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Abstract

Growing evidence supports roles for brain insulin and insulin-like growth factor (IGF) resistance 

and metabolic dysfunction in the pathogenesis of Alzheimer's disease (AD). Whether the 

underlying problem stems from a primary disorder of central nervous system (CNS) neurons and 

glia, or secondary effects of systemic diseases such as obesity, Type 2 diabetes, or metabolic 

syndrome, the end-results include impaired glucose utilization, mitochondrial dysfunction, 

increased oxidative stress, neuroinflammation, and the propagation of cascades that result in the 

accumulation of neurotoxic misfolded, aggregated, and ubiquitinated fibrillar proteins. This article 

reviews the roles of impaired insulin and IGF signaling to AD-associated neuronal loss, synaptic 

disconnection, tau hyperphosphorylation, amyloid-beta accumulation, and impaired energy 

metabolism, and discusses therapeutic strategies and lifestyle approaches that could be used to 

prevent, delay the onset, or reduce the severity of AD. Finally, it is critical to recognize that AD is 

heterogeneous and has a clinical course that fully develops over a period of several decades. 

Therefore, early and multi-modal preventive and treatment approaches should be regarded as 

essential.
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2. INTRODUCTION

The gold standard for definitively diagnosing AD is to perform a postmortem examination 

of the brain, with the objective of demonstrating beyond-normal aging associated densities 

of neurofibrillary tangles, neuritic plaques, and amyloid-beta 40–42 kD fragments of 

amyloid beta precursor protein (AβPP-Aβ) deposits in corticolimbic structures, bearing in 

mind that neurodegeneration frequently involves multiple other cortical regions as well. The 

common thread among these characteristic lesions is that they harbor insoluble aggregates of 

abnormally phosphorylated and ubiquitinated tau, and neurotoxic AβPP-Aβ in the form of 
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oligomers, fibrillar aggregates, or extracellular plaques. Secreted AβPP-Aβ oligomers have 

been demonstrated to be neurotoxic and to inhibit hippocampal long-term potentiation, i.e. 

synaptic plasticity (1).

To improve diagnosis and treatment, we must learn to connect the development and 

progression of neurodegeneration with molecular, biochemical, physiological, neuro-

imaging, and clinical abnormalities in AD. Several strategies could be taken to advance this 

process. One is to consider the roles of other major abnormalities, including loss of neurons, 

fibers, and synapses, disruption of the cortical-laminar architecture, gliosis, proliferation of 

dystrophic neurites, and neuro-inflammatory responses. A second matter is to recognize and 

possibly embrace the significance of the considerable overlap among various subtypes of 

neurodegeneration with respect to their underlying cellular, molecular, biochemical, and 

structural abnormalities. The former approach could provide more options for discovering 

neurodegeneration and the latter could help define panels of biomarkers for diagnosing AD 

and distinguishing it from other forms of dementia. A third point is that the recognition of 

shared abnormalities among different neurodegenerative diseases may help to identify 

treatments and preventive measures that could be effective in all or most of them. Through 

the use of neuro-imaging, including positron emission tomography (PET) scanning, 

magnetic resonance imaging (MRI), functional MRI, and magnetic spectroscopy, combined 

with increasingly sophisticated molecular and biochemical analyses of postmortem brain 

tissue, it has become evident that neurodegenerative diseases share in common 

abnormalities in brain metabolism, accumulations of mis-folded ubiquitinated proteins 

(often cytoskeletal), oxidative stress, neuroinflammation, autophagy, and cell loss mediated 

by mitochondrial dysfunction, apoptosis, or necrosis. Therefore, attention must be paid to 

these multi-process mechanisms of neurodegeneration in considering therapeutic targets. 

Although this review focuses on AD, the concepts are very likely applicable to other major 

neurodegenerative diseases including fronto-temporal dementias, multiple systems atrophy, 

Parkinsonism-Lewy Body Dementia, and motor neuron diseases.

3. ALZHEIMER'S DISEASE: A BRAIN FORM OF DIABETES MELLITUS

Growing evidence supports the concept that Alzheimer's disease (AD) is fundamentally a 

metabolic syndrome in which brain glucose utilization and energy metabolism are impaired 

(2–6). These abnormalities have been linked to brain insulin and insulin-like growth factor 

(IGF) resistance with disablement of pathways needed for survival, gene expression, and 

plasticity in neurons (2). Inhibition of insulin/IGF signaling results in increased: 1) activity 

of kinases that cause tau to become hyper-phosphorylated; 2) accumulation of AβPP-Aβ; 3) 

production of oxidative and endoplasmic reticulum (ER) stress; 4) oxidative damage to 

proteins, RNA, DNA, and lipids; 5) mitochondrial dysfunction; 6) neuro-inflammation; and 

7) activation of pro-death cascades. The attendant down-regulation of target genes needed 

for cholinergic homeostasis, compromises learning, memory, and cognition.

Clues that AD actually represents a metabolic disease emerged from studies showing that 

deficits cerebral glucose utilization mark the early stages of disease (7–12), and that 

progression of metabolic abnormalities correlates with worsening of AD symptoms (13, 14). 

Recent studies showed that AD is associated with insulin and insulin-like growth factor 
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(IGF) resistance and insulin/IGF deficiency in the brain, and are accompanied by significant 

and progressive abnormalities in the expression of genes and activation of kinases that are 

regulated by insulin and IGF (2–6). In fact, most if not all of the major abnormalities in AD, 

including deficits in choline acetyltransferase, hyper-phosphorylation of tau, increased 

oxidative stress, neuro-inflammation, activation of pro-AβPP-Aβ cascades, and metabolic 

failure could be attributed to impaired insulin/IGF actions in the brain (5). Correspondingly, 

experimental down-regulation or depletion of brain insulin receptors is sufficient to cause 

cognitive impairment and neurodegeneration with features that overlap with AD (15–19). In 

AD brains, deficits in insulin/IGF signaling are due to the combined effects of insulin/IGF 

resistance and deficiency. Insulin/IGF resistance is manifested by reduced levels of 

insulin/IGF receptor binding and decreased responsiveness to insulin/IGF stimulation, while 

trophic factor deficiency is associated with reduced levels of insulin polypeptide and gene 

expression in brain and cerebrospinal fluid (CSF) (4–6, 20–22). In essence, AD can be 

regarded as a form of brain diabetes that has elements of both insulin resistance and insulin 

deficiency. To consolidate this concept, we proposed that AD be referred to as, “Type 3 

diabetes” (5, 6).

4. SYSTEMIC DISEASE FACTORS CONTRIBUTING TO BRAIN INSULIN/IGF 

RESISTANCE AND AD NEURODEGENERATION

Aging is the most dominant risk factor for AD. This means that a host of intrinsic, 

environmental, and epigenetic factors that contribute to the process of aging establish the 

circumstances needed for neurodegenerative diseases to become manifested. The corollary is 

that the factors governing development of neurodegenerative diseases are not strictly genetic 

and therefore can be modified or prevented. Correspondingly, epidemiologic, clinical, and 

experimental data indicate that peripheral insulin resistance associated with obesity, Type 2 

diabetes mellitus (T2DM), metabolic syndrome (dyslipidemic states), and non-alcoholic 

steatohepatitis (NASH), can all mediate brain insulin/IGF resistance, and thereby contribute 

to the pathogenesis of mild cognitive impairment (MCI), dementia, or AD (3, 4, 22–29). 

