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ABSTRACT P transposable elements in Drosophila are
mobilized via a cut-and-paste mechanism. This mode of trans-
position requires repair of both a double-strand break at the
donorDNA site and gapped DNA at the target site. Biochemical
studies have identified a cellular non-P element-encoded DNA
binding protein, termed the inverted repeat binding protein
(IRBP), that specifically interacts with the outer half of the
31-bp terminal inverted repeats. Protein sequence information
was used to isolate cDNA clones encoding IRBP. Sequence
analysis shows that IRBP is related to the 70-kDa subunit of the
human Ku autoimmune antigen. The mammalian Ku antigen
binds free DNA termini and has been implicated in immuno-
globulin VDJ recombination, DNA repair, and transcription.
In addition, Ku is the DNA binding subunit of the double-
strand DNA-dependent protein kinase. Cytogenetic mapping
indicates that the IRBP gene maps to chromosomal position
86E on the right arm of the third chromosome.

Transposable elements are mobile segments ofDNA found in
many prokaryotic and eukaryotic organisms (for review, see
ref. 1). Highly organized nucleoprotein complexes between
transposable element-encoded proteins and the transposon
termini carry out the catalytic events of transposition: cleav-
age of the donor transposon DNA and covalent joining of the
transposon to the target DNA in a strand transfer reaction
involving a single step transesterification reaction (for re-
view, see ref. 2).
Because of its widespread use as genetic tools and as

vectors for gene transfer, the P element family of transpos-
able elements in the fruit fly, Drosophila melanogaster, is
one of the most studied eukaryotic transposons (3). P ele-
ments are found in natural populations and can range in size
from about 0.5 to 2.9 kb. When these elements transpose, a
DNA intermediate is formed in which an 8-bp target site
duplication is created upon insertion. The P element termini
are required for transposition, which include the 31-bp ter-
minal inverted repeats, the 11-bp internal inverted repeats,
and unique DNA sequences encompassing ==150 bp at each
end (3). Complete full-length P elements encode an 87-kDa
sequence-specific DNA-binding transposase protein that rec-
ognizes internal sites at each end (4). Recently, a faithful in
vitro P element transposition system was developed which
showed that GTP and Mg2+ serve as cofactors for the
reaction (5). Consistent with these biochemical studies, ge-
netic experiments suggested that P elements transpose via a
cut-and-paste mechanism similar to the bacterial transposons
TnlO and Tn7 (6-9).
The model for P element transposition suggests that a

double-strand break is left at the donor site after an excision
event (5, 6). This double-strand break must be repaired to
prevent chromosomal loss. When a homologous chromo-

some is present, this repair is hypothesized to occur by a gene
conversion type of mechanism similar to double-strand gap
repair (6). This repair process must involve non-P element-
encoded factors. Indeed, it is known that many bacterial
transposition reactions are often aided by host-encoded pro-
teins. In the case of P elements, genetic studies have shown
that a gene called muslOl (for mutagen sensitive) can affect
the recovery of chromosomes that have undergone P element
excision (10). In addition, several other mus mutants are
known to be involved in DNA excision or postreplication
repair. Biochemical assays provide another approach to
identify host cell components involved in P element trans-
position. Using the P element inverted repeats as a probe, a
Drosophila DNA binding protein was identified that bound
specifically to the outer half of the P element inverted repeats
(11). Because the inverted repeats are absolutely required for
transposition and are not bound by the P element-encoded
transposase, the inverted repeat binding protein (IRBP) is a
good candidate for a host factor involved in transposition.
To begin an investigation of the potential role of IRBP in

