability of cell visits, p(N), as a function of visit frequency, N, for non-reversing (red) and reversing cells (green)
over a 1-hr simulation time (120-180 min). Reversing cells show a large fraction of sites with high visit frequencies compared to non-reversing cells.

doi:10.1371/journal.pcbi.1004474.9004

Additionally, we have quantified the probability of cell visits, p(IN), as a function of visit fre-
quency, N, in our simulations for both reversing and non-reversing agents(Fig 4E). We observe
that simulations with reversing cells show a large fraction of sites with high visit frequencies

(N =20 - 50 visits for a 60-min interval) compared to non-reversing cells. Thus, reversing cells
in the simulation region frequently visit specific sites, indicating stationary cluster structures.
These results are qualitatively consistent with the observations of Thutupalli et al. [17] on the
dynamic behavior of clusters.
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Discussion

Aligned cell clusters are crucial for formation of the multicellular structures observed during
the M. xanthus lifecycle [12-15]. However, the mechanisms responsible for the cell alignment
and clustering were not completely understood. Inspired by the studies of clustering in self-
propelled hard-rods through mechanical collisions [21-24], we have developed an agent-based
simulation framework to investigate mechanical collision-based cell clustering in M. xanthus.
In this framework, each agent is based on a biophysical model of an individual M. xanthus cell
that realistically mimics flexible cell motility behavior. The results from our simulations show
that non-reversing flexible model agents can form clusters through mechanical collisions alone
under realistic cell bending stiffness values of M. xanthus cells. However, the addition of peri-
odic cell reversals eliminated the cell clusters in our simulations. Thus, we observe that
mechanical collisions alone are insufficient for cell clustering of reversing cells. We hypothe-
sized an additional mechanism of cell clustering based on slime-trail-following by M. xanthus
cells. As expected, slime-trail-following by cells restored clustering for reversing cells. By vary-
ing the parameters in our model, we observe that effective slime-trail-following and long slime
trails are required for cell clustering using the slime-trail-following mechanism. We quantified
cell clustering behavior from our simulations and compared our results with experiments for
both non-reversing and reversing cells. We observe that our simulation results qualitatively
agree with experimental cell clustering behavior. Thus, our analysis shows that M. xanthus
cells can form aligned clusters through mechanical collisions and slime-trail-following.

We believe that the following mechanism enables the reversing M. xanthus cells to form
clusters through slime-trail-following (Fig 5A): a single M. xanthus cell leaves a slime trail
while moving on a substrate and traces back its own trail while reversing and thus reinforces its

Fig 5. (A) Hypothetical mechanism of cell clustering through slime-trail-following in reversing M. xanthus cells. (B) Circular cell aggregates
observed in simulation for non-reversing agents with the slime-trail-following mechanism (n=0.24,Ls =11 ym, & =1.0).

doi:10.1371/journal.pcbi.1004474.9005
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own slime trail. When other cells cross this trail, they reorient and align with this slime trail
and start following it. This results in a positive feedback mechanism where newly joined cells
in the slime trail further reinforce the trail with their own slime, causing more cells to join the
trail. Thus, more cells aligned with the original slime trail are recruited into the trail, resulting
in a cluster of aligned cells. Within a cluster, cells maintain alignment with neighbor cells
through mechanical interactions.

In the current study we limited cell densities (1) to 0.32 due to the limited availability of
experimental data [16]. However, to extrapolate our conclusions, we have simulated the clus-
tering behavior of cells for higher densities (up to 17 = 0.60). Results from these simulations
indicate that cell alignment and clustering trough mechanical interactions also occur at these
high densities (S6 Fig). Interestingly we observe clustering of reversing cells at high cell densi-
ties even without slime-trail-following by cells (S6B Fig). These results suggest diminished role
of slime trails in collective cell alignment at these conditions as the whole area covered by cells
is likely to contain slime. However, we have opted not to investigate these conditions at greater
depth due to limitations of our current 2D simulation framework and cluster quantification
metrics for such conditions. At high densities cells in our simulations form large continuous
clusters such that separating and characterizing individual clusters is practically impossible.
Moreover at high cell densities real M. xanthus cells are capable of moving on top of one
another resulting in a multi-layered biofilm whose dynamics are different from that of low cell
density scenario. These effects would be explored in depth elsewhere.