More recently, human and experimental animal studies have provided new information 

about the causes and effects of brain insulin resistance and deficiency, particularly in 

relation to cognitive impairment (5, 6, 19, 30–33). The near globalization of the obesity 

epidemic is sounding alarms that now draw all of our attentions (23, 34). However, 

expansion of the literature often yields confusion from conflicting results and variability in 

study design. In order to develop logical and novel approaches for treating and preventing 

neurodegeneration based on the brain insulin resistance hypothesis, three main questions 

must be addressed: 1) Do T2DM and other peripheral insulin resistance states cause 

neurodegeneration, including AD? 2) Do T2DM and other peripheral insulin resistance 

disease states principally serve as co-factors in the pathogenesis of cognitive impairment and 

neurodegeneration? or 3) Do T2DM and AD fundamentally represent the same disease 

processes occurring in different target organs and tissues? These questions are addressed 

below.
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4.1. Contributions of obesity and T2DM to cognitive impairment and neurodegeneration

Epidemiologic studies demonstrated that individuals with glucose intolerance, deficits in 

insulin secretion, or T2DM have a significantly increased risk of developing mild cognitive 

impairment (MCI) or AD-type dementia. Longitudinal studies further suggested that T2DM 

(35, 36) and obesity/dyslipidemic disorders (37) correlated with eventual development of 

MCI, dementia, or AD (35, 38–43). However, one study showed that obesity itself, with or 

without superimposed T2DM, increased the risk for MCI, AD, or other forms of 

neurodegeneration (44), suggesting that systemic factors related to obesity, besides T2DM, 

can promote neurodegeneration. On the other hand, although a relatively high percentage of 

individuals with MCI or dementia have T2DM, peripheral insulin resistance, or obesity, the 

vast majority of patients with AD do not have these diseases. To gain a better understanding 

of the contributions of T2DM and obesity to neurodegeneration, attention must be given to 

postmortem human and experimental animal studies.

In general, the arguments made in favor of the concept that T2DM or obesity causes AD are 

not founded; however, the concept that peripheral insulin resistance disease states contribute 

to cognitive impairment and AD pathogenesis or progression does have a sound basis. 

Against a causal role are the findings that, postmortem human brain studies demonstrated no 

significant increase in AD diagnosis among diabetics (45), and similarly abundant densities 

of senile plaques and rates of neurofibrillary tangle pathology were observed in subjects 

with T2DM compared with normal aged controls, although peripheral insulin resistance was 

more common in AD than with normal aging (46). Since neurofibrillary tangles and 

dystrophic neurites are hallmarks of AD and correlate with severity of dementia, the 

abovementioned findings in human postmortem studies indicate that T2DM alone is not 

sufficient to cause AD. On the other hand, in experimental mouse and rat models, chronic 

high fat diet (HFD) feeding and diet induced obesity (DIO) with associated T2DM, do cause 

cognitive impairment with deficits in spatial learning and memory (47, 48). Moreover, 

experimental obesity with T2DM causes mild brain atrophy with brain insulin resistance, 

neuro-inflammation, oxidative stress, and deficits in cholinergic function (49, 50).

An important qualifier concerning these studies is that the associated brain abnormalities in 

diabetes and obesity syndromes were typically modest in severity, and devoid of many 

important structural lesions that characterize AD, i.e. neurofibrillary tangles. Therefore, 

observations in both in humans and experimental models suggest that while obesity or 

T2DM can be associated with cognitive impairment, mild brain atrophy, and a number of 

AD-type biochemical and molecular abnormalities in brain, including insulin resistance and 

oxidative stress, they do not cause significant AD pathology. Instead, the findings suggest 

that T2DM, obesity, and probably other peripheral/systemic insulin resistance states serve as 

co-factors contributing to the pathogenesis or progression of neurodegeneration. The 

significance of these results is that therapeutic strategies designed to treat T2DM, obesity, 

and systemic insulin resistance could help slow the progress or reduce the severity of AD, 

but they will not likely prevent it altogether. Correspondingly, a number of studies have 

already demonstrated that treatment with hypoglycemic or insulin sensitizer agents can be 

protective in reducing the incidence and severity of AD brain pathology (51).
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4.2. Pathological processes contributing to cognitive impairment and neurodegeneration 
in states of systemic insulin resistance

T2DM, obesity, and peripheral insulin resistance may contribute to MCI, dementia, and 

neurodegeneration as a result of chronic hyperglycemia, peripheral insulin resistance, 

oxidative stress, advanced glycation end-products accumulation, insulin degrading enzyme 

activation, inflammation, and/or microvascular disease (42). Chronic hyperglycemia, 

peripheral insulin resistance, oxidative stress, and advanced glycation end-product 

accumulation can cause progressive injury to vessel walls and eventual fibrosis. Insulin 

degrading enzyme has a role in the processing AβPP, and in states of insulin deficiency or 

resistance, insulin degrading enzyme may be rendered more available for AβPP cleavage 

and attendant AβPP-Aβ deposition in vessel walls. Finally, the contribution of dyslipedemic 

states associated with T2DM, obesity, and hepatic steatosis is such that toxic lipids, 

particularly ceramides, can cause insulin resistance. Their increased levels in peripheral 

blood in peripheral insulin resistance disease states may contribute to progressive insulin 

resistance in cerebral vessels and brain parenchyma, accounting for the excessive overlap of 

AD with cerebral micro-vascular disease.

4.2.1. Vascular factors—The role of cerebral microvascular disease deserves particular 

attention because of its long recognized association with AD. Cerebrovascular disease can 

additively impact the development and progression of dementia by causing multifocal 

ischemic lesions, focal infarcts in structures targeted by AD, or leukoaraiosis with 

pronounced attrition of white matter fibers (52). Diabetes mellitus causes arteriosclerosis, in 

part due to chronic hyperinsulinemia, which injures blood vessels, causing intimal 

thickening, scarring, and leakiness (53–58). In addition, hyperinsulinemic diabetics who also 

carried at least one ApoE-ε4 allele were found to have a compounded risk for developing 

AD, whereas non-diabetic, ApoE4-ε4 negative individuals showed significantly lower 

densities of AβPP-Aβ plaques and neurofibrillary tangles by postmortem examination.

4.2.2. Neurotoxic lipids—Recent studies suggest that cognitive impairment correlates 

more with hepatic steatosis and insulin resistance than obesity or T2DM (59–65). 

Correspondingly, neurocognitive deficits and brain insulin resistance occurred primarily 

when chronic high calorie feeding resulted in visceral obesity with steatohepatitis. 

Moreover, a number of examples showed that high fat intake and obesity were not required, 

and instead, toxin exposures that caused steatohepatitis with hepatic insulin resistance also 

resulted in neurodegeneration and cognitive impairment (19, 33, 49, 50, 66, 67). These 

observations suggest that hepatic insulin resistance may mediate neurodegeneration.

Hepatic insulin resistance dysregulates lipid metabolism, resulting in increased oxidative 

and ER stress, mitochondrial dysfunction, and lipid peroxidation (68, 69). Sustained hepatic 

insulin resistance leads to increased lipolysis (70) and the generation of toxic lipid e.g. 

ceramides, which further impair insulin signaling, mitochondrial function, and cell viability 

(69, 71, 72). Ceramides are lipid signaling molecules (73) that cause insulin resistance (74–

76) by activating pro-inflammatory cytokines (73, 77, 78) and impairing PI3 kinase-Akt 

activation (79–82). Hepatic ceramide production increases in various models of 

steatohepatitis, including diet-induced obesity (DIO) and low-level nitrosamine exposure 
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(19, 33, 49, 66, 67), and each is associated with cognitive impairment, brain insulin 

resistance, and neurodegeneration. This point led us to formulate the hypothesis that, in the 

settings of obesity, T2DM, and other peripheral insulin resistance states, cognitive 

impairment is mediated via a liver-brain axis of neurodegeneration (83–85).