P element transposition, the protein was purified and sub-
jected to microprotein sequence analysis. This sequence
information was used to isolate cDNA clones encoding
IRBP.¶ The protein bears significant primary sequence ho-
mology to the 70-kDa subunit of the human Ku autoimmune
antigen. This mammalian heterodimeric DNA binding pro-
tein complex was identified by using human patient sera from
autoimmune syndrome disease patients (12-14). The human
Ku antigen binds both at DNA termini and at internal sites in
vitro (14-16) and has been implicated in DNA repair, trans-
position, transcription, and DNA replication (13, 17, 18).
Recently, the human Ku antigen was shown to be a subunit
of the double-strand DNA-dependent protein kinase (dsDNA
PK) (19, 20), which can phosphorylate a number of nuclear
proteins in vitro (21-23). However, the physiological sub-
strate(s) of the dsDNA PK is still unknown. Furthermore,
recent studies with mutant x-ray-sensitive mammalian cells
that are defective for double-strand break repair and immu-
noglobulin VDJ (variable-diversity-joining) recombination
(24, 25) have shown that the Ku antigen is either absent or
defective in these mutant cell lines. Reversion to x-ray
resistance restores Ku immunoreactivity and terminal DNA
binding activity (26-28). Our analysis suggests that the IRBP
cDNA encodes a DNA binding protein that recognizes the P
element inverted repeats. Cytogenetic mapping localized the
IRBP gene to region 86E2-3 on the third chromosome.
Interestingly, this region contains a mutation, mus3O9, that is
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FIG. 1. DNA and deduced amino acid sequences of IRBP. The sequence of one full-length cDNA is shown as well as the deduced amino
acid coding sequence of 631 amino acids. Peptides derived from trypsin and V-8 protease digestion followed by amino acid sequence analysis
are underlined. The three peptides used to make anti-peptide antibodies are shown in italics.

involved in DINA repair (29, 30). Finally, the divergence

between IRBP and human Ku 70 may explain why P elements

have not been found to transpose in mammalian cells.

MATERIALS AND METHODS

Protein Purification, Microsequencing, and Peptide Anti-

body Production. The IRBP was purified by heparin agarose

and several cycles of DNA affinity chromatography as de-

scribed (11). These fraction's were concentrated and sub-

jected to SDS/polyacrylamide gel electrophoresis. Electro-

blotting, protease treatment, and HPLC were as described

(31, 32). Several of these peptide peaks were sequenced on a

model 477A sequenator (Applied B'iosystems). Three se-
quences were chosen (IRBP1, VIPMDVAFIYC; IRBP2,
AIELDAFQVC; IRBP3, SIVHPSYNC) for peptide antibody
generation. Polyclonal antiserum wa's raised in New Zealand
White female rabbits by injection of 100-200. ug of KLH-
peptide conjugate. Polyclonal mouse anti-IRBP antib'odies
were prepared by nitrocellulose implant of immunoblotted
protein (33). Antibody was affinity-purified (33).
cDNA Library Screening, Cloning, DNA Sequencing, and

RNA. A random-primed cDNA library in bacteriophagekAgtll
was made from Drosophila Kc cell poly(A)l mRNA as
described (34). This library was screened with the IRBP2
anti-peptide antibodies and positives were rescreened with
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polyclonal mouse anti-IRBP or rabbit anti-IRBP1 peptide
antibodies (34). One insert was sequenced (KC1.1) and then
used in DNA hybridization screening of a Drosophila 4- to
8-hr embryonic plasmid cDNA library (35). One new cDNA
(pNB409-1) was subjected to DNA sequence analysis. RNA
blot hybridization was carried out by standard methods at
65°C with single-stranded antisense RNA probes (34).

In Situ Hybridization to Polytene Chromosomes. Biotiny-
lated DNA probes were prepared by nick-translation (34) and
hybridized to polytene chromosomes as described (36).
UV Crosslinking and Immunoprecipitation. Antibodies

were prepared against IRBP expressed in Escherichia coli as
described (33). UV photochemical crosslinking was carried
out as described (11) with 32P-labeled, BrdUrd-substituted
DNA probes prepared as described (11).