Our simulations show that distinct clustering behaviors observed in M. xanthus mutant
strains can be explained through mechanical interactions alone. Quantitative results from our
simulations (CSD, cell visit frequency) follow the general trend as observed in experimental
data [16,17]. Although our results do not exactly match with the experiments, this is under-
standable, as we were aiming to explain the observed cell clustering phenomena with a minimal
interaction model. In our current model, we ignored many other interactions that exist among
M. xanthus cells (e.g., the twitching of M. xanthus that uses type-IV pili to pull cells together).
The addition of these processes along with further optimization of immeasurable parameters
and choosing other model parameters from direct experimental observations (e.g., distribution
of cell orientation changes, reversal time distribution) could further improve our current
model but are beyond the scope of this study.

During development, M. xanthus cells exhibit circular aggregates, some of which later serve
as initial fruiting body seed centers [14]. A recent study by Janulevicius et al. [39], using an
agent-based-model similar to our current model, concluded that cells form circular aggregates
when the end parts of leading and lagging cell pairs interact through short-range active forces
that keep the distance between cell pairs constant. They reasoned that such active forces can
come through type-IV pili at the leading end of a cell interacting with the other cell surface or
through adhesive interactions between cell poles. However, in our current simulations, we
occasionally observed such circular aggregates (Fig 5B) without using any active interactive
forces between end-to-end cell pairs. Furthermore, in contrast to the predictions of [39], we
observe that these aggregates do not rotate as rigid bodies as the agents inside the aggregate
slide past one another (S7 Movie). In our simulations, agents move with approximately the
same speed, and, as a result, the angular velocity is higher for cells near the aggregate center.
Thus, we argue that the circular aggregates observed in M. xanthus cells can be explained by
slime-trail-following without active attractive forces between cells and propose that tracking
cells in such aggregates can discriminate between the alternative models of their formation.

Cell clustering and the alignment of cells inside the clusters play a major role in M. xanthus
physiology. M. xanthus are predatory bacteria that feed on other bacteria by secreting proteo-
lytic enzymes into their surroundings. To maximize their predation, these cells form groups
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that move together. The alignment of cells inside these groups allows for a dense packing of
cells per a given area, thereby increasing their predation efficiency. Furthermore, the variations
in cell-clustering behavior observed by Thutupalli et al. [17] with concomitant changes in cell
reversal frequency may enable starving cells to optimize their search for nutrients. During the
initial phase of starvation, M. xanthus cells exhibit a low reversal frequency that allows them to
form flock-like clusters that explore their surroundings for nutrients. Once nutrients are
found, cells switch to a high reversal frequency, thus enabling cells to form stationary cluster
structures that allow them to conduct optimal nutrient gathering.

Notably, cell clustering via slime following is observed in other bacterial systems. A recent
study by Zhao et al. [40] showed that P. aeruginosa also uses a slime-trail-following mechanism
to form initial cell clusters. Using cell-tracking algorithms and fluorescent staining of the
secreted Psl exopolysaccharides (slime), they concluded that P. aeruginosa cells form cell clus-
ters by depositing slime trails that influence the motility of their kin cells that encounter these
trails, to follow and further strengthen the trails. These processes results in a positive feedback
loop reinforcing the trails. Our study shows that M. xanthus cells use a similar mechanism to
form aligned cell clusters. Furthermore, our results show that differences in surface motility
mechanisms (e.g., reversals or the ability to follow trails) lead to distinct cell-clustering behav-
iors. These distinctions can be used to identify the nature of cell motility from snapshot images
of bacteria for which direct observations on individual cells are difficult. Therefore, the mecha-
nistic model of cell clustering and alignment developed here can be applicable to a wide class of
bacteria displaying surface motility.