4.2.3. Liver brain axis hypothesis—In essence, cognitive impairment with 

neurodegeneration and brain insulin resistance is caused by the increased generation of 

ceramides in liver, which enter peripheral blood, and cross the blood-brain barrier to 

produce neuronal insulin resistance, oxidative stress, and molecular and biochemical 

abnormalities that lead to AD (86). This hypothesis is supported by experiments showing 

that parenteral administration of cytotoxic ceramides produces sustained impairments in 

spatial learning and memory with neurodegeneration and brain insulin/IGF resistance, 

similar to the effects of DIO with T2DM and NASH Preliminary studies showed that 

chemical inhibitors of ceramide biosynthesis enhance insulin sensitivity, and treatment with 

peroxisome proliferator-activated receptor (PPAR) agonists, e.g. PPAR-α (GW7647), 

PPAR-δ (L-160,043), or PPAR-γ (F-LLeu), which improve insulin responsiveness and 

reduce oxidative stress (33, 87–89), decrease hepatic ceramide generation, serum ceramide 

levels, cognitive impairment, and neurodegeneration in models of DIO with T2DM and 

steatohepatitis (90). Therefore, we propose that peripheral insulin resistance diseases 

contribute to neurodegeneration, including AD, by increasing production of neurotoxic 

ceramides that cause brain insulin resistance.

5. CENTRAL NERVOUS SYSTEM PATHOGENIC FACTORS MEDIATING 

PRIMARY BRAIN INSULIN/IGF RESISTANCE (TYPE 3 DIABETES)

A compelling argument has been made that AD represents a brain form of diabetes mellitus 

(5, 6). AD is associated with progressive brain insulin resistance in the absence of T2DM, 

obesity, or peripheral insulin resistance (5, 6, 31, 32), and the molecular, biochemical, and 

signal transduction abnormalities in AD are virtually identical to those that occur in both 

T1DM and T2DM (5, 6, 35, 91–95). This hypothesis is supported by experimental studies in 

which, the administration of intracerebroventricular streptozotocin, a glucosamine-

nitrosourea pro-diabetes compound, resulted in cognitive impairment with deficits in spatial 

learning and memory, brain insulin resistance and insulin deficiency, and AD-type 

neurodegeneration, but not diabetes mellitus (19, 96–99). In contrast, parenteral 

administration of streptozotocin causes diabetes mellitus with relatively mild degrees of 

hepatic steatosis and neurodegeneration (96, 100–102). The alkylating properties of 

streptozotocin cause DNA damage, and uptake of streptozotocin by insulin producing cells, 

i.e. pancreatic islet beta cells, leads to insulin deficiency and hyperglycemia (Type 1 

diabetes). However, the broader effects of low or high dose streptozotocin treatments 

suggest that the glucosamine-nitrosourea actions extend well beyond inducing toxic injury to 

insulin producing cells. These observations suggest that diabetes mellitus syndromes with 

impairments in insulin signaling and energy metabolism, and increased oxidative stress, 

mitochondrial dysfunction, and cell death, can selectively target one or more organ-systems 

including liver, skeletal muscle, adipose tissue, kidney, or brain. This concept is not unique 

since vascular, autoimmune, and malignant neoplastic diseases can also selectively or 
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differentially afflict different organ systems. But, what pathological or physiological factors 

are responsible for the selective occurrence of insulin/IGF resistance in the brain?

5.1. Role of tau pathology in the pathogenesis of type 3 diabetes

Neurofibrillary tangles and dystrophic neuritis represent the major neuronal cytoskeletal 

lesions that correlate with dementia in AD. These structural abnormalities contain 

aggregated and ubiquitinated insoluble fibrillar microtubule-associated proteins, particularly 

tau. (103, 104). Tau protein becomes gets hyper-phosphorylated due to inappropriate 

activation of kinases, such as GSK-3β. Consequently, tau protein misfolds and self-

aggregates into insoluble fibrillar structures that form neurofibrillary tangles, dystrophic 

neurites, and neuropil threads (105). Accumulation of fibrillar tau disrupts neuronal 

cytoskeletal networks and axonal transport, leading to synaptic disconnection and 

neurodegeneration (105). In addition, prefibrillar tau can aggregate into soluble neurotoxic 

oligomers that cause synaptic disconnection and neuronal death (106). Although the key 

steps leading to tau hyper-phosphorylation and aggregation, could be explained on the basis 

of brain insulin/IGF resistance (107–110), due to the associated decreased signaling through 

phosphoinositol-3-kinase (PI3K), Akt (28, 29), and Wnt/β-catenin (111), and increased 

activation of GSK-3β (112–116), tau hyper-phosphorylation mediated by other mechanisms 

such as increased activation of cyclin-dependent kinase 5 (cdk-5) and c-Abl kinases (117, 

118), and inhibition of protein phosphatases 1 and 2A (105, 118, 119), could lead to 

oxidative stress and neuro-inflammation, which are inhibitory to insulin/IGF signaling.

5.2. Contributions of Amyloid-β neurotoxicity in type 3 diabetes

In AD, amyloid precursor protein (AβPP) expression and processing are dysregulated, 

resulting in the accumulation of AβPP-Aβ (Aβ) soluble neurotoxic oligomeric fibrils, and 

insoluble aggregated fibrils (plaques). Increased AβPP expression and altered proteolysis 

result in formation and accumulation of 40 or 42 amino acid length Aβ peptides that can 

aggregate. The causes of Aβ accumulation and toxicity in sporadic AD are still unknown. 

However, experimental evidence supports opposing arguments that brain insulin resistance 

with attendant oxidative stress and neuro-inflammation promotes Aβ accumulation and 

toxicity, and that Aβ toxicity causes brain insulin resistance.

Insulin stimulation accelerates trafficking of Aβ from the trans-Golgi network, where it is 

generated, to the plasma membrane, and insulin stimulates Aβ extracellular secretion (120) 

and inhibits its intracellular accumulation and degradation by insulin-degrading enzyme 

(121, 122). Therefore, impaired insulin signaling can disrupt both the processing of AβPP 

and clearance of Aβ (123). On the other hand, accumulation of Aβ disrupts insulin signaling 

by competing with insulin, or reducing the affinity of insulin for binding to its own receptor 

(124, 125). In addition, AβPP oligomers inhibit neuronal transmission of insulin-stimulated 

signals by desensitizing and reducing the surface expression of insulin receptors, and 

intracellular AβPP-Aβ directly interferes with PI3 kinase activation of Akt, which leads to 

impaired survival signaling, increased activation of GSK-3β, and hyper-phosphorylation of 

tau. Since IGF-1 or IGF-2 suppression of GSK-3β activity (126) reduces the neurotoxic 

effects of AβPP (127–130), the neuro-protective properties of these and related trophic 

factors could be exploited for therapeutic purposes in AD.
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5.3. Stress factors in the pathogenesis of brain insulin resistance

Insulin and IGF signaling regulate glucose utilization, metabolism, and ATP synthesis 

needed for cellular homeostasis and broad ranging functions. Deficits in cerebral glucose 

utilization and energy metabolism occur early in AD, either prior to, or coincident with 

initial stages of cognitive decline (22, 131, 132). Correspondingly, impairments in brain 

insulin and IGF signaling mechanisms correlate with severity of AD (6). Since glucose 

transporter 4 (GLUT4) regulates brain glucose uptake and utilization, and GLUT4 

expression and function are stimulated by insulin, brain insulin resistance could readily 

account for the deficits in energy metabolism that begin early in the course of AD. Deficits 

in energy metabolism lead to increased oxidative stress, mitochondrial dysfunction, and pro-

inflammatory cytokine activation (16, 109, 133). Oxidative stress promotes the 

accumulation of reactive oxygen (ROS) and reactive nitrogen species (RNS) that attack 

subcellular organelles, resulting in adducts with DNA, RNA, lipids, and proteins, and 

attendant compromise of their structural and functional integrity. Consequences include, loss 

of cell membrane functions, disruption of the neuronal cytoskeleton with attendant synaptic 

disconnection, neurotransmitter deficits, and impaired neuronal plasticity, and neuro-

inflammation. Neuro-inflammatory responses in microglia and astrocytes increase oxidative 

stress, organelle dysfunction, and pro-apoptosis signaling. However, neuro-inflammation 

can also contribute to brain insulin/IGF resistance because it stimulates AβPP expression 

(134), and aberrant AβPP cleavage, deposition, and toxic fibril formation in the brain (130, 

135–139). In addition, persistent oxidative stress and neuro-inflammation lead to 

constitutive activation of kinases e.g. GSK-3β, which promote aberrant hyper-

phosphorylation of tau. Therefore, although brain insulin/IGF resistance causes oxidative 

stress, neuro-inflammation, and energy dyshomeostasis, oxidative stress can also precipitate 

or exacerbate brain insulin/IGF resistance and thereby worsen neurodegeneration (5, 26, 33).

