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Abstract

Growing evidence supports the concept that Alzheimer’s disease (AD) is fundamentally a 

metabolic disease with molecular and biochemical features that correspond with diabetes mellitus 

and other peripheral insulin resistance disorders. Brain insulin/IGF resistance and its consequences 

can readily account for most of the structural and functional abnormalities in AD. However, 

disease pathogenesis is complicated by the fact that AD can occur as a separate disease process, or 

arise in association with systemic insulin resistance diseases, including diabetes, obesity, and non-

alcoholic fatty liver disease. Whether primary or secondary in origin, brain insulin/IGF resistance 

initiates a cascade of neurodegeneration that is propagated by metabolic dysfunction, increased 

oxidative and ER stress, neuro-inflammation, impaired cell survival, and dysregulated lipid 

metabolism. These injurious processes compromise neuronal and glial functions, reduce 

neurotransmitter homeostasis, and cause toxic oligomeric pTau and (amyloid beta peptide of 

amyloid beta precursor protein) AβPP-Aβ fibrils and insoluble aggregates (neurofibrillary tangles 

and plaques) to accumulate in brain. AD progresses due to: (1) activation of a harmful positive 

feedback loop that progressively worsens the effects of insulin resistance; and (2) the formation of 

ROS- and RNS-related lipid, protein, and DNA adducts that permanently damage basic cellular 

and molecular functions. Epidemiologic data suggest that insulin resistance diseases, including 

AD, are exposure-related in etiology. Furthermore, experimental and lifestyle trend data suggest 

chronic low-level nitrosamine exposures are responsible. These concepts offer opportunities to 

discover and implement new treatments and devise preventive measures to conquer the AD and 

other insulin resistance disease epidemics.
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1. Overview: Insulin resistance diseases and the brain

Intact insulin and insulin like growth factor (IGF) signaling have important roles in relation 

to brain structure and function, including myelin integrity and neuronal plasticity. 

Impairments in insulin and IGF signaling caused by receptor resistance or ligand deficiency 

disrupt energy balance and interacting networks that support vital functions such as cell 

survival. Mounting evidence supports the concept that cognitive impairment and 

neurodegeneration are associated with and probably are caused by insulin and IGF 

resistance. Furthermore, the sharply increased rates of AD and other insulin resistance 

disease states, including obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease, 

and metabolic syndrome within the past several decades point toward environmental or 

exposure factors mediating disease. However, since each of these disease processes can 

occur independently or overlap with one or more of the others, one concept is that their 

etiologies are shared but selective organ/tissue involvement is dictated by other variables 

such as genetics. An example of this phenomenon pertains to the varied distributions of 

atherosclerosis; it presence in coronary arteries leads to myocardial infarction whereas 

carotid deposition of plaques predisposes individuals to stroke, yet no one would argue that 

the underlying disease processes were different. Furthermore, having both carotid and 

coronary atherosclerosis would not be surprising. This review focuses on how peripheral 

insulin resistance contributes to cognitive impairment and neurodegeneration, and potential 

contributions of environmental and genetic factors in the pathogenesis of AD.

2. Brain structure and function are maintained through the actions of 

insulin and insulin-like growth factor

Insulin regulates glucose uptake and utilization by cells, and free fatty acid levels in 

peripheral blood. Free fatty acids are substrates for complex lipid biosynthesis. Insulin 

stimulates glucose uptake by inducing glucose transporter protein e.g. GLUT4 translocation 

from the Golgi to the plasma membrane [1]. Insulin-like growth factor 1 (IGF-1) regulates 

growth and has anabolic functions. IGF-1s actions are regulated by interactions with IGF 

binding proteins (IGFBPs) [2]. In the brain, insulin and IGF regulate neuronal and glial 

functions such as growth, survival, metabolism, gene expression, protein synthesis, 

cytoskeletal assembly, synapse formation, neurotransmitter function, and plasticity [3,4], 

and they have important roles in cognitive function. Insulin, IGF-1 and IGF-2 polypeptide 

and receptor genes are expressed in neurons [3] and glia [5,6], particularly in structures that 

are targeted in neurodegenerative diseases [3,7,8].
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3. Insulin resistance and neurodegeneration

3.1. Contributions of systemic insulin resistance diseases

Systemic insulin resistance refers to the state in which high levels of blood insulin 

(hyperinsulinemia) are associated with hyperglycemia. However, with regard to specific 

organs and tissues, impairments in insulin signaling with reduced activation of pathways and 

the need for above-normal levels of ligand to achieve normal insulin actions also correspond 

to insulin resistance [1]. The overall problem is complicated by the fact that: (1) sustained 

high levels of insulin can cause insulin resistance [9], and worsen or broaden tissue 

involvement; and (2) hyperinsulinemia impairs insulin secretion from β-cells in pancreatic 

islets, yielding hybrid states of insulin resistance and insulin deficiency [9]. Chronic insulin 

resistance results in cellular energy failure (lack of fuel), elevated plasma lipids, 

hypertension and predisposition to develop diabetes mellitus [10], cerebrovascular and 

cardiovascular disease, and malignancy [11–15]. Insulin resistance is now a major public 

health problem because of its link to the obesity, type 2 diabetes mellitus (T2DM), non-

alcoholic fatty liver disease (NAFLD), metabolic syndrome, polycystic ovarian disease, age-

related macular degeneration, and Alzheimer’s disease (AD) epidemics.

