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Abstract

Cognitive impairment or intellectual disability (ID) is a widespread neurodevelopmental dis-
order characterized by low 1Q (below 70). ID is genetically heterogeneous and is estimated
to affect 1-3% of the world’s population. In affected children from consanguineous families,
autosomal recessive inheritance is common, and identifying the underlying genetic cause is
an important issue in clinical genetics. In the framework of a larger project, aimed at identify-
ing candidate genes for autosomal recessive intellectual disorder (ARID), we recently car-
ried out single nucleotide polymorphism-based genome-wide linkage analysis in several
families from Ardabil province in Iran. The identification of homozygosity-by-descent loci in
these families, in combination with whole exome sequencing, led us to identify possible
causative homozygous changes in two families. In the first family, a missense variant was
found in GRM1 gene, while in the second family, a frameshift alteration was identified in
TRMTT1, both of which were found to co-segregate with the disease. GRM1, a known causal
gene for autosomal recessive spinocerebellar ataxia (SCAR13, MIM#614831), encodes the
metabotropic glutamate receptor1 (mGluR1). This gene plays an important role in synaptic
plasticity and cerebellar development. Conversely, the TRMT1 gene encodes a tRNA
methyltransferase that dimethylates a single guanine residue at position 26 of most tRNAs
using S-adenosyl methionine as the methyl group donor. We recently presented TRMT1 as
a candidate gene for ARID in a consanguineous Iranian family (Najmabadi et al., 2011). We
believe that this second Iranian family with a biallelic loss-of-function mutation in TRMT1
gene supports the idea that this gene likely has function in development of the disorder.
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Introduction

Cognitive impairment or intellectual disability (ID) is estimated to affect up to 3% of the gen-
eral population and can be caused by both environmental and genetic factors, such as chromo-
somal aberrations or autosomal recessive, dominant, X-linked or mitochondrial mutations. ID
can be divided into two main groups: non-syndromic (NS) ID, where it might present with ID
without additional features, and syndromic ID, in which additional clinical or dysmorphic fea-
tures may also be present [1, 2, 3].

Studies of the molecular basis of intellectual disability have focused on X-linked ID in part,
because the larger families which is needed for gene mapping in ARID are rare in Western
countries. A recent review suggests that ARID is not rare and in outbred populations, 13-24%
of ID may be due to AR genes [4]. In populations where parental consanguinity is common,
autosomal recessive gene defects are an even more important cause of ID. In families from the
Middle East, autosomal recessive disorders were found to be approximately three times more
frequent among inbred vs. non-inbred families [5].

Although mutations in approximately 1000 different genes may cause ID [6], it is thought
that there are no molecular diagnoses for up to 50% of ID cases at present [7]. For the non-syn-
dromic form of ID, it may be difficult to pinpoint and detect the molecular cause of some cases
with minor clinical features unless a candidate gene is found in more than one individual.

In Iran, the rate of consanguineous marriages is about 40%, and the sharing of founder
mutations between large related affected families could allow the identification of disease-asso-
ciated genes. Due to this great resource, the Genetics Research Center (GRC) was able to dis-
cover more than eight ARID-associated loci (MRT4-11) between 2007 and 2011 [8,9]. Since
2011, using next-generation sequencing (NGS), we have identified 50 novel genes for ARID
[10].

In this study, we present two novel variants in GRMI and TRMT1I gene and propose that
they are the underlying genetic causes of ARID in two Iranian families. Mutations in GRM1
gene are responsible for spinocerebellar ataxia, autosomal recessive 13 (SCAR13;
OMIM#614831; Guergultcheva et al., 2012). GRM1 encodes a metabotropic glutamate recep-
torl (mGluR1) that participates in long-term potentiation in the hippocampus and long-term
depression in the cerebellum [11].