5.4. Reverberating loop of neurodegeneration

In sporadic AD in which brain diabetes is the main or only manifestation of insulin/IGF 

resistance in the body, the initiating and etiological factors are not known. However, 

experimental data cited above, support seemingly opposing arguments that hyper-

phosphorylated tau, aberrant amyloid-beta processing, oxidative stress, and neuro-

inflammation both cause and can be caused by brain insulin/IGF resistance. The significance 

of the aggregate results is that, once the cascade of neurodegeneration has been established, 

it can be exacerbated and perpetuated by the very pathological processes that are caused by 

the initiating factors. Therefore, the process of neurodegeneration can cyclically spiral 

toward more advanced stages of disease, and ultimately result in permanent changes that are 

no longer amenable to treatment.

6. ENVIRONMENTAL/EXPOSURE FACTORS POTENTIALLY MEDIATING 

BRAIN INSULIN/IGF RESISTANCE AND NEURODEGENERATION

The argument that aberrant phosphorylation of tau, AβPP protein processing, and 

neuroinflammation are causal, i.e. major initiating factors in the pathogenesis of brain 

insulin/IGF resistance is weakened by the fact that these pathological processes have no 

known primary causes, and a large number of studies have thoroughly documented that 
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intracerebral treatment with streptozotocin, a pro-diabetes drug, not only causes brain 

insulin/IGF resistance, but also leads to increased tau phosphorylation, AβPP accumulation, 

and neuro-inflammation (15, 18, 19, 33, 140). In addition, intracerebral delivery of short 

interfering RNA (si-RNA) duplexes to inhibit insulin, IGF-1, or IGF-2 receptor expression 

and signaling in the brain or cultured neurons was found to be sufficient to increase tau 

phosphorylation, AβPP-Aβ expression, oxidative stress, mitochondrial dysfunction, and 

neuronal death (141). Together, the intracerebral streptozotocin and si-RNA studies support 

a primary role for brain insulin/IGF resistance (brain diabetes) as the initiating factor in the 

pathogenesis of AD and its protein molecular and biochemical lesions. However, the 

missing link is what could possibly cause brain (type 3) diabetes? The answer is most likely 

connected to the same factors responsible for our epidemics of Type 2 diabetes, non-

alcoholic steatohepatitis, and metabolic syndrome.

6.1. Environmental toxins/exposures as mediators of type 3 diabetes

Despite overwhelmingly convincing data that AD represents a brain form of diabetes, 

conclusions drawn from the intracerebral streptozotocin experiments raise questions because 

streptozotocin is generally not available to humans. Over the past several years, our group 

has wrestled with this puzzle. The startling realization that streptozotocin is actually a 

nitrosamine-related compound that is routinely used to generate models of Type 1 and Type 

2 diabetes, prompted us to probe potential links between nitrosamine exposures and diabetes 

mellitus or AD. Over the past several decades, Western societies have endured continuous 

and growing exposures to environmental and food-related nitrosamines. The curves 

corresponding to exposure rates through processed foods precede and parallel those for AD 

and diabetes mortality, irrespective of age group (34). Since nitrosamines are mutagenic and 

cause cancers in many organs, we posed the question as to whether low and limited 

exposures to nitrosamines could cause insulin resistance instead of cancer.

We conducted experiments using brief exposures to sub-mutagenic doses of nitrosamine 

compounds that are commonly found in processed and preserved foods, e.g. N-

nitrosodiethylamine (NDEA), and determined the long-term effects on insulin/IGF signaling 

networks in the body, liver, and brain. Those studies revealed that low-dose NDEA 

exposures cause T2DM, non-alcoholic steatohepatitis, visceral obesity, cognitive 

impairment, and AD-type neurodegeneration with peripheral, hepatic, and brain insulin 

resistance (66, 67), similar to the effects of streptozotocin. Moreover, the adverse effects of 

NDEA on neuro-cognitive deficits, peripheral, hepatic, and brain insulin resistance, 

steatohepatitis, and neurodegeneration were exacerbated by chronic high fat diet feeding 

(142, 143). Therefore, depending on the structure of the compound, dose, and route of 

administration, nitrosamines and related chemicals can cause insulin resistance diseases in 

multiple different target organs, including brain. These results provide evidence that the 

relatively recent epidemics of sporadic AD, T2DM, and non-alcoholic steatohepatitis/

metabolic syndrome could be mediated by environmental or dietary exposures (34), and 

show that insulin resistance diseases with essentially the same underlying cellular 

abnormalities, can develop in various organs and tissues. Moreover, these findings 

correspond with the overlapping increases in prevalence of various insulin resistance 

diseases, and the very frequent co-occurrences of AD with obesity, T2DM, of NASH (46), 
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which did not exist prior to 1980, and is not accounted for by aging of the population (34). It 

is noteworthy that nearly two decades ago, mutagenic nitroso compounds were recognized 

to also cause insulin resistance diseases (144–146).

7. POTENTIAL THERAPEUTIC TARGETS FOR AD

The metabolic/brain insulin resistance hypothesis can account for nearly all abnormalities 

that characterize the AD neurodegeneration cascade, including progressively increased 

oxidative stress and ROS generation, mitochondrial dysfunction, cell death, loss of synaptic 

plasticity, deficits in cholinergic homeostasis, increase expression of AβPP, hyper-

phosphorylation of tau, compromised myelin maintenance, and neuro-inflammation. 

Correspondingly, it is important to bear in mind that AD fundamentally represents a 

metabolic disease associated with the same molecular, biochemical, and cell signaling 

abnormalities identified in peripheral insulin resistance diseases. Therefore, it may be 

possible to treat or prevent progression of AD based on stage and severity of brain insulin 

resistance, similar to approaches used to treat T2DM, obesity, non-alcoholic steatohepatitis, 

and metabolic syndrome. At the same time, it is important to recognize that AD is the end 

result of a neurodegeneration cascade that targets and progressively cripples different 

aspects of cellular physiology and homeostasis. Therefore, it should anticipated that while 

mono-therapies may be appropriate, and instead, multi-pronged approaches will likely be 

needed to support a range of nervous system functions and minimize cellular injury and 

toxicity as the disease progresses.

7.1. Targeting insulin deficiency (Table 1)

AD is associated with brain insulin deficiency (reduced brain and CSF levels), with or 

without associated systemic insulin resistance or T2DM. Proposed therapeutic strategies 

designed to rectify brain insulin deficiency in AD, are supported by the findings that: 1) 

diabetic patients that are well-managed with insulin exhibit significant improvements in 

memory and slowing of AD progression; 2) elderly diabetics that were treated with insulin 

had lower densities of AD lesions compared with non-diabetic controls; 3) insulin 

administration improves cognition and memory in AD, and insulin stimulated cognition is 

correlated with increased levels of norepinephrine in both plasma and CSF (147); 4) hyper-

insulinemic euglycemic clamping enhances cognition and attention in patients with AD; and 

5) experimental intracerebral or intravenous treatments with insulin improve memory, 

cognition, evoked brain potentials, and neurotransmitter function (123). Although attractive 

and seemingly simple, a foremost consideration is that the subject population consists of 

elderly individuals who would be at increased risk complications resulting from inadvertent 

bouts of hypoglycemia, e.g. traumatic falls that could be debilitating or life-threatening, and 

metabolic insults to various organs, including brain. Moreover, the effectiveness of insulin 

therapy may be dependent upon simultaneously increased levels/availability of glucose, and 

may not improve memory if CSF AβPP-Aβ42 levels are markedly elevated due to insulin 

resistance (148). Therefore, systemic insulin therapy for patients with AD is not feasible.