3.2. Concept: AD is a metabolic disease with brain insulin/IGF resistance

Growing evidence supports the concept that insulin resistance and metabolic dysfunction are 

mediators of AD [16,17], and therefore, AD could be regarded as a metabolic disease 

mediated by brain insulin and IGF resistance [18,19]. In fact, AD shares many features in 

common with systemic insulin resistance diseases including, reduced insulin-stimulated 

growth and survival signaling, increased oxidative stress, pro-inflammatory cytokine 

activation, mitochondrial dysfunction, and impaired energy metabolism [8,20,21]. In the 

early stages, AD is marked by deficits cerebral glucose utilization [22–24], and as AD 

progresses, brain metabolic derangements [25,26] with impairments in insulin signaling, 

insulin-responsive gene expression, glucose utilization, and metabolism worsen [18,19,27].

Human postmortem studies showed that brain insulin resistance with reduced insulin 

receptor expression and insulin receptor binding were consistently present in AD brains and 

worsen with disease progression [18,19,27], and that insulin signaling impairments were 

associated with deficits in IGF-1 and IGF-2 networks [18,19]. Of note is that the pathways 

profoundly affected in AD are the ones needed to maintain neuronal viability, energy 

production, gene expression, and plasticity [16]. Nearly all of the major features of AD, 

including increased: (1) activation of kinases that aberrantly phosphorylate tau and lead to 

accumulation of neurofibrillary tangles, dystrophic neuritic plaques and neuropil threads; (2) 

the 40 or 42 amino acid amyloid beta peptide of amyloid beta precursor protein (AβPP-Aβ) 

accumulation; (3) oxidative and ER stress, which propagate cell death cascades; (4) 

mitochondrial dysfunction; and (5) cholinergic dyshomeostasis could reflect consequences 

of brain insulin/IGF resistance.

3.3. Is AD a brain form of insulin resistance/insulin deficiency (type 3 diabetes)?

AD-associated deficits in insulin/IGF signaling are due to the combined effects of 

insulin/IGF resistance and deficiency. Insulin/ IGF resistance is manifested by reduced 
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levels of insulin/IGF receptor binding and decreased responsiveness to insulin/IGF 

stimulation, while the trophic factor deficiency is associated with reduced levels of insulin 

polypeptide and gene expression in brain and cerebrospinal fluid [17–19]. Therefore, AD 

can be regarded as brain diabetes that has elements of both insulin resistance (T2DM) and 

insulin deficiency (T1DM). To consolidate this concept, we proposed that AD be referred to 

as, “Type 3 diabetes” [18,19]. This hypothesis is supported by experimental data showing 

that intracerebroventricular injection of streptozotocin, a pro-diabetes drug, causes deficits 

in spatial learning and memory, along with brain insulin resistance, brain insulin deficiency, 

and AD-type neurodegeneration, but not diabetes mellitus [28,29]. In contrast, systemic 

administration of streptozotocin causes diabetes mellitus with mild hepatic steatosis and 

neurodegeneration [30,31]. Therefore, brain diabetes (Type 3) can occur independent of 

Type 1 and Type 2 diabetes. Further studies utilizing small interfering RNA molecules 

showed that molecular disruption of brain insulin and IGF receptors was sufficient to cause 

cognitive impairment and hippocampal degeneration with molecular abnormalities similar to 

those in AD [32]. Lastly, the neuroprotective effects of glucagon-like peptide-1 (GLP-1) 

[33], IGF-1 [34], and caloric restriction [35], which respectively stimulate insulin actions, 

slow brain aging, and reduce insulin resistance, support the notion that AD is a brain 

diabetes-type metabolic disease.

4. Consequences of brain insulin/IGF resistance promote AD 

neurodegeneration and neuropathology

4.1. Key integrated driving forces of neurodegeneration

Chronic insulin/IGF-1 resistance disrupts the functional integrity of the brain [3,36] due to 

impairments in neuronal survival, energy production, gene expression, and plasticity [16]. 

These effects are mediated by increased: (1) activation of kinases that aberrantly 

phosphorylate tau, compromising neuronal cytoskeletal integrity; (2) accumulation of AβPP-

Aβ; (3) oxidative stress; (4) ER stress; and (5) metabolic dysfunction with attendant 

activation of pro-inflammatory and pro-death cascades. Consequences of brain insulin/IGF 

resistance include down-regulation of target genes required for cholinergic homeostasis, and 

compromise of systems that mediate neuronal plasticity, memory, and cognition [16–19].

4.2. Tau pathology

Neurofibrillary tangles, dystrophic neurites, and neuropil threads represent neuronal 

cytoskeletal lesions that correlate with dementia in AD [37]. These structural lesions contain 

aggregates of hyperphosphorylated, ubiquitinated, insoluble fibrillar tau. Tau becomes 

hyperphosphorylated due to inappropriate activation of kinases such as GSK-3β [38], cyclin-

dependent kinase 5 (cdk-5), and c-Abl [39], or inhibition of protein phosphatases 1 and 2A 

[39,40]. Consequently, tau becomes misfold and self-aggregate, forming insoluble fibrils 

(paired helical filaments and straight filaments) [41] that eventually produce neurofibrillary 

tangles, dystrophic neurites, and neuropil threads [40]. Neuronal accumulations of fibrillar 

tau disrupt neuronal cytoskeletal structure and function, and impair axonal transport and 

synaptic integrity. In addition, pre-fibrillar tau can aggregate into neurotoxic soluble 

oligomers or insoluble granular deposits that promote disconnection of synapses and death 

of neurons [42]. Ubiquitination of hyper-phosphorylated tau [43], together with eventual 
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dysfunction of the ubiquitin-proteasome system [44], exacerbate the accumulations of 

insoluble fibrillar tau. Fibrillar tau exerts its neurotoxic effects by increasing oxidative 

stress, ROS generation, neuronal apoptosis, mitochondrial dysfunction, and necrosis [45].