RESULTS
Isolation, Sequence Analysis, and Comparison of IRBP

cDNA Clones. IRBP was identified as a DNA-binding poly-
peptide of65-70 kDa and can be purified to near homogeneity
by a combination of heparin-agarose and DNA affinity chro-
matography (11). Purified IRBP was subjected to gel elec-
trophoresis, electroblotting, enzymatic digestion, HPLC sep-
aration of peptide fragments, and amino acid sequencing.
Three peptide sequences were used to generate synthetic
peptides and polyclonal antisera as well as electroblotted
IRBP protein purified from Kc cells (11). These antibodies
were affinity-purified and shown to specifically crossreact
with IRBP in partially purified IRBP preparations on protein
immunoblots (data not shown). The IRBP anti-peptide anti-
bodies were then used to screen a random-primed Drosophila
cDNA library made from Kc tissue culture cells. Positive
clones were retested with IRBP1 anti-peptide and anti-IRBP
antibodies. One of the largest inserts was subcloned into a
plasmid vector and sequenced. This cDNA fragment was
used as a probe to isolate full-length clones from a 4- to 8-hr
embryonic cDNA plasmid library (35). Restriction endonu-
clease mapping as well as in vitro transcription and transla-
tion of isolated clones [using the SP6 promoter in the library
plasmid vector pNB40 (35)] were used to identify full-length
clones (data not shown) and one of these was sequenced in
its entirety (Fig. 1). This open reading frame encodes a
predicted protein of 631 amino acids and Mr 72,353. The
original two peptide sequences as well as numerous addi-
tional peptides from subsequent peptide sequencing experi-
ments were all identified in this sequence (Fig. 1).
Sequence data base searches revealed significant matches

with the 70-kDa subunit of the human Ku autoimmune
antigen (Fig. 2). The best region of homology is between
amino acids 354 and 459 of the IRBP sequence and amino
acids 342 and 443 of the human Ku p70 protein (37) (Fig. 2).
However, by inclusion of gaps in the alignment it is clear that
there are other regions of identity throughout the entirety of
the two sequences (27% identity and 34% similarity with
conservative amino acid substitutions) (Fig. 2). There is also
significant identity with a recently isolated yeast Ku p70
homolog (Fig. 2; ref. 38). The human 70-kDa Ku protein has
a leucine zipper motif located between amino acids 187 and
248 (37, 39) that may be involved in heterodimeric DNA
binding complex formation with the p86 Ku subunit. Al-
though this region is similar, it is not absolutely conserved in
the Drosophila IRBP cDNA sequence (Figs. 1 and 2). Re-
cently, we have found that IRBP is associated with another
protein of 80 to 86 kDa. This protein may correspond to the
larger Ku p86 subunit that was presumably fractionated away
during the IRBP purification (11). It is possible that associ-
ation of IRBP with a p86 subunit as a heterodimer might alter
its DNA recognition properties. In addition, the purified
IRBP appears to be proteolyzed, missing -6 kDa of terminal

peptide sequence relative to the cloned IRBP cDNA (E.L.B.
and D.C.R., unpublished observations). These findings may
explain the instability of IRBP DNA binding activity in
chromatography experiments and the clearly preferred bind-
ing of IRBP to the P element 31-bp inverted repeats located
at internal sites in DNA binding experiments (11) (E.L.B. and
D.C.R., unpublished observations). However, it should be
noted that mammalian Ku antigen binds both terminal and
internal DNA sites, but the Ku and IRBP DNA binding
activities cannot currently be compared (13-18).

Expression of the HRBP Gene. The expression profile of the
gene encoding IRBP was examined by RNA blot hybridization
with poly(A)+ mRNA from Drosophila KC tissue culture cells
and tissues from a variety ofDrosophila developmental stages.
Using antisenseRNA derived from the IRBPcDNA as a probe,
a single 2.4-kb RNA species was identified in all RNA samples
(Fig. 3). This size of mRNA is consistent with the cDNA
sequence analysis (Fig. 1). The 2.4-kb IRBP mRNA was
expressed at a low level throughout development but was
particularly abundant in ovaries, 0- to 2-h embryos, and adult
females (Fig. 3). In addition, a low level of the 2.4-kb mRNA
was observed in adult males (data not shown). This expression
profile is consistent with the transcript being made at the highest
levels in the female germ line during oogenesis.

Cytogenetic Mapping ofthe IRBP Gene. The use ofpolytene
chromosome in situ hybridization in Drosophila allows a
direct link to be made between a cloned DNA segment and
the genetic map of the organism. Often this information is
useful to aid in gene identification and physical mapping and
to identify potential candidate genes corresponding to a
particular cDNA. Using a biotin-labeled IRBP cDNA as a
probe, a single hybridization signal was detected at cytolog-
ical position 86E2-3 on the right arm of the third chromosome
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FIG. 2. Amino acid sequence comparison of IRBP (DP70) and the
human Ku p70 (HP70) (37) and the yeast (YP70) (38) proteins. Identical
amino acids are indicated in white with black background, conservative
amino acid changes (D/E, R/K, L/I/V, G/A, Q/N, S/T) are indicated
in white with a stippled gray background, and nonidentical amino acids
are indicated in black letters. Gaps are indicated by black dots and
amino acid numbers are indicated on the right.