7.1.1. Intranasal insulin therapy—Intranasal insulin can be administered to AD 

subjects because it does not produce the harmful side-effects of systemic insulin treatment. 
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Intranasal insulin increases brain insulin levels and improves performance on declarative 

memory tasks while having little effect on plasma glucose and insulin levels (149). In 

addition, intranasal insulin delivered via an electronic atomizer, improves attention and 

increases the AβPP-Aβ 40/AβPP-Aβ42 ratio (150). Reducing the relative amounts of AβPP-

Aβ42 should be neuroprotective as AβPP-Aβ42 is the neurotoxic form of the secreted 

peptide. In a controlled clinical trial, ApoE-∊4-negative individuals were found to benefit 

significantly from intranasal insulin, as manifested by improvements in cognitive 

performance (149). The fact that ApoE∊4+ subjects failed to benefit from the same 

treatment suggests that intranasal insulin, as well as other pro-metabolic therapies for AD, 

may have to be tailored according to particular genetic risk factors and biomarkers of 

disease.

7.1.2. Insulin stimulating/releasing hormones (incretins)—As an alternative to 

insulin, incretins, such as glucagon-like peptide-1 (GLP-1), may help restore insulin levels 

in the brain. GLP-1 is an insulinotropic peptide that is generated by cleavage of proglucagon 

protein. GLP-1 is rapidly degraded by dipeptidyl peptidase-4, and therefore is quite safe. 

GLP-1 stimulates insulin gene expression and secretion, and suppresses glucagon. GLP-1 

lowers blood glucose in individuals with T2DM (151, 152), and it restores insulin 

sensitivity. The dual actions of incretins in stimulating insulin secretion and enhancing 

insulin responsiveness make GLP-1 and related molecules very attractive for treating AD. 

Like insulin, GLP-1 stimulates neuritic growth in CNS neurons and exerts neuroprotecive 

actions against glutamate-mediated excitotoxity, oxidative stress, trophic factor withdrawal, 

and cell death (153–155). In addition, inhibition of dipeptidyl peptidase-4, which degrades 

GLP-1, reduced oxidative and nitrosative stress, inflammation, memory impairment, and 

AβPP-Aβ deposits in an AD transgenic mouse model (156). Importantly, GLP-1 can cross 

the blood-brain barrier, and may effectively reduce brain AβPP-Aβ burden in AD (151, 152, 

157). With the realization that GLP-1 has a short half-life and therefore limited practical use 

for long-term therapy, synthetic long-lasting analogues of GLP-1 have proven to be effective 

in preserving cholinergic neuron function (158). The development of GLP-1 receptor 

agonists, such as Geniposide or Extendin-4, which harbor the same neuro-protective and 

neuro-stimulatory properties as GLP-1 (159), but have longer half-lives (153, 157, 160, 

161), may provide effective and standardized long-term options for treating brain insulin 

resistance diseases such as AD. Finally, a future approach could be to genetically modify 

mesenchymal or stem cells to provide sustained delivery of neuro-stimulatory and neuro-

protective agonists (162–164), including GLP-1 (165).

7.2. Targeting insulin resistance

Human clinical and postmortem studies have documented that AD is associated with brain 

insulin resistance, with or without associated systemic insulin resistance or T2DM.

7.2.1. Anti-hyperglycemic agents—Metformin is a biguanide anti-hyperglycemic drug 

that is used to treat T2DM. Metformin suppresses gluconeogenesis and enhances glucose 

uptake and insulin sensitivity. Metformin protects against neurological complications of 

T2DM, including cognitive impairment and cerebral vascular disease (166). Although 

metformin treatment was found to increase the generation of both intra- and extracellular 
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AβPP-Aβ due to increased expression of beta-secretase 1 (BACE1), administration of 

insulin plus metformin paradoxically provides significant neuroprotection, reduces AβPP-Aβ 

levels, and decreases the severity of AD pathology, including AβPP-Aβ neuritic plaques, and 

oligomeric AβPP-Aβ-mediated down-regulation of the insulin receptor. Therefore, while 

metformin mono-therapy may be harmful due to its exacerbation of AD-type 

neurodegeneration (167), when combined with insulin, it may benefit elderly patients in the 

early stages of AD, by significantly improving cognitive performance and slowing the rate 

of neurodegeneration.

7.2.2. Insulin sensitizers—Peroxisome proliferator-activated receptor (PPAR) agonists 

are steroid hormone super family ligand-inducible transcription factors that enhance insulin 

sensitivity, modulate glucose and lipid metabolism, stimulate mitochondrial function, and 

reduce inflammatory responses (168–171). Three classes of PPARs are recognized, PPAR-

α, PPAR-δ, and PPAR-γ. All 3 are expressed in the adult brain, although PPAR-δ is most 

abundant, followed by PPAR-γ (6, 33, 88). PPAR agonist treatments improve cognitive 

performance in experimental animal models (33, 172) and in humans with AD or MCI (87, 

89, 173). The PPAR-γ agonist, rosiglitazone, has been most widely studied in human 

clinical trials. In addition to its insulin sensitizing and anti-inflammatory properties, 

rosiglitazone, like metformin, increases expression of the GLUT4 glucose transporter and 

glucose metabolism. Moreover, PPAR agonists such as, rosiglitazone, can enhance the 

therapeutic effects of metformin+insulin.

In a small double-blind, placebo-controlled trial, rosiglitazone treatment significantly 

preserved performance on delayed recall and attention tasks relative to the placebo-treated 

group, which continued to decline (174), but a later study found that rosiglitazone therapy 

mainly helped preserve cognition in patients who were ApoE ∊4-negative (175). More 

recently, the outcome of a rosiglitazone monotherapy, randomized double-blind placebo 

controlled phase III study was negative with respect to improvements in objective cognitive 

assessments, but highly statistically significant based on clinical and caregiver impression 

(176). Potential explanations for these disappointing results include the following: 1) 

effective treatment of neurodegenerative diseases may require a different isoform of PPAR 

agonist, i.e. PPAR-δ, since PPAR-δ is abundantly expressed in the brain, and previous 

studies showed that PPAR-δ agonist treatment more effectively prevented AD-type 

neurodegeneration and neurocognitive deficits compared with PPAR-α and PPAR-γ 

agonists (33); 2) the biodistribution of the PPAR agonists may not have been optimized 

based on the structure of the compounds; and 3) mono-therapy may not be sufficient, and 

instead the combined administration of a PPAR agonist with insulin or GLP-1 and 

metformin may be required to effectively treat AD-associated brain insulin resistance and 

metabolic dysfunction.

Insulin resistance states lead to metabolic imbalances with disturbances in carbohydrate and 

lipid metabolism. Perturbations in lipid metabolism result in states of lipotoxicity, which 

further increase insulin resistance. PPARs, including PPAR-γ, regulate energy balance by 

promoting dissipation or deposition of energy. PPAR-γ-coactivator 1alpha (PGC1-alpha) 

induces gene expression that promotes differentiation, and increases fatty acid oxidation via 

expansion of mitochondrial capacity and function (177). PGC1alpha binds to nuclear PPAR-
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γ, which then enables its interactions with various transcription factors that regulate 

mitochondrial biogenesis. In essence, PGC1alpha is an important negative regulator of 

oxidative stress, mitochondrial dysfunction, lipotoxicity, and insulin resistance (177–179). 

The relevance of these data to AD is that genetic deficiencies in PGC1 alpha increase 

proneness to neurodegeneration (179, 180). This suggests that PGC1 alpha may represent an 

excellent therapeutic target for AD, and possibly other major neurodegenerative diseases as 

well.

7.3. Targeting tau pathology

Hyper-phosphorylation of tau promotes misfolding and aggregation of oligomeric fibrils. 