Tau gene expression [32] and phosphorylation [36] are regulated by insulin and IGF, and 

impairments in insulin/IGF signaling contribute to tau hyper-phosphorylation due to over-

activation of specific kinases, e.g. GSK-3β [36,41] and reductions in tau gene expression 

[8,32,46]. Attendant failure to generate sufficient normal tau protein, vis-a-vis accumulation 

of hyper-phosphorylated insoluble fibrillar tau likely promotes cytoskeletal collapse, neurite 

retraction, and synaptic disconnection. Moreover, decreased signaling through 

phosphoinositol-3-kinase (PI3K), Akt [36], and Wnt/β-catenin [47], and increased activation 

of GSK-3β [38] correlate with brain insulin and IGF resistance. Therefore, impairments in 

signaling through these pathways could account for the reductions in neuronal survival, 

myelin maintenance, synaptic integrity, neuronal plasticity, mitochondrial function, and 

cellular stress management in AD.

4.3. AβPP-Aβ pathology

AD is associated with brain accumulations of AβPP-Aβ large insoluble fibrillar aggregates 

in the form of plaques, and soluble neurotoxic oligomeric fibrils. In familial forms of AD, 

increased synthesis and deposition of AβPP-Aβ is due to mutations in the amyloid beta 

precursor protein (AβPP), presenilin 1 (PS1), and PS2 genes, or inheritance of the 

Apolipoprotein E ε4 (ApoE-ε4) allele [48,49]. In sporadic AD, which accounts for 90% or 

more of the cases, the cause of AβPP-Aβ accumulation is still debated. However, evidence 

suggests that impairments in insulin/IGF signaling dysregulate AβPP expression and protein 

processing, leading to AβPP-Aβ accumulation [50].

Evidence suggests that AβPP-Aβ toxicity causes insulin resistance as well as inflammation 

[51], and that brain insulin resistance with oxidative stress and neuro-inflammation [52] 

promote AβPP-Aβ accumulation and toxicity. Insulin accelerates trafficking of AβPP-Aβ 

from the trans-Golgi network to the plasma membrane and its extracellular secretion [53], 

and also inhibits its intracellular degradation by insulin-degrading enzyme [54]. In hyper-

insulin states, IDE can be diverted to degrade insulin, and thereby allow AβPP-Aβ to 

accumulate [55]. Most important, impaired insulin signaling can disrupt processing of AβPP 

and clearance of AβPP-Aβ [56]. At the same time, AβPP-Aβ disrupts insulin signaling by 

competing with insulin, or reducing the affinity of insulin for binding to its own receptor 

[57]. AβPP-Aβ oligomers also inhibit neuronal insulin-signaling by desensitizing and 

reducing surface expression of insulin receptors. Intracellular AβPP-Aβ interferes with PI3 

kinase activation of Akt, leading to reduced survival signaling, increased activation of 

GSK-3β, and hyper-phosphorylation of tau. At the same time, increased levels of GSK-3 

promote AβPP processing and AβPP-Aβ accumulation [58].

4.4. Neuro-inflammation

Neuro-inflammation remains a focus of research in AD because it occurs early in the course 

of disease [59], and already has been addressed in several clinical trials [60,61]. Neuro-

inflammation in the context of neurodegeneration is mainly manifested by up-regulation of 
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pro-inflammatory cytokines and microglial infiltration [62], particularly in the vicinity of 

plaques [63]. Neuro-inflammation contributes to AD pathology by promoting AβPP-Aβ 

accumulation [62], Tau hyper-phosphorylation [64], oxidative injury [65], and impairments 

in neuronal plasticity [66]. Furthermore, inflammation exacerbates insulin resistance and 

ceramide accumulation, i.e. lipotoxicity, and insulin resistance and lipotoxic injury and cell 

death worsen inflammation [50,67,68,21].

In a recent study, analysis of cerebrospinal fluid (CSF), ventricular fluid (VF) and 

postmortem brain tissue by multiplex bead-based ELISAs revealed either significantly or 

moderately elevated levels of at least 15 different cytokines in AD CSF and brains during 

early or intermediate stages of disease, but broad-based suppression rather than activation of 

pro-inflammatory mediators in VF and brain tissue during the late stages of AD [69]. Our 

finding that cytokines are activated early in AD but not late in the clinical course is 

consistent with previous observations [59,70]. It is particularly noteworthy that the 

pronounced reductions in cytokine activation overlapped with declines in the expression of 

trophic factor and mediators of insulin signaling/responsiveness, and increases in brain 

levels of AβPP-Aβ, pTau, and advanced glycation end-products [69]. Indeed, the complexity 

of cytokine activation profiles in AD CSF has been reported previously [71], perhaps due to 

time or disease duration related shifts in neuro-inflammation. Together, these findings 

suggest that neuro-inflammation may mediate neurodegeneration at early and possibly other 

selected stages of AD rather than throughout the clinical course. Correspondingly, the 

failure to obtain conclusive evidence that anti-inflammatory measures are neuroprotective 

and can halt neurodegeneration most likely reflects the complexity and non-static nature of 

the problem.