Biochemistry: Beall et al.
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(3R) (Fig. 4). Examination of the known genes that lie in this
interval (40) indicated that one gene, mus3O9, lies in the
cytogenetic interval 86E2-87B5. mus3O9 mutants are mem-
bers of a class of mutants in Drosophila that are hypersen-
sitive to mutagenic chemicals. Interestingly, the mus3O9
mutants also exhibit sterility in females or both sexes de-
pending on the mutant allele (29, 40). This observation is
provocative because IRBP mRNA levels were found to be
elevated in the female germ line (Fig. 3).

Immunoprecipitation of IRBP-DNA Adducts. IRBP was
identified by UV-induced DNA-protein crosslinking and
DNase I footprinting (11). In highly purified IRBP prepara-
tions, a single polypeptide of -65 kDa was crosslinked to the
P element inverted repeat DNA (11). Therefore, we prepared
antibody to recombinant IRBP protein expressed from the
IRBP cDNA in E. coli. We used this affinity-purified anti-
body to immunoprecipitate the 32P-labeled DNA-protein
adduct from highly purified IRBP preparations. This anti-
body crossreacted with both crude and purified Drosophila
IRBP on protein immunoblots (Fig. 5A). Indeed, this anti-
body was capable of retrieving the IRBP protein-DNA
complex (Fig. SB, lane 1), whereas with control antibody or
no antibody, no immunoprecipitation was observed (Fig. 5B,
lanes 2 and 3). Note that the protein-DNA adduct has slower
electrophoretic mobility than the free protein due to the
covalently attached 32P-labeled DNA (11). Therefore, the
cDNA we isolated corresponds to the 65-kDa IRBP poly-
peptide originally purified from Drosophila Kc cells.
The mammalian Ku p70 subunit is often associated with a

second Ku p86 subunit as a heterodimer (13, 37). However,
we purified IRBP as a single polypeptide from Drosophila Kc
cells that is homologous to the mammalian Ku p70 (11).
Previous studies have shown that mammalian p70 is capable
of binding DNA in the absence of p86 (41), suggesting that
there may be a free pool ofthe 70-kDa subunit in cells and that
association with p86 might modulate DNA binding by p70.
Expression studies and isolation of the Drosophila p86 gene
are needed to clarify whether IRBP p70 alone or a p70-p86
heterodimer allows specific binding to P element DNA se-
quences as observed with endogenous purified IRBP protein
(11). It is possible that an IRBP p70-p86 heterodimer might
have altered DNA recognition properties.

FIG. 4. Cytogenetic mapping of Drosophila IRBP gene. Chro-
mosome in situ hybridization was carried out with the biotinylated
IRBP cDNA and detected with avidin-alkaline phosphatase (36). The
cytogenetic region of chromosome 3R 86-87 is shown and the signal
at 86E2-3 is indicated by an open arrow.

recognize the terminal 31-bp inverted repeats (4). A non-P
element-encoded protein was identified by DNase I protec-
tion analysis that recognized the outer half of the inverted
repeats and was termed the IRBP (11). Here, we have
isolated the gene encoding IRBP and determined its deduced
protein sequence. Interestingly, Drosophila IRBP shares
significant sequence homology to the 70-kDa subunit of the
mammalian Ku autoimmune antigen. Chromosome in situ
hybridization analysis mapped the IRBP gene to cytological
position 86E2-3. This genomic region contains a gene called
mus3O9 that is a member of a class of genes that are
hypersensitive to mutagenic chemicals (29, 30). Many of
these genes have been shown to be involved in DNA repair.