Subsequent protein ubiquitination results in the formation of insoluble, fibrillar aggregates 

and paired helical filaments, which comprise the cores of neurofibrillary tangles, neuropil 

threads, and dystrophic neurites, i.e. the structural hallmarks of AD neuropathology. Tau 

hyperphosphorylation is mediated by inappropriate and sustained activation of kinases, 

including glycogen synthase kinase-3β (GSK-3β) (181), cyclin-dependent kinase -5 (Cdk-5), 

p38 MAPK, and c-jun kinase (JNK) (182, 183), and inhibition of phosphatases that 

dephosphorylate tau, e.g. protein phosphatase-2A (183). Insulin resistance leads to increase 

activation of GSK-3β as well as other kinases due to combined effects of inhibiting PI3K-

Akt and increased oxidative stress. The increased oxidative stress induced by the 

accumulation of misfolded, aggregated cytoskeletal proteins exacerbates insulin resistance 

and neuroinflammation. Therefore, treatment with chemical inhibitors of one or more AD-

relevant kinases may reduce the rates of neurofibrillary pathology and help prevent 

progressive brain insulin resistance.

Several studies focused on the role of GSK-3β because, in addition to promoting tau hyper-

phosphorylation, high levels of GSK-3β activity lead to alterations in AβPP processing and 

increased neuronal death (181, 184–186). Approaches to therapeutically inhibit GSK-3β 

activity have mainly included the use of lithium chloride, and to a lesser extent, indigoids 

(181, 184–187). In several uncontrolled or retrospective human studies, it was found that 

prior use of lithium therapy protected against dementia and was associated with better 

performance on cognitive tests (188–191). In addition, chronic lithium treatment reduced the 

prevalence rates of AD and the brain activity levels of GSK-3β, and it increased the levels of 

brain-derived neurotrophic factor in subjects at risk for early onset familial AD, (192). 

However, a subsequent randomized, single-blind, short-term (10 weeks) placebo-controlled 

multicenter trial proved disappointing in that performance on standardized cognitive 

function tests was not significantly improved, and no significant reductions in CSF GSK-3β 

activity were detected (193). On the other hand, those data should to be interpreted with 

caution because of the short duration of the trial compared with earlier retrospective studies.

7.4. Reducing amyloid burden to restore insulin responsiveness

Research in the field of AD has extensively focused on finding safe and effective means of 

depleting the brain of toxic AβPP-Aβ deposits, reducing the formation of toxic AβPP-Aβ-

derived diffusible ligands (ADDL) and oligomers, preventing AβPP-Aβ fibrillarization and 

aggregation, increasing brain clearance of AβPP-Aβ peptides, and decreasing abnormal 

cleavage of AβPP (194). The central hypothesis is that AβPP-Aβ peptides are neurotoxic, 
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promote amyloid plaque formation, and mediate tau hyper-phosphorylation, fibrillarization, 

and neurofibrillary tangle formation (195). Efforts to deplete the brain of toxic AβPPAβ led 

to the development of AβPP-Aβ-targeted immunotherapy. Although AβPP-Aβ active 

immunization with AβPP-Aβ peptides, or passive delivery of AβPP-Aβ-specific antibodies 

can effectively clear AβPP-Aβ plaques from human and experimental animal brains (196), 

the end results proved not very encouraging because the AβPP-Aβ instead accumulated in 

vessels, increasing propensity for micro-hemorrhage (197). Moreover, the human subjects 

continued to decline and died with end-stage AD (198, 199). The treatments are not free of 

side effects because subjects can develop vasogenic cerebral edema (196, 199), i.e. pro-

inflammatory responses with increased microglial activation, cerebral amyloid angiopathy, 

and accumulation of soluble neurotoxic oligomeric AβPP-Aβ (200). Furthermore, although 

the administration of passive humanized AβPP-Aβ antibody can clear AβPP-Aβ from the 

brain (201), it has been difficult to demonstrate clinically significant improvements in 

progression from mild or moderate to severe dementia (202).

An approach to prevent the build-up of toxic AβPP-Aβ and formation of ADDLs is to inhibit 

the expression or activity of enzymes that aberrantly process and cleave AβPP. AβPP-Aβ is 

generated by sequential proteolysis by beta secretases, then gamma-secretases (203). 

Presenilins (PS), which are often mutated in early onset familial AD, form the catalytic 

component of gamma-secretases, which mediate intramembranous cleavage of type 1 

transmembrane proteins, including AβPP (204). Mutation of PS genes leads to premature 

and excessive brain accumulations of AβPP-Aβ (204). To inhibit abnormal processing of 

AβPP and accumulation of toxic AβPP-Aβ, gamma secretases have been targeted (205, 206). 

Although this approach seems promising for lowering plasma, CSF, and brain AβPP-Aβ 

burden (203, 207), the objective clinical therapeutic responses have been minimal or 

undetectable (205, 208, 209). Worse yet, these drugs are highly toxic due to concurrent 

inhibition of Notch signaling (203, 206), which mediates neuronal plasticity, cognition, and 

long-term memory (210). To circumvent toxicity problems, efforts are underway to develop 

Notch cleavage-sparing gamma secretase inhibitors (211, 212), but clinical trial results are 

not yet known.

Insulin accelerates trafficking of AβPP-Aβ from the trans-Golgi network to the plasma 

membrane, and extracellular secretion of Aβ (120), and impaired insulin signaling disrupts 

the processing of AβPP and clearance of AβPP-Aβ (123). Therefore, by addressing the 

underlying causes of insulin/IGF resistance, we may be able to effectively and safely reduce 

AβPPAβ burden in the brain. This point is reinforced by the finding that IGF-1 and IGF-2 

are neuroprotective as they reduce the neurotoxic effects of AβPP (127–130). On the other 

hand, AβPP oligomers and ADDLs inhibit neuronal insulin-stimulated signals, blocking PI3 

kinase activation of Akt, which leads to impaired survival signaling, increased activation of 

GSK-3β, and resultant hyper-phosphorylation of tau. This suggests that efforts to reduce 

AβPP oligomer fibrillarization as a means of restoring brain insulin sensitivity should 

continue to be pursued.
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7.5. Antioxidant and anti-inflammatory drugs (Table 1)

Antioxidants help maintain mitochondrial homeostasis, neuronal activities, and cell survival. 

Oxidative stress plays a pivotal role in the pathogenesis and progression of AD. Sources of 

oxidative stress include, impaired insulin signaling, fibrillarization of oligomeric AβPP-Aβ 

and tau, mitochondrial dysfunction, micro-vascular disease, accumulation of reactive 

oxygen species (ROS) and reactive nitrogen species (RNS), and inflammation (213). 

Although it has not yet been determined which source of oxidative stress in most critical to 

neurodegeneration and cognitive impairment, some doubt has been cast upon the role of 

AβPP-Aβ since in a longitudinal analysis, significant reductions in plasma AβPP-Aβ42 in 

subjects treated with various anti-inflammatory agents, was not associated with 

improvements in cognition (214). Nonetheless, the interest in reducing oxidative stress in 

the brain is justified as a treatment approach because this type of injury could, at the very 

least, serve as a cofactor mediating AD progression. Potential approaches to reduce 

oxidative stress include the use of anti-oxidants, anti-inflammatory agents, radical 

scavengers, transition metal chelators, and non-vitamin anti-oxidant polyphenols.

7.5.1. Non-steroidal anti-inflammatory drugs (NSAIDs)—Epidemiologic studies 

demonstrated an apparently reduced risk of developing AD in ApoE∊4+ subjects that had 

been treated chronically with NSAIDs. Therefore, it was proposed that NSAIDs might be 

effective for treating AD, or preventing AD development in patients with MCI (136, 215–

218). These concepts are supported by the known neuro-inflammatory responses that occur 

early in the course of AD, and contribute to AβPP-Aβ deposition (219). In addition, 

experimentally, neuro-inflammation leads to recruitment and activation of microglia and 

astrocytes, which mediate AβPP-Aβ deposition (220). However, in clinical trials, selective 

cyclooxygenase-2 (COX-2) inhibitor drug therapy proved to be ineffective for treating AD 

(216, 217), or in protecting individuals with MCI from progressing toward AD (217). 