4.5. Oxidative and endoplasmic reticulum (ER) stress

Insulin/IGF resistance increases both oxidative and ER stress [21]. Persistent oxidative 

stress leads to reactive oxygen (ROS) and reactive nitrogen (RNS) species formation, as 

occur in AD [65]. ROS and RNS exacerbate oxidative stress by attacking organelles such as 

mitochondria. Their molecular attacks result in formation of stable adducts with DNA, 

RNA, lipids, and proteins, still further compromising neuronal integrity [72]. Oxidation of 

amino acids leads to formation of advanced glycation end products (AGEs) or advanced 

oxidation protein products, and protein unfolding, rendering them inactive and vulnerable to 

cleavage. Oxidation of aliphatic side-chains yields peroxides and carbonyls (aldehydes and 

ketone) that can attack other molecules and generate radicals, as well as AGE accumulation. 

Consequences include progressive cellular dysfunction [73,74]. Therefore, elevated levels of 

AGE in AβPP-Aβ plaques and neurofibrillary tangles [75–77] can contribute to the 

progressive neuronal loss that occurs with neurodegeneration [72,75,77].

Oxidative stress and its responses can: (1) activate pro-inflammatory networks that 

exacerbate organelle dysfunction and pro-apoptosis mechanisms; (2) stimulate AβPP gene 

expression [78] and AβPP cleavage, resulting in increased formation of AβPP-Aβ neurotoxic 

fibrils [79]; and (3) activate or dis-inhibit GSK-3β, which promotes tau phosphorylation. 

Therefore, oxidative stress stemming from brain insulin/IGF resistance and metabolic 
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dysfunction contribute to neuronal loss, AβPP-Aβ toxicity, tau cytoskeletal pathology, and 

neuro-inflammation in AD [3,18,80].

ER functions including protein synthesis, modification, and folding, calcium signaling, and 

lipid biosynthesis are regulated by glucose metabolism. Insulin resistance-associated 

impairments in glucose uptake and utilization are associated with increased ER stress [81–

83]. Chronically high levels of ER stress dysregulate lipid metabolism, causing 

accumulation of toxic lipids, e.g. ceramides, and activation of pro-inflammatory and pro-

apoptosis cascades [7,84,85]. ER stress and dysregulated lipid metabolism in the brain 

worsen with severity of AD and brain insulin/IGF resistance [21]. Correspondingly, 

treatment with Liraglutide, a GLP-1 analogue, protects against high glucose-induced ER 

stress [86].

4.6. Metabolic deficits

Insulin and IGF signaling regulate glucose utilization and ATP production in brain. In AD, 

deficits in cerebral glucose utilization and metabolism occur early and prior to significant 

cognitive decline [87]. Insulin resistance leads to deficiencies in energy metabolism and 

increased oxidative stress [88–90]. These and other consequences help drive pro-apoptosis, 

pro-inflammatory, and pro-AβPP-Aβ cascades, which worsen DNA damage, mitochondrial 

dysfunction, oxidative stress, and ROS generation [3,8,18,19,28]. Therefore, impairments in 

brain insulin signaling are likely pivotal to AD pathogenesis [19]. Correspondingly, 

experimental brain insulin/IGF resistance produces cognitive impairment and AD-type 

neurodegeneration [28,91]. Oxidative stress and ROS damage mitochondrial membranes, 

mitochondrial DNA, and electron transport systems, reducing capacity to generate ATP and 

worsening ROS.

4.7. Cerebral microvascular disease

Cerebral microvascular disease is a consistent feature of AD and probable mediator of 

cognitive impairment. Chronic cerebral microvascular injury is characterized by 

proliferation of vascular endothelial cells, thickening of the intima, fibrosis of the media, 

and narrowing of lumens. Mural scarring reduces vascular compliance and compromises 

blood flow and nutrient delivery, particularly in periods of high metabolic demand. 

Moreover, blood vessel walls are rendered leaky and therefore permeable to toxins due to 

their structural weakness [92,93]. Restricted blood flow and delivery of oxygen/nutrients 

exacerbate the adverse effects of insulin/IGF resistance by further increasing oxidative 

stress, leading to activation of signaling mechanisms that promote aberrant tau 

phosphorylation, AβPP cleavage, AβPP-Aβ deposition, and mitochondrial dysfunction [78]. 

The main microvascular disease-associated lesions in AD include multifocal small infarcts 

and leukoaraiosis, i.e. extensive white matter fiber attrition with pallor or myelin staining 

[94]. Since T2DM and hypertension also cause brain microvascular disease, they most likely 

contribute to neurodegeneration and cognitive impairment in AD [95]. Mechanistically, 

hyper-insulinemia causes progressive injury to micro-vessels, with attendant chronic 

cerebral hypoperfusion.
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5. Underlying causes of brain insulin resistance

5.1. Aging

Insulin and IGF resistance increase with aging, while longevity is associated with 

preservation of insulin/IGF responsiveness [55,96,97]. However, cumulative challenges and 

stresses over a lifespan can damage cells and tissues due to excessive signaling through 

insulin/IGF-1 receptors [98,99]. Therefore, chronic overuse of insulin/IGF signaling 

networks, as occurs with hyper-insulinemia and insulin resistance, may be harmful and 

accelerate aging.