Is IRBP Involved in P Element Transposition? Several
observations suggest that IRBP may be involved in P element
transposition. First, in vitro DNA binding studies demon-
strated that IRBP interacts with the P element 31-bp inverted
repeats adjacent to the transposition cleavage site. This is
significant because the inverted repeats are absolutely re-
quired for P element transposition in vivo (3) and transposase
does not interact with these sequences in vitro (4). Second,
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FIG. 3. (Upper) Developmental profile ofDrosophila IRBP tran-
scripts. RNA blot hybridization was carried out with poly(A)+ RNA
from the indicated developmental stage. (Lower) Same filter probed
with a Drosophila SC actin gene probe used as a control. Lane M, size
markers (kb).

FIG. 5. Immunoprecipitation ofIRBP-DNA complexes. (A) Pro-
tein immunoblot analysis of IRBP in crude heparin agarose (lane 1)
and purified DNA affinity (lane 2) fractions (11) using affinity-
purified antibodies to recombinant IRBP expressed in E. coli. (B)
Antibodies raised to recombinant IRBP were used to immunopre-
cipitate radiolabeled IRBP-DNA complexes produced by UV pho-
tochemical crosslinking with 32P-labeled BrdUrd-substituted DNA
(11).
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the IRBP protein sequence suggests that it is related to the
human Ku autoimmune antigen. This heterodimeric DNA
binding complex binds to both DNA termini and internal sites
(14-16) and is known to be involved in DNA double-strand
break repair and immunoglobulin VDJ recombination in
mammalian cells (26-28). Third, the IRBP gene was cytoge-
netically mapped to interval 86E2-3 on the right arm of the
third chromosome. This region contains a gene called mus3O9
that may be involved in DNA repair and P element transpo-
sition.
The mutagen-sensitive (mus) mutants in Drosophila were

isolated in the early 1970s (29, 30). One member of this class
of mutants, mus101, has been demonstrated genetically to
effect P element transposition (10). These experiments
showed that there was failure to recover P element carrying
chromosomes in a muslOI mutant background after trans-
posase-induced P element mobilization (10). This observa-
tion suggests that muslOI is involved in repair of the double-
strand break induced at the donor chromosomal site after P
element mobilization (5, 6). It is likely that other mus genes
will be involved in P element transposition and that mus3O9
is a possible candidate.
The Mammalian Ku Antigen Is Involved in DNA Repair.

Based on the biochemical observation that the purified mam-
malian Ku antigen recognizes free DNA termini (14-16), it
was proposed that Ku might be involved in DNA repair or
transposition (13). A number of studies have led to the
purification of Ku as a DNA binding protein involved in
transcription. However, these studies have not been defini-
tive (17, 20, 21). More recently, the Ku antigen was purified
as a subunit of the dsDNA PK (19, 20). These experiments
showed that the 350-kDa kinase polypeptide required the
heterodimeric Ku subunits for specific interaction with DNA
and for catalytic activity (19, 20). The kinase is known to
phosphorylate a variety of nuclear proteins, including simian
virus 40 T antigen, p53, and other DNA binding proteins in
vitro (21-23). However, the physiological significance of
phosphorylation of these proteins is not known. Interest-
ingly, the sequence specificity for phosphorylation by the
dsDNA PK was investigated for p53 and was shown to be a
serine or threonine residue always flanked by a glutamine
residue (23). There are seven of these potential dipeptide
phosphorylation sites in the first 140 amino acids ofP element
transposase. It is conceivable that free DNA ends might act
as a signal to trigger phosphorylation of transposase or other
target proteins during transposition or at other times in the
cell cycle-for instance, after DNA replication. Interest-
ingly, transcription of the genes encoding the mammalian p70
and p86 Ku subunits is induced when cells proliferate after Go
cell cycle arrest (42).

It has recently been found that x-ray-sensitive mammalian
cell lines are defective for both double-strand break repair
and immunoglobulin VDJ recombination (24, 25). Interest-
ingly, these mutant cell lines are defective in a DNA end
binding activity, which was recently demonstrated to be
antigenically related to the Ku antigen (26-28). More impor-
tantly, reversion of the x-ray sensitivity was accompanied by
a restoration of the Ku-like DNA binding activity (27, 28).
Thus, it appears likely that the Ku antigen is involved either
directly or indirectly in double-strand break repair and VDJ
recombination.
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