Therefore, it seems unlikely that this avenue of therapy will help to significantly modify the 

course of AD.

7.5.2. Radical scavengers—Epidemiological studies suggested that long-term treatment 

with vitamin E, estrogens, or 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase 

inhibitors (statins) may either help prevent dementia, or improve clinical outcomes (194). 

Interest in the role of estrogens was inspired by the findings that, estrogens stimulate 

cognitive performance in animal models and, bio-available estrogen declines with aging 

(221, 222), A few clinical studies have shown limited, short-term benefits of estrogen 

therapy with regard to cognition (222), but other better controlled trials demonstrated that 

exogenous estrogen therapy does not improve dementia symptoms in women with AD, and 

instead, it increases dementia risk when estrogen treatment is begun after age 65 (223, 224). 

On the other hand, the recent evidence that estrogen receptor modulation therapy may 

improve cognition (221, 225) deserves further study.

Statins are HMG-CoA reductase inhibitors. HMG-CoA catalyzes the rate-limiting step in 

cholesterol biosynthesis. In AD, perturbations in cholesterol metabolism and transport 

contribute to AβPP-Aβ deposition and tau hyper-phosphorylation (226, 227), and 

cerebrovascular disease, which contributes to vascular dementia and AD progression, is 
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associated with hypercholesterolemia. Statin therapy has been evaluated in several clinical 

trials. Meta-analysis of several large prospective clinical trials revealed no significant 

benefits of atorvastatin or simvastatin therapy in patients with dementia who had been 

treated for periods ranging from 26 to 72 weeks, despite significant reductions in serum low 

density lipoprotein (LDL) (228–231). Still, other studies showed significant reductions in 

incident dementia among statin users (232, 233). Experimental data suggest that statins may 

provide some degree of neuroprotection (234).

In an anti-inflammatory treatment prevention trial, despite a 67% reduction in hazard risk of 

incident AD in subjects treated with lipid-lowering drugs, the most significant findings were 

that HDL was positively correlated with mini-mental state examination (MMSE) 

performance, and while LDL cholesterol was negatively correlated with immediate and 

delayed recall (235). Limitations of this study include its relatively short duration of follow-

up and the lack of distinction between vascular dementia and AD. However, the impact of 

statin therapy was most likely due to reduced severity of cerebrovascular disease, lessening 

its contribution to AD progression. Recent concerns over the use of statins to treat AD were 

raised by the findings that: 1) brain cholesterol levels are reduced in AD (227); 2) reductions 

in neuronal cholesterol lead to impaired insulin signaling and energy metabolism (110); and 

3) cognitive impairment can occur with chronic statin use (236–239) and following its 

discontinuation, cognitive function may be restored (237, 239). Therefore, routine, 

“preventive” use of statin therapy, particularly in the elderly, should be re-evaluated (240) 

and perhaps avoided unless indicated for cardiovascular health. Moreover, future studies 

should assess risk for further cognitive impairment among individuals with AD who do not 

have hyperlipidemia or cerebrovascular disease.

7.5.3. Transition metal ion chelators—One hypothesis that remains viable is that 

transition metal ions, including Al (III), Fe (III), Zn (II), and Cu (II), cause neurotoxicity and 

neurodegeneration (241–243), including in the earliest stages of AD (244). Excess 

accumulation of transition metal ions promotes oxidative stress, apoptosis, and aggregation 

and fibrillarization of hyper-phosphorylated tau (245) and AβPP-Aβ42 (243, 246). Oxidative 

stress is mediated by the formation of hydroxyl radicals following interactions between iron 

and hydrogen peroxide. In AD, brain levels of free heme and hemin are significantly 

elevated (247), and probably contribute to neurodegeneration by inhibiting cholinergic 

function, altering AβPP-Aβ metabolism, binding to hyper-phosphorylated tau and promoting 

tau aggregation into paired-helical filaments, and inducing formation of free radicals (247).

Chelation therapy with compounds such as desferrioxamine, Feralex-G, or Clioquinol 

affords neuroprotection by preventing the aggregation and fibrillarization of AβPP-Aβ and 

tau, and reducing ROS production (245, 248–250). Correspondingly, Clioquinol chelation 

reduces AβPP-Aβ burden in transgenic mice (248, 249). In addition to its proposed direct 

anti-aggregation effects on AβPP-Aβ, chelation therapy could reduce AβPP-Aβ deposition 

by decreasing oxidative stress and ROS (134) caused by heme and heavy metals. Chelation 

therapy for AD was tested in a 2-year randomized placebo-controlled trial of twice daily 

injections of the trivalent chelator, desferrioxamine. The rates of performance decline in 

patients with probable AD slowed (251). However, in a later uncontrolled clinical trial of 

Clioquinol therapy, AD subjects showed only modest improvements (250). Only a few 
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studies have linked chelation therapy to improved glucose utilization, energy metabolism, 

and insulin signaling in the brain. Nonetheless, the findings that chelation of zinc and iron 

prevents or attenuates streptozocin-, alloxan-, or ferritin-induced diabetes (252–254), and 

that desferrioxamine chelation of iron, and dietary restriction of iron increase glucose uptake 

and insulin signaling in hepatocytes (255, 256) are intriguing with respect to the roles of 

brain insulin resistance and metabolic dysfunction in the pathogenesis of AD and 

neurodegeneration. Since treatment with antioxidants, Vitamin E, Vitamin C, Heme 

oxygenase 1, or metal chelators prevents the neurotoxic effects of heme and hemin (257), 

and may also enhance insulin signaling and glucose utilization in the brain, heme-induced 

oxidative stress could potentially be targeted by anti-oxidant and chelation therapy to help 

restore cholinergic function, reduce fibrillarization of tau and AβPP-Aβ42, decrease 

oxidative stress, and improve energy metabolism in the brain.

Despite probable benefits, a major limitation of our current methods of chelation therapy is 

that delivery of drugs with high Fe (III) binding capacity to the CNS are suboptimal (258, 

259). Another point is that liberal use of chelation therapy may deplete iron, which is needed 

to generate energy, and copper, manganese, and zinc, which participate in enzymatic 

pathways that protect cells from free radicals and reactive oxygen species through activation 

of superoxide dismutases I–III. To address these problems, new compounds have been 

developed and tested in pre-clinical models. For example, DP-109 is a lipophilic metal 

chelator that reduces cerebral AβPP-Aβ burden in Tg2576 transgenic mice (260). Another 

approach may be to conjugate chelators to nanoparticles that can cross the blood-brain 

barrier to chelate metal ions, and then exit to remove them (261–263). Recently, Nano-

N2PY, a prototype nanoparticle-chelator conjugate was demonstrated to inhibit AβPP-Aβ 

aggregation and reduce AβPP-Aβ-associated cortical neuron toxicity in vivo (264). Another 

novel approach involved the development of site-activated multifunctional chelators, such as 

HLA20A, that become activated by binding and inhibiting acetylcholinesterase, resulting in 

the release of an active chelator that reduces AβPP-Aβ fibrillization and oxidative stress 

(265, 266). Along related lines, dual target-directed 1,3-diphenylurea derivatives seem 

capable of both inhibiting BACE1 and chelating metal ions (267).

7.5.4. Polyphenols—Epidemiological studies demonstrated relative protection from 

dementia, AD, and Parkinson's disease in populations that regularly consumed green tea or 

red wine (268). Resveratrol, 3.4',5-trihydroxy-trans-stilbene, is a natural polyphenol that is 

abundantly present in red wine and has antioxidant and neuroprotective activities. Grape 

seed extracts also contain resveratrol, and therefore provide neuroprotection (269, 270). 