Declines in growth hormone levels and metabolism could also potentiate aging due to the 

co-occurrence of anabolic deficiencies that accelerate metabolic dysfunction and mortality 

[100]. Since growth hormone deficiency promotes obesity [101], and obesity promotes 

insulin resistance and hyperinsulinemia, aging-associated declines in growth hormone could 

mediate their effects by causing insulin resistance [102]. Attendant impairments in energy 

balance increase oxidative stress, activate pro-inflammatory pathways, and generate ROS. 

End results include increased mitochondrial DNA adducts, DNA damage, mitochondrial 

dysfunction, and cell death.

It is doubtful that insulin resistance, cognitive impairment, and AD are just inevitable 

consequences of aging [103] since one of the key factors in the equation is that the chronic 

low-grade inflammation, which accompanies aging [104,105], drives insulin resistance 

[105,106]. In addition, evidence suggests that underlying, possibly genetic factors may 

dictate consequences of aging because: (1) the rates and characteristics of aging vary widely 

among individuals; (2) the nature of and target organs diseased by insulin resistance are 

heterogeneous; and (3) there is no clear reason why aging per se should result in chronic 

inflammation, insulin and IGF resistance, or growth hormone deficiency. To account for 

individual variability in aging and insulin resistance, we hypothesize that underlying genetic 

or epigenetic host factors dictate organ-system susceptibility to insulin resistance diseases. 

Genetic factors could be the inheritance of AD-associated genes. Epigenetic factors could be 

wear and tear effects of poor lifestyle choices, diet, or toxic exposures.

5.2. Lifestyles promoting systemic insulin resistance

Insulin resistance diseases, including AD, obesity, T2DM, non-alcoholic steatohepatitis 

(NASH), and metabolic syndrome are now pandemic [107–109] and the major cause of sky-

rocketing healthcare costs, disability rates, and premature death. The causes are directly 

linked to increased consumption of highly processed, starch-, sugar- and fat-laden, 

calorically dense foods that are rendered “tasty” by commercial enterprises. Highly effective 

marketing continues to lure people to “convenience” foods and lifestyles. Within the past 

40–50 years, initially the USA and now the world has witnessed rapid increases in insulin 

resistance-related disease prevalence among young and middle-aged individuals, including 

adolescents and children. Type 2 diabetes, non-alcoholic fatty liver disease, metabolic 

syndrome, cognitive impairment, and cardiovascular diseases are epidemic and occur earlier 

than in prior years [103]. These trends are linked to the increased prevalence of obesity and 

sedentary lifestyles. Since the nature and consequences of insulin resistance diseases in 
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younger groups are nearly the same as in older individuals, it could be argued that certain 

lifestyles, habits, and behaviors cause disease by accelerating aging. The corollary is that 

lifestyle modifications should slow aging and prevent aging-associated insulin resistance 

diseases.

5.2.1. Obesity—Obesity is linked to insulin resistance and substantially increases risk for 

T2DM, NAFLD, NASH, metabolic syndrome, and cognitive impairment [110–113]. With 

regard to the brain, epidemiological and clinical studies showed that glucose intolerance, 

deficits in insulin secretion, and insulin resistance diseases (T2DM, obesity/dyslipidemic 

disorders, or NASH) all increase risk for developing mild cognitive impairment (MCI) or 

AD-type dementia [8,114–116]. Furthermore, obese individuals have higher rates of 

executive function impairment [116,117], and have at least double the risk of developing 

AD than the general population [118]. Correspondingly, experimental diet-induced obesity 

and T2DM cause cognitive declines [35] with deficits in spatial learning and memory [119], 

and brain atrophy with insulin resistance, inflammation, oxidative stress, and cholinergic 

dysfunction [110,120]. In humans, weight loss sufficient to reduce peripheral insulin 

resistance improves cognitive performance [121,122] and enhances neuropsychiatric 

function [123], and reductions in metabolic indices through Mediterranean diet adherence 

lower the risk for AD [124].

5.2.2. Type 2 diabetes mellitus (T2DM)—The molecular and biochemical 

abnormalities in AD brains mimic the effects of T2DM or NASH on skeletal muscle, 

adipose tissue, and liver, further suggesting that AD is a brain insulin resistance-related 

disease. Insulin resistance diseases often overlap in the same individuals. Correspondingly, 

longitudinal studies showed that T2DM [125] and obesity/dyslipidemic disorders [126] 

correlate with subsequent development of MCI, dementia, or AD [125,127]. However, 

postmortem studies suggest that peripheral insulin resistance states contribute to cognitive 

impairment and AD progression, but do not independently cause AD [128,129]. Similarly, 

although experimental diet-induced obesity with T2DM causes cognitive impairment with 

deficits in spatial learning and memory [119], brain atrophy, brain insulin resistance, neuro-

inflammation, oxidative stress, and deficits in cholinergic function are relatively mild 

relative to AD [110,130].

5.2.3. Non-alcoholic fatty liver disease (NAFLD)—The fact that obesity per se, is not 

an independent risk factor for MCI and neurodegeneration suggests that factors associated 

with obese states govern these propensities [131]. Independent studies have shown that 

cognitive impairment and neuropsychiatric dysfunction occur with steatohepatitis and 

hepatic insulin resistance of various etiologies, including obesity, alcohol abuse, chronic 

Hepatitis C virus infection, Reyes syndrome, and nitrosamine exposures [130,132–134]. 