Methods
Agent-based simulation framework

Biophysical model of M. xanthus cell. We have extended our previous biophysical model
[20] for flexible M. xanthus cells to account for periodic cell reversals and slime-trail-following
by cells. Brief description of the cell model along with changes introduced over the previous
model is presented here. Refer to Balagam et al. [20] for additional details of our cell model. In
the following sections bold letters indicate vectors and letters with a hat indicate unit vectors.

Each agent in this model consists of multiple segments enabling a realistic mechanical
model of a single M. xanthus cell. We represent each agent as a connected string of N(=7)
nodes (S7A Fig). The first (i = 1) and the last (i = 7) nodes of the agent are designated as head
and tail nodes respectively. Neighbor nodes are joined by rotational joints consisting of linear
and angular springs. Linear springs (spring constant, k;) between nodes resist elongation or
compression to keep the agent length constant. Angular springs (spring constant, k;) resist
bending of the agent from straight line position and thus simulate elastic nature of cell
bending.

For simplicity, we only implement gliding (A) motility of M. xanthus cells in our model. For
this motility we use the distributed force generation along cell length through multiple motor
protein complexes as indicated by recent models [25-28]. Thus, agents move forward through
propulsion forces (F,) acting on nodes (except at tail node) tangential to the agent towards
next (i — 1) node in the current cell travel direction. Direction of propulsive force on the head
node (F, ;) is influenced by other contributing factors (e.g. slime-trail following, random-turn-
ing noise etc.—explained below), in absence of which acts in a vector direction from its previous
node (i = 2) to the head node (i = 1). We keep the magnitude of propulsive force (F,; = Fr/

(N — 1), where Fris total propulsive force per cell) on each node equal. Viscous drag forces (F,)
arising from the surrounding fluid act on nodes opposing their motion and are proportional to
the node velocities (with proportionality constant/drag coefficient, ¢). Adhesive attachments to
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underlying substrate at nodes (except at the tail node) resist lateral displacement of the nodes
during collisions. These attachments are modeled as linear springs (spring constant k,) and are
detached at a maximum breaking force F,, ,,,.x (= 50 pN [20]). These attachments represent the
adhesion complexes in focal adhesion model of gliding motility in M. xanthus [26].

At low densities, M. xanthus cells are known to move in a monolayer. Therefore, collisions
among agents are resolved by applying appropriate forces on nodes that keep agents from over-
lapping. Additionally, we employ appropriate forces on agent nodes to simulate periodic rever-
sals of cells, noise in cell travel direction, and slime-trail-following by cells. Implementation
details of these processes in our model are presented below.

Periodic cell reversals. M. xanthus cells periodically reverse their travel direction (mean
reversal period = 8 min [4]) by switching the roles of its head and tail parts [41,42]. We mimic
this behavior in our model by renumbering nodes in reverse order i.e., switching the roles of
head and tail nodes at each reversal event and as a result the direction of propulsive force on
agent nodes are rotated 180°. Reversals in agents are triggered asynchronously by an internal
timer expiring at the end of the reversal period (7,). This timer is reset to zero at each reversal
event. During initialization, each agent’s reversal timer is initialized randomly between [0, T,].
For all simulations shown here reversals are perfectly periodic i.e., no noise in 7, is introduced.
However, introducing noise in reversals does not affect our conclusions (data not shown).

Noise in cell travel direction. M. xanthus cells exhibit random turns during movement on
solid surfaces [20]. What triggers this random change in cell travel direction is not known. We
introduce these random cell turns in our model by altering the direction of propulsive force on
agents’ head node. For simplicity, we only introduce a constant amount of noise in our model.
Agents in our model change their travel direction during turn events that are activated asyn-
chronously. During a turn event, we rotate the direction of the propulsion force on an agent’s
head node by 90° either clockwise or anti-clockwise direction chosen randomly (S7C Fig).
Each turn event lasts for a fixed time interval (1 min). Similar to periodic reversals, turns events
in each agent are activated through an internal timer, expiring after a fixed amount of time
(1, = 5 min). During initialization, each agent’s turn event timer is initialized randomly between
[0, 7]

Slime-trail-following by cells. The exact mechanism for slime-trail-following by M. xan-
thus cells is currently not known. It is possible that slime tracking by a cell is facilitated by
attaching the type IV pili at the leading pole of the cell to the slime deposited on the substrate
[43]. Retraction of the pili inward causes the cell to reorient towards the nearest slime trail.
Alternatively, slime trails may provide low resistance (drag) paths compared to the slime-free
areas and thus allow the cells slip into these paths when they cross these slime trails.