Pharmacokinetic studies have affirmed that grape seed polyphenols abundantly distribute in 

the brain (271). The neuroprotective actions of resveratrol are mediated by enhancement of 

glutathione free radical scavenger activity (272, 273), and reduction in AβPP-Aβ levels 

(274) due to increased clearance via the proteasome (275) or autophagy and lysosomal 

degradation (276). Resveratrol also exerts cytoprotective effects by stimulating heme 

oxygenase, and modulating cellular resistance blood flow, injury, and inflammation (277). 

In addition, resveratrol and other polyphenols function as metal chelators, and thereby 

protect the brain from oxidative stress and ROS caused by accumulations of lead, iron, 

aluminum, zinc, and copper (278).
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One critical therapeutic effect of resveratrol is its ability to retard aging and protect against 

AD due to stimulation of the sirtuin protein, SIRT1 (279). Sirtuin genes promote longevity, 

and SIRT1-mediated deacetylase activity protects against AD-type neurodegeneration (280, 

281). Mechanistically, SIRT1 functions by interfering with AβPP-Aβ peptide generation 

(280, 281), and SIRT1-activating molecules such as resveratrol, reduce neurodegeneration 

and prevent learning impairments in the p25 transgenic mouse model of AD, which is 

associated with tau hyper-phosphorylation and fibrillarization (282). Of note is that SIRT1 

activation achieves the same effect as caloric restriction with respect to preventing aging and 

AD (283). Caloric restriction with weight loss is a well-established means of increasing 

insulin sensitivity (284).

The major green tea polyphenolic compound, epigallocatechin-3-gallate (EGCG), has 

neuroprotective actions similar to resveratrol. Studies have shown that EGCG: 1) mimics 

cellular effects of insulin, reducing gluconeogenesis and corresponding enzyme gene 

expression (285); 2) reduces AβPP-Aβ levels by enhancing cleavage and clearance of the C-

terminal fragment of AβPP (286); 3) functions as an iron chelating and mitochondrial 

stabilization compound (287, 288). Moreover, clinical trials have demonstrated that EGCG 

has neuroprotective and anti-oxidant therapeutic effects in AD, as well as Parkinson's 

disease (286, 288). To circumvent problems related to dosing and CNS delivery, 

nanolipidica EGCG particles have been generated and already shown to improve brain 

distribution following oral administration (289).

8. CONCLUSIONS

Recent literature concerning the roles of brain insulin and IGF resistance and deficiency in 

the pathogenesis of AD, and the likely mediators of brain insulin/IGF resistance and 

deficiency is reviewed. Based on human and experimental animal model data generated in 

various laboratories and institutions, the common theme that ties together nearly all of the 

pathophysiological abnormalities in AD, from early to late stages, is insulin and IGF 

resistance. The attendant inhibition of insulin/IGF signaling leads to aberrant activation of 

kinases that lead to tau hyper-phosphorylation. Impairments in energy metabolism and 

glucose utilization have broad consequences due to increased oxidative stress, activation of 

pro-inflammatory cascades, and ROS generation, all of which promote aberrant AβPP 

expression and cleavage, AβPP-Aβ42 accumulation, and fibrillarization and misfolding of 

tau and AβPP-Aβ. Increased ROS causes electrophilic attacks on proteins, lipids, and nucleic 

acids, resulting in the formation of adducts that promote further structural and functional 

damage, oxidative stress, ubiquitination of proteins, targeting them for degradation. 

Insulin/IGF resistance impairs lipid metabolism, leading to disruption of myelin 

homeostasis. AD also results in white matter atrophy, myelin loss, and increased myelin 

breakdown with generation of potentially toxic sphingolipids, including ceramides. 

Neurotoxic ceramides promote insulin resistance, neuroinflammation, and oxidative stress. 

Finally, brain insulin/IGF resistance can also explain the frequent co-existence of cerebral 

microvascular disease, which substantially contributes to the neuropathology of AD. Given 

the multi-step/multi-tiered problems caused by or associated with brain insulin/IGF 

resistance, treatment approaches should target AD at multiple levels, and multiple targets 

over a prolonged period (290, 291), similar to our current approaches for treating 
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malignancies. Future multi-modal therapies for AD should be directed at multiple levels of 

within the insulin/IGF signaling cascade, beginning with receptor sensitizers, agents to 

promote insulin synthesis and release, e.g. GLP-1, inhibitors of oxidative stress, radical 

formation, and metal ion accumulation, tau phosphorylating kinase modulators, and co-

factors that support glucose utilization, mitochondrial function, and energy metabolism. If 

effective, these combined treatments will likely enhance neurotransmitter activity and 

availability, neuronal plasticity, and neuronal survival, which are needed to preserve 

cognitive function.
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Abbreviations

AD Alzheimer's disease

ADDL Amyloid-derived diffusible ligand

ApoE-?4 Apoliprotein E, ? 4 allele

AßPP Amyloid beta precursor protein

AßPP-Aß amyloid-beta fragment of amyloid beta precursor protein

BACE1 Beta secretase 1

CNS Central nervous system

COX2 Cyclooxygenase-2

CSF Cerebrospinal fluid

DIO Diet induced obesity

EGCG Epigallocatechin-3-gallate

ER Endoplasmic reticulum

GLP-1 Glucagon-like peptide-1

GSK-3ß Glycogen synthase kinase-3ß

HMG-CoA 3-Hydroxy-3-methyl-glutaryl-CoA

IGF Insulin-like growth factor

LDL Low density lipoprotein

MCI Mild cognitive impairment

MMSE Mini-mental state examination

MRI Magnetic resonance imaging

NASH Non-alcoholic steatohepatitis

NSAID Non-steroidal anti-inflammatory drug
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PET Positron emission tomography

PI3 kinase Phosphoinositol-3-kinase

PPAR Peroxisome proliferator-activated receptor

PS Presenilin

RNS Reactive nitrogen species

ROS Reactive oxygen species

SIRT1 Sirtuin 1 gene or protein

T1DM Type 1 diabetes mellitus

T2DM Type 2 diabetes mellitus
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Table 1

Therapeutic targeting of brain insulin resistance in Alzheimer's disease

Target Agent Mechanism of Action

Aβ42 accumulation and 
fibrillarization

Gamma secretase inhibitor drugs (Notch sparing); 
BACE1 inhibitors to reduce cleavage and production 
of toxic peptides

Reduces insulin resistance, enhances PI3K-Akt 
signaling; reduces GSK-3β activity resulting in 
decreased tau phosphorylation

Tau hyperphosphorylation GSK-3β inhibitors and protein phosphatase 2A 
agonists

Reduces oxidative stress, helps restore insulin 
responsiveness

Insulin deficiency Insulin therapy-intranasal
Incretins, e.g. GLP-1 to stimulate insulin

Maintains survival and function of cells requiring 
insulin stimulation; supports glucose uptake, brain 
metabolism and neuronal plasticity; Decreases 
AβPP burden and tau hyperphosphorylation; 
Enhances cognition

Hyperglycemia Antihyperglycemic agents-biguanides Enhance glucose uptake and insulin receptor 
sensitivity

Insulin resistance Insulin sensitizers, e.g. PPAR agonists Enhance glucose uptake and insulin receptor 
sensitivity; anti-inflammatory and anti-oxidant 
properties

Oxidative stress and Neuro-
inflammation

Anti-oxidants
Radical scavengers
Anti-inflammatory agents
Transition metal chelators

Help restore insulin sensitivity and glucose 
utilization
Reduce Aβ42 deposition
Reduce Aβ42 and tau fibrillarization
Reduce cytokine activation-mediated injury
Supports microvascular function and cerebral 
perfusion

Abbreviations: BACE1=beta site AβPP cleaving enzyme 1; GLP-1=glucagon-like peptide-1; PPAR= peroxisome proliferator-activated receptor; 
PI3K= phosphoinositol-3- kinase; GSK-3β = glycogen synthase kinase 3β; AβPP= amyloid-β - precursor protein; Aβ 42=amyloid beta peptide-42 
amino acids 1–42 cleavage product; IGF=insulin-like growth factor
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