Mechanistically, inflammation in the setting of hepatic steatosis, increases ER stress, 

oxidative damage, mitochondrial dysfunction, and lipid peroxidation, which together drive 

hepatic insulin resistance [113]. Insulin resistance dysregulates lipid metabolism and 

promotes lipolysis [135], which increases production of toxic lipids, including ceramides, 

which further impair insulin signaling, mitochondrial function, and cell viability 
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[113,136,137]. Liver disease worsens because ER stress and mitochondrial dysfunction 

exacerbate insulin resistance [112], lipolysis, and ceramide accumulation [81–83].

NAFLD with T2DM and visceral obesity is associated with brain atrophy, 

neurodegeneration, and cognitive impairment [80,110,120,130,134]. In humans with NASH, 

neuropsychiatric disease, including depression and anxiety [138], and risks for developing 

cognitive impairment [139] are increased. In fact, cognitive impairment and 

neuropsychiatric dysfunction correlate more with steatohepatitis and insulin resistance than 

with obesity or T2DM [140,141]. Therefore, it is important to consider the potential roles of 

hepatic insulin resistance and steatohepatitis as mediators of neurodegeneration. To this end, 

we hypothesized a novel mechanism by which increased levels of cytotoxic ceramides 

generated in liver could cause neurodegeneration [80,120,130,134]. However, visceral fat is 

yet another potential source of cytotoxic ceramides.

With steatohepatitis, irrespective of cause, ceramide-related gene expression and ceramide 

levels are increased [7,8,110,142–145]. Furthermore, cultured CNS neurons exposed to 

short-chain cytotoxic ceramides develop AD-type molecular and biochemical abnormalities 

[146,147], and in vivo treatment with short-chain toxic ceramides causes cognitive-motor 

deficits, brain insulin resistance, oxidative stress, metabolic dysfunction, and 

neurodegeneration [145]. In addition, brain slice cultures exposed to long-chain ceramide-

containing plasma lipids from diet-induced obese rats with steatohepatitis, or purified 

synthetic long-chain ceramides, produced neurotoxic responses with impairments in culture 

viability and mitochondrial function [142]. Therefore, toxic lipids generated in liver can 

cause neurodegeneration.

5.2.4. Metabolic syndrome—Metabolic syndrome is a cluster of disease processes 

centered around insulin resistance, visceral obesity, hypertension, and dyslipidemia [148]. 

Metabolic syndrome increases risk for coronary artery disease, atherosclerosis, and T2DM, 

and is frequently associated with NAFLD/NASH, pro-inflammatory and pro-thrombotic 

states, and sleep apnea [148]. Studies have linked peripheral insulin resistance [149], 

visceral obesity [150], and metabolic syndrome [151–153] to brain atrophy, cognitive 

impairment, and impaired executive function [154]. The aggregate findings in humans and 

experimental models suggest that peripheral/systemic insulin resistance disease states serve 

as cofactors in the pathogenesis and progression of neurodegeneration. Therefore, measures 

that strategically address systemic insulin resistance should help reduce progression and 

severity of neurodegeneration [155].

6. Environmental and dietary exposure factors as mediators of insulin 

resistance and neurodegeneraton

6.1. Nitrosamine-mediated cellular and molecular injury

The prevalence rates of insulin resistance disease, including AD have increased rapidly over 

the past several decades [156–160]. These dramatic shifts in morbidity and mortality 

occurred across a broad range of age-groups such that the effects are more consistent with 

exposure-related rather than genetic etiologies. The striking increases in AD mortality rates 
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corrected for age followed sharp increases consumption of processed foods, use of 

preservatives, and demand for nitrogen-containing fertilizers [109]. The common thread is 

that these lifestyle changes have inadvertently increased chronic exposures to nitrosamines 

(R1N(–R2)–N=O) and related compounds.

Nitrosamines form by chemical reactions between nitrites and secondary amines (proteins). 

Nitrosamines exert their toxic and mutagenic effects by alkylating N-7 of guanine, leading 

to increased DNA damage [161] and ROS production, followed by lipid peroxidation, 

protein adduct formation, and pro-inflammatory cytokine activation [162,84]. Curiously, 

these very same molecular and biochemical pathogenic cascades occur in insulin-resistance 

diseases, including T2DM, NASH, and AD [90,125,163–167]. The concept that chronic 

alkylating agent-injury could cause malignancy and/or tissue degeneration is important and 

not exactly foreign, given the facts that: (1) chronic exposures to tobacco nitrosamines cause 

lung cancer and emphysema; and (2) streptozotocin (STZ), a nitrosamine-related compound, 

causes hepatocellular or pancreatic carcinoma, T2DM, AD-type neurodegeneration, and 

steatohepatitis, depending on dose and route of administration [28,30,80,87,168–172]. 

Therefore, although nitrosamine-related research has largely focused on mutagenesis, at this 

junction it seems warranted to investigate the degenerative effects as well.

6.2. Nitrosamines and neurodegeneration: Role of streptozotocin (STZ)

STZ, like other N-nitroso compounds, causes tissue injury and disease because if functions 

as an alkylating agent [30], an inducer of DNA adducts that lead to increased apoptosis 

[173], an inducer of single-strand DNA breaks and stimulus for nitric oxide (NO) formation 

[169]; and an enhancer of the xanthine oxidase system, increasing production of superoxide 

anion, H2O2, and OH− radicals [174]. In addition, STZ mediates neural injury by inducing 

pro-inflammatory responses [29,175,176]. Progressive cellular injury, DNA damage, and 

oxidative stress cause mitochondrial dysfunction [169], ATP deficiency [177], poly-ADP 

ribosylation, and finally apoptosis. The findings of brain insulin deficiency and insulin 

resistance, deficits in cholinergic function, impairments in spatial learning and memory, and 

AD-type histopathologic lesions in rats that were given intracerebral injections of 

streptozotocin [28,84,91,178–181], raised questions about nitrosamine toxin exposures as 

mediators of AD in humans. This concept was reinforced by data showing that STZ also 

causes T2DM and NAFLD [182–184], and that STZ’s degenerative effects are mediated by 

impairments in insulin signaling and metabolism, and increased oxidative stress, 

mitochondrial dysfunction, and cell death [28,80,170,178,180,185].