We employ a phenomenological approach for slime-trail-following in our model where we
gradually change the direction of propulsive force (F,;, S7D Fig) on an agent’s leading node
parallel to the slime-trail it is crossing. Here, we assume that cells actively seek slime rich
regions on the substrate. Thus, we model a slime field covering the entire simulation region
that tracks the amount of slime at each position. This slime field is divided into a square grid
area with grid width equal to the cell width (W,). Each agent secretes slime at a constant rate
(S,) as it moves forward, that is deposited into the underlying slime field grid elements. Slime
exponentially degrades (or dries) in each grid element (dS / dt = —k,S, where k, is the degrada-
tion constant). We assume that cells can only track wet slime (threshold slime detection
limit = 1% of original deposit volume). Consecutive grid elements with wet slime represent a
slime trail in our model.

Propulsive force on the head node (F,,;) of an agent is influenced by the presence of nearby
slime trails (S7D Fig, left). When an agent encounters a slime-trail, total propulsive force on its
head node is rotated with its magnitude preserved and the rotation amount is a function of
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slime concentration. To implement this we split F,,; into two components: one in current head
node direction (F,) and another parallel to the slime-trail (F;). The magnitude of force in slime
direction is proportional to the fraction of slime remaining in the grid element whereas F, is
computed to keep the magnitude of propulsion force, Fr/ (N — 1), constant.

= fa(55) ()]

F
Fc:|: L _|F5|:|éh
N-1

Here &; is slime effectiveness factor, Fr - total propulsive force per cell, N -number of nodes
per cell, S — volume of wet slime in grid element, Sy - initial volume of wet slime, é_, &, —unit
vectors in direction of slime-trail and head node respectively.

We determine the direction of the dominant slime-trail (€,) using the following procedure
(adapted from Hendrata et al.[44]). A semi-circular region, radius equal to half the cell length,
in front of each cell’s head node is designated as slime search region (S7D Fig, right). This
semi-circle area is divided into 5 sectors (bins) and the total slime volume in each bin and the
maximum slime volume (S,,.x) among the 5 bins are calculated. Finally, we estimate the slime-
trail direction as the vector along the center line of the bin (sector) with at least 80% S,,.x slime
volume and has least angle deviation (A6;) from current head node direction (e,). If two bins
(on opposite sides of ¢,) satisfy the above condition, then we chose either bin randomly.

Slime-trail length (L) is estimated as the distance travelled by an agent within the time
slime deposited at a grid element degrades below a threshold volume (S, = 0.01). We assume
that slime degrades exponentially with time (rate constant k). So the amount of slime depos-
ited in a grid element of width (W) by the time (7; = w./ v;; v.- mean cell speed) an agent
crosses the grid element is S, = (1 —e™™)S, /k,. And the time (t,,) required to degrade this
initial deposited slime volume (S, ) below the threshold volume is t,, = In(S, /S,,) / k,.
Finally, slime-trail length of is calculated as L, = ty,, v..

To test the robustness of our results using slime-trail-following mechanism we have varied
the length of the slime-trail (L,) produced by an agent. For this, we have multiplied production
rate of slime (S,) from an agent and slime degradation constant (k;) with same factor so that
the net volume of slime in the simulation region remains constant.

Lateral cell adhesions. To simulate adhesive interactions between agents (used only for
simulations in S5 Fig), we apply lateral adhesive forces (E,4,) on nodes of neighboring agents
that are closer than specific threshold distance dy,, (= 0.75 um) (S7E Fig). Adhesive force on
each node is calculated using the following equation.