The second candidate gene we propose for ARID is TRMT1I. In a recent study by Najmabadi
et al., they recognize a family with TRMT1 gene mutation with clinically similar symptoms and
features to our family 9000114 in this study. While functional analyses of new candidate genes
and associated mutations can provide support for the involvement of a candidate gene, perhaps
the most convincing evidence for causality is to find matching cases, as we did here. TRMT1
gene encodes a tRNA methyltransferase that dimethylates a single guanine residue at position
26 of most tRNAs [12]. Two RNA-methyltransferases, FTSJ1 (MRX9, MIM#309549) and
NSUN2 (MRT5, MIM#611091), which have been identified previously, are implicated in X-
linked ID and ARID, respectively, suggesting an important role of RNA methylation in cogni-
tion process [13, 14].

Opverall, our results suggest that novel allelic variants of a large number of genes could lead
to identification of Iranian patients affected with cognitive impairments. They also highlight
how studying consanguineous families could help in discovering the genetic causes of heteroge-
neous disorders.

Methods

We identified 25 consanguineous families with two or three affected individuals from Ardabil
province, Iran. The study was approved by the ethics committee of the University of Social

PLOS ONE | DOI:10.1371/journal.pone.0129631 August 26, 2015 2/13



@’PLOS ‘ ONE

Novel TRMT1 and GRM1 Gene Mutations in ARID

Welfare and Rehabilitation Sciences in Tehran, Iran.The parents, guardians, and individuals in
this manuscript have given written informed consents (as outlined in PLOS consent form) to
publish these case details and their pictures. All data created during this research are openly
available from Genetics Research Center data archive. After obtaining written informed con-
sent, the probands were examined by experienced clinical geneticists, who assessed the physical
and mental status of the participants, and the participants then underwent a brain MRI to
screen for abnormal anatomical features. The Wechsler Intelligence Scale for Children (WISC)
was used to assess the IQ (intelligence quotient) of the patients. To rule out chromosomal aber-
rations and fragile X-syndrome, karyotype analysis by G-banding and fragile X testing by
Southern blot analysis and PCR were performed. The karyotype of all patients was normal, and
fragile X-syndrome was excluded. Genomic DNA was isolated from whole blood by following
the standard salting out isolation method.

SNP genotyping and linkage analysis

A whole genome scan was performed using SNP Array 6.0 (Affymetrix, Santa Clara, CA, USA)
for two or three affected individuals, one unaffected individual and their parents, and the data
were analysed using Homozygosity Mapper software[15,16]. We applied the ALOHOMORA
[17] software v0.32 which use for converting genotyping data into appropriate format for link-
age analysis. The gender-check tool of the ALOHOMORA software was also used to check the
gender of selected individuals. Recognition of incompatibility genotypes from genotype data
was performed using PedCheck software [18]. Graphical representation of relationship errors
software or GRR [19] was used to calculate the relationships between individuals within fami-
lies. The LOD score was calculated using the MERLIN program based on autosomal recessive
mode of inheritance and with complete penetrance and a disease allele prevalence of 0.001
[20]. The threshold in this research for assessment of the intervals was a LOD score of approxi-
mately 2.5. The visualizations of haplotypes in linkage intervals were obtained using Haplo-
painter software.

Whole Exome Sequencing and variant calling

The DNA of the index patients (IV.1 and V.2 for families 9000105 and 9000114, respectively)
was used to generate an Illumina Pair End pre-capture library (SureSelect XT Target Enrich-
ment System for Illumina Paired-End Sequencing Library; Agilent Technologies Inc., Wil-
mington, DE, USA) in accordance with the manufacturer's protocol (Agilent Technologies).
The captured library was sequenced using the HiSeq 2000 (Illumina) in accordance with the
manufacturer's protocol, in a 101-nucleotide single-end sequencing format. The selected exons
were covered by an average depth of 100X, with 98% of them covered by at least 20X. To detect
homozygous variants, we aligned the high-quality reads to the human reference genome
GRCh37/hg19 by SOAP2.20. We also filtered out the neutral variants by matching dbSNP137,
the 1000 Genome Project, ESP6500 exomes, and the 200 Danish exomes and were absent in
Iranian controls [21,22]. Variants were ranked as potential candidates as previously described
(Najmabadi et al., 2011) using an improved version of Medical Re-sequencing Analysis Pipe-
line (MERAP) developed at the Max Planck Institute for Molecular Genetics, Berlin, Germany.
In addition, a pathogenic evaluation of the novel mutations was carried out according to pres-
ent guidelines [23, 24].