6.3. Dietary nitrosamines as potential mediators of AD neurodegeneration

The structural similarities between STZ and nitrosamines, including N-nitrosodiethylamine 

(NDEA) and N-nitrosodimethylamine (NDMA) [186], together with experimental evidence 

that high doses of STZ cause cancer while lower doses cause diabetes or AD-type 

neurodegeneration with cognitive impairment [28,169,172], led to the following hypothesis. 

High exposure levels of environmental and consumed nitrosamines cause cancer, whereas 

lower, sub-mutagenic doses produce insulin-resistance mediated degenerative diseases, 

including T2DM, NASH, metabolic syndrome, visceral obesity, and AD. STZ has little 

relevance to human diseases due to minimal or absent exposures. In contrast, humans are 

de la Monte and Tong Page 11

Biochem Pharmacol. Author manuscript; available in PMC 2015 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



frequently exposed to NDEA and NDMA through the diet; NDEA and NDMA are 

structurally related to STZ. In addition, human exposures to tobacco nitrosamines also 

increased steadily until public health and policy measures blunted tobacco consumption. 

Correspondingly, meta-analysis studies have disclosed links between cigarette smoking and 

AD [187].

The above hypothesis was tested by treating rats with low and limited sub-mutagenic doses 

of NDEA. The rats developed systemic insulin resistance with hepatic steatosis, visceral 

obesity, T2DM, and neurodegeneration. Coupling the NDEA exposures with chronic high 

fat diet feeding additively worsened the outcomes with respect to insulin resistance diseases 

[84,143]. These findings support our hypothesis that the relatively recent epidemics of 

sporadic AD, T2DM, and NASH/metabolic syndrome are mediated by chronic 

environmental or dietary nitrosamine exposures [109].

7. Reverberating loop of insulin/metabolic malsignaling in AD

7.1. Insulin resistance cascade: Ceramides and lipotoxocity

Chronic obesity, T2DM, NASH, and AD share in common, insulin resistance which is 

associated with inflammation and lipid dyshomeostasis. Chronic inflammation is mediated 

by activation of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) 

[67,188,189]. Lipid dyshomeostasis results in increased ceramide generation in adipose 

tissue and liver [146,190–192]. Insulin resistance, inflammation, and ceramide accumulation 

promote oxidative and ER stress, which impair mitochondrial function, energy balance, and 

membrane integrity, and worsen insulin resistance, inflammation, and ceramide generation 

[81,82,193–196]. Unchecked, the rates of injury eventually exceed those of repair. Resulting 

states of chronic insulin resistance initiate a harmful positive feedback mal-signaling loop 

that mediates progressive organ-system degeneration (Fig. 1).

7.2. Extrinsic factors mediating neurodegeneration

Although cognitive impairment, brain insulin/IGF resistance, brain atrophy, and 

neurodegeneration frequently develop in peripheral insulin resistance disease states 

associated with chronic obesity, T2DM, NASH, and metabolic syndrome, the common 

variables are steatohepatitis and/or visceral obesity with increased ceramide accumulation 

[67,136,193,197]. Ceramides are lipid signaling molecules [191,198] that regulate positive 

(growth, motility, adhesion, differentiation) and negative (senescence, apoptosis, insulin 

resistance) cellular functions. Ceramides accumulate in cells due to disturbances in 

sphingolipid metabolism [67,199–201] and upregulation of pro-ceramide genes [110,202]. 

Altered sphingolipid metabolism aberrantly increases intracellular ceramide levels and 

insulin resistance [113,136,199,200,203–205] in obesity, T2DM, NASH, and AD 

[81,82,146,190–196].

Since none of the experimental models of peripheral insulin resistance were associated with 

substantial alterations ceramide-related gene expression or enzymatic activity in brain, if 

toxic ceramides were to mediate disease, they must originate from sources outside of the 

CNS. Studies showing that systemically administered toxic ceramides can cross the blood–

brain barrier and cause neurodegeneration, insulin resistance, and neurobehavioral 
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abnormalities [144], together with the finding that ceramides present in peripheral blood of 

rats with steatohepatitis cause neurotoxic injury in vitro [206], led us to the liver–brain axis 

hypothesis. The basic concept is that cytotoxic ceramides generated in liver and probably 

also visceral fat, leak into peripheral blood following injury or cell death caused by local 

tissue inflammation. Cytotoxic ceramides then traffic through the circulation, and due to 

their lipid soluble nature, cross the blood–brain barrier and exert neurotoxic and 

neurodegenerative effects by impairing insulin signaling [7,144,207] and activating pro-

inflammatory cytokines [67,208]. This scheme explains how brain insulin resistance, which 

is an early and important feature of AD, could be mediated by peripheral insulin resistance 

diseases that are associated with hepatic or visceral fat accumulation, inflammation, 

dysregulated lipid metabolism, ER/oxidative stress, mitochondrial dysfunction, and 

activation of pro-death signaling networks [142,144,207].