0 dL Z dthr
Fadh - d, — WC F
(m) kathT Wc S dJ_ < dthr

Here d, is the perpendicular distance between the nodes of neighboring agents. These adhe-
sive forces are applied on each node normal to the direction of propulsive force (¢, ;) towards
its neighbor agent nodes.

Simulation procedure. We study the clustering behavior of cells by simulating mechanical
interactions among large number (M) of agents on a 2D simulation region with periodic
boundary conditions in an agent-based-simulation (ABS) framework. Flow chart for our simu-
lation procedure is shown in S8 Fig.
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We initialize agents one by one on a square simulation region (dimension Lg;,,,) over few initial
time steps until desired cell density (7)) is reached. Agents are initialized in random positions over
the simulation region with their orientations (6) chosen randomly in the range [0, 271]. Here, an
agent orientation is defined as the angle made by the vector pointing from its tail node to head
node with X-axis (S7B Fig). Agent nodes are initialized in straight-line configuration. During ini-
tialization, agent configurations that overlap with existing agents are rejected. After initialization
the head node for each agent is chosen between its two end-nodes (i = 1, 7) with 50% probability.

At each time step of simulation, agents move according to the various forces (see S8 Fig) acting
on their nodes. Changes in node positions and velocities are obtained by integrating the equations
of motion based on Newton’s laws. We use Box2D physics library [29] for solving the equations
of motion and for effective collision resolution. Snapshots of the simulation region, orientation of
each agent along with its node positions are recorded at 1 min time interval for later analysis.

Simulations are implemented in Java programming language with a Java port of Box2D
library (http://www.jbox2d.org/). Parameters of the simulation are shown in S1 Text. Other
parameters of the model are same as in Balagam et al.[20]. Each simulation is run for 180 min.

Supporting Information

S1 Text. Supplemental methods. Details of quantification procedures for cell clustering along
with the simulation parameters.
(DOCX)

S1 Fig. Evolution of cumulative cluster size distribution (CSD) with time for different
model parameters. Non-reversing agents with cell densities (A) 7=0.08 (B) n=0.16 (C) n=
0.24 (D) n = 0.32 (E) Reversing agents with cell density n = 0.24 (F) Non-reversing agents fol-
lowing slime-trails, 7 = 0.24 (G) Reversing agents following slime-trails, 7 = 0.24.

(PDF)

S2 Fig. Evolution of orientation correlation among cells with time. (A, C) Non-reversing
cells (B, D) Reversing cells (C, D) cells following slime-trails. All simulations performed at cell
density n = 0.24.

(PDF)

S3 Fig. Clustering behavior of non-reversing agents for variation in cell flexibility. (A-F)
Snapshots of cell clusters after 180 min of simulation (cell density, 7 = 0.24) with bending stift-
ness (kp) values (A) 1078 Num (B) 5 x 1078 Num (C) 107 Num (D) 2 x 1077 Num (E) 107*°
N.m (F) Rigid rods (G) Mean cluster sizes in simulation as a function of cell density () for dif-

ferent cell bending stiffness values.
(PDF)

$4 Fig. Clustering behavior of cells with with turning on/off cell reversals. Snapshots of
simulation at (A) 90 min (B) 120 min (C) 150 min. Cell reversals were turned-off for the first
90 min of simulation and thereafter are turned-on from 90 to 120 min with reversal period =
8 min. Reversals are turned-off again at 120 min. Cell clusters formed by simulating non-
reversing cells for first 90 min (A) are quickly, within 30 min destroyed by cell reversals (B).
Suppression of reversals restored clustering of cells after another 30 min (C).

(PDF)

S5 Fig. Clustering behavior of reversing-cells with lateral cell adhesions. Snapshots of simu-
lation at 180 min for different lateral adhesion force values. Adhesion force per cell (A) F 4, =
0 pN (B) Faa, = 30 pN (C) Faay = 60 pN (D) F,gp, = 120 pN.