The evaluation was based on several indicators: the effect of the mutation on the codon, in
silico prediction of the functional effect at the amino acid level, the functional role of the gene
related disease, brain-expression profile, evolutionary conservation, gene ontology (GO), and
analysis of animal models, if available.
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Candidate variants were validated in affected and normal individuals, and their parents, if
available, by conventional Sanger sequencing.

Results

Follow-up studies focused on 25 large consanguineous families from Ardabil province in Iran
with two or three affected individuals. Here, we present two of these families in which autozyg-
osity mapping and NGS led to the identification of a homozygous 2 bp deletion in TRMT1
gene (OMIM®611669) and a homozygous missense change in GRM1 gene (OMIM#604473).

The pedigree of the families are shown in Fig 1. The clinical findings are summarized in
Tables 1 and 2. The parents were clinically healthy; those deceased or unavailable were
described as symptom free, supporting the autosomal recessive mode of inheritance.

Family 9000105

The investigated patients (IV.1, IV.2, and IV.3) were born at term with uneventful pregnancies.
Their head circumferences and weights at birth and later during infancy were reported not to
be in the normal range (50™ centile). All affected individuals had short stature (Table 1). The
patients presented moderate-to-severe ID. All affected individuals had delayed developmental
milestones and derangement of speech. An important neurologic symptom was ataxia, which
were scaled in gait and stance. In a clinical examination to assay oculomotor signs, we found
that patient IV.1 presented with nystagmus and esotropia while the other siblings were only
affected by nystagmus. Frequent convulsions and aggressive behaviour were also observed. In
patient IV.1, brain MRI revealed a severely increased number of cerebellar cisterns and cerebel-
lar atrophy (Fig 2).

Family 9000114

The patients in this family were born preterm and had low birth weight (LBW). They all
showed developmental delay. Both gait and the ability to sit were reported to be delayed by 2
years in all of the affected. Although the speech ability was normal, it started between four and
six years of age. The patients did not manifest any other neurological problems or congenital
malformations except for mild facial dysmorphism. In addition, they showed weakness in the
upper and lower extremities. Brain imaging did not yield any significant issues.

Genotyping and Whole Exome Sequencing data

Genotype analysis of the family 9000105 revealed five intervals of autozygosity with a LOD
score >2.5 (Fig 3A and S1 Table). Whole exome sequencing (WES) was then performed using
one of the affected individuals (IV.1). After filtering the variants among candidate variants, a
homozygous missense variant in GRMIgene [chr6. hgl9: g.146673559C>T; NM_000838.2:
¢.1360C>T; p.Leu454Phe] (coordinates used in hgl9) was ranked as potentially causative vari-
ant in this family. The candidate mutation in the GRM1I gene was located on a 5 Mbp identical
by descend (IBD) segment with a LOD score of 2.7 on chromosome 6q24.2-24.3, flanked by
heterozygous SNPs rs4473877: T>C and rs2341768:C>T (Figs 3 and 4).

The p.Leu454Phe variant is located in the ligand binding domain (LBD), which is present in
all mGluR1 protein isoforms. The amino acid Leu454 has a high PhyloP score and is conserved
across evolution through the animal kingdom, suggesting an important role in the normal
functioning of the protein. I silico analysis of GRM1 missense substitution using PolyPhen
and SIFT predict this change as being "probably damaging" and "damaging". We used project
HOPE [25] to perform 3D modelling of p.Leu454Phe change. The wild type residue is located
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Fig 1. Pedigree of the