7.3. Intrinsic pathway to type 3 diabetes

Although T2DM, obesity, NASH, and metabolic syndrome are major driving forces in the 

cognitive impairment and AD epidemics, it is important to bear in mind that most cases of 

AD are not associated with obesity or significant peripheral insulin resistance diseases. Yet, 

AD is clearly a metabolic degenerative disease with brain insulin/IGF resistance and 

deficiency. In addition, the brain-restricted insulin/IGF resistance is associated with 

dysregulated lipid metabolism, long-chain ceramide accumulation, inflammation, ER and 

oxidative stress, and mitochondrial dysfunction [21,142]. Although the causes of primary 

brain insulin/IGF resistance and deficiency in sporadic AD are not known, experimental 

evidence suggests roles for nitrosamine exposures. This concept fits with data indicating 

widespread and abundant exposures to nitrosamines and their precursors in our diets and 

resulting from lifestyle trends over the past 50 years. Experiments showed that low-level 

nitrosamine exposures cause the full spectrum of insulin resistance diseases, including 

T2DM, visceral obesity, NASH, metabolic syndrome, and AD-type neurodegeneration. 

These findings led to the concept of an intrinsic pathway for neurodegeneration. We propose 

that AD and probably other neurodegenerative diseases are mediated by chronic, low-level 

exposures to nitrosamines, through diet, lifestyle choices, and possibly tobacco. The 

nitrosamine toxins exert their degenerative effects by causing insulin resistance and 

oxidative stress in various organs, including brain. In addition, nitrosamine exposures 

exacerbate the effects of obesity and aging-associated insulin resistance, and thereby serve 

to initiate, propagate, and exacerbate the AD neurodegeneration cascade.

8. Conclusions

• AD is fundamentally a metabolic disease of the brain that is driven by insulin and 

IGF resistance and deficiency, and mimics the effects and consequences of diabetes 

mellitus. The molecular, biochemical, and degenerative features of AD correspond 

with the abnormalities that occur within the spectrum of systemic insulin resistance 

diseases.

• Brain insulin/IGF resistance, whether primary or secondary, initiates a cascade 

driven by increased oxidative stress, neuro-inflammation, impaired cell survival, 

mitochondrial dysfunction, dysregulated lipid metabolism, and ER stress. These 
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processes compromise neuronal and glial functions, reducing neurotransmitter 

homeostasis, disrupting neuronal cytoskeletal and amyloid-beta precursor protein 

(AβPP) functions, and causing toxic oligomeric fibrils and insoluble aggregates 

(neurofibrillary tangles and AβPP-Aβ plaques) to accumulate.

• AD progresses due to: (1) activation of a harmful, self-reinforcing, positive 

feedback loop that worsens the effects of insulin resistance; and (2) the formation 

of ROS- and RNS-related lipid, protein, and DNA adducts that permanently 

damage basic cellular and molecular functions.

• Since the underlying cellular, molecular, and biochemical abnormalities in various 

insulin/IGF resistance diseases are nearly identical, the underlying mechanisms are 

likely to be shared. Obvious shifts in disease prevalence and lifestyles over the past 

50 years point toward exposure factors as causal agents. We propose that chronic 

low-level nitrosamine exposures through diet, smoking, and agriculture, plus 

excessive caloric intake of fats and simple sugars, are responsible for the insulin 

resistance diseases epidemic. This hypothesis is supported by experimental data.

• Our concept regarding the pathogenesis of AD broadens opportunities for 

prevention, and the discovery of treatments that may be effective across the full 

spectrum of metabolic-insulin/IGF resistance diseases.
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Fig. 1. 
Primary and secondary mediators of neurodegeneration are linked to harmful positive 

feedback loops driven by insulin resistance. Alzheimer’s disease, non-alcoholic 

steatohepatitis (NASH), polycystic ovarian syndrome (PCO), Type 2 diabetes mellitus, 

obesity, and metabolic syndrome are all associated with insulin resistance. Once established, 

insulin resistance drives a positive feedback cycle of inflammation, endoplasmic reticulum 

(ER) stress, dysregulated lipid metabolism with increased ceramide generation, and 

metabolic dysfunction in the affected organs and tissues. The consequences are increased 

cell death, impaired function, and organ/tissue degeneration. With regard to the brain, 

insulin resistance can occur as a primary disease process leading to selective 

neurodegeneration (Alzheimer’s disease). Alternatively, neurodegeneration could be 

consequential to insulin resistance in other organs, and arise in association with NASH, 

PCO, diabetes, obesity, and metabolic syndrome. We propose that toxic lipids (ceramides) 

released from injured and dying cells exert neurotoxic effects and cause insulin resistance. 

In primary AD, toxic ceramides are generated primarily in the brain. With regard to 
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systemic diseases, ceramides made in peripheral organs injure the brain after crossing the 

blood–brain barrier. A self-reinforcing mal-signaling loop leads to progressive 

neurodegeneration. However, we are still left with the question of underlying etiologies. 

Epidemiologic and experimental data point toward chronic low-level nitrosamine exposures 

through dietary, agricultural, and smoking sources as upstream causes of insulin resistance 

diseases. Our over-arching hypothesis is that while high levels of nitrosamine exposures 

cause cancer, chronic low, sub-mutagenic doses cause insulin resistance-associated 

degenerative diseases. Host factors including aging and lifestyle measures may dictate 

propensity for different subtypes of insulin resistance diseases, including Alzheimer’s.
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