(PDF)
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S6 Fig. Clustering behavior of cells at high cell densities. (A-D) Snapshots of simulation at
180 min for cell density 77 = 0.60. (E) Orientation correlation among cells at 180 min of simula-
tion time for non-reversing cells (red), reversing cells (green), non-reversing cells with slime-
trail-following (blue), and reversing cells with slime-trail-following (cyan). Dotted line repre-
sents the orientation correlation values at 1 min simulation time.

(PDF)

S7 Fig. Multi-segmented biophysical model of single M. xanthus cell as an agent in our sim-
ulation framework. (A) Each agent contains N = 7 nodes connected by joints that simulate
elastic behavior of the cell. Propulsive forces (F,,;, green arrows) on the nodes, in the direction
of next node, move the agent forward. (B) Orientation () of an agent defined as the angle
made by the vector connecting from its tail node to head node with the X-axis. (C) Random
noise in agent direction is introduced by reorienting the propulsive force (F,, ;) on its head
node by 90° either clockwise or anti-clockwise randomly for a fixed amount of time (= 1 min).
(D) Schematic for implementation of slime-trail following. When an agent encounters a slime
trail, a part of the propulsive force on its head node (F,) proportional to amount of slime in the
trail is reoriented parallel to the direction of the slime-trail (€,). Remaining propulsive force F,
(= (F; /(N — 1) — |F,|)&,) acts in current head node direction (€,). Thus the resulting force
on the head node F, ; maintains its magnitude but changes its direction due to its interaction
with slime. In slime-rich regions (slime denoted by blue trails) of simulation, effective slime-
trail direction (,) is estimated by dividing a semi-circular slime search region at the head node
of the agent into bins (n = 5). és is chosen as the direction (center line) of the bin with high
slime volume (0.8 S,,,,,) but with least deviation (A8;) from current head node direction (&, ).
(E) Lateral adhesive forces (F,4;,) between a pair of agents acting normal to node propulsion
vectors (é,,),-). These forces are implemented for simulations shown in S5 Fig only (F) Orienta-
tion correlation between a pair of agents, is computed by averaging cos(2A0,) over all agent
pairs whose center nodes are separated by distance r. AB, is the difference in orientations
between the two agents.

(PDF)

S8 Fig. Flow chart of simulation procedure for our agent-based-simulation framework.
(PDF)

S1 Movie. Evolution of clusters through agent collisions, merging and splitting of clusters.
(MP4)

S$2 Movie. Clustering behavior of non-reversing agents in initial 60 min of simulation. At
the beginning, agents are initialized one by one over few time steps until desired cell density
(n = 0.24) is reached. Units of time displayed here is min.

(MP4)

$3 Movie. Clustering behavior of periodically reversing agents in initial 60 min of simula-
tion. At the beginning, agents are initialized one by one over few time steps until desired cell
density (77 = 0.24) is reached. Units of time displayed here is min.

(MP4)

$4 Movie. Clustering behavior of periodically reversing agents following slime trails in ini-
tial 60 min of simulation. Slime following mechanism parameters (L; = 11 ym, &, = 1.0). At
the beginning, agents are initialized one by one over few time steps until desired cell density
(1= 0.24) is reached. Units of time displayed here is min.

(MP4)
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S5 Movie. Clustering behavior of non-reversing agents following slime trails after initial
transition period of 60 min. Slime following mechanism parameters (L, = 0.6 um, £,=0.5).
Cell density 7 = 0.24. Units of time displayed here is min.

(MP4)

S$6 Movie. Clustering behavior of periodically reversing agents following slime trails after
initial transition period of 60 min. Slime following mechanism parameters (L, = 11 ym, £, =
0.2). Cell density 7 = 0.24. Units of time displayed here is min.

(MP4)

S$7 Movie. Circular cell aggregates formed by non-reversing agents with slime-following
mechanism active. 3% of all agents (represented as strings of nodes here) in the simulation are
colored red to track individual agent movement inside the aggregate. Agents can slide past
their neighbors inside the aggregate and move with approximately the same speed. As a result
angular velocity of the agents near aggregate center is higher compared to agents farther from
center.

(MP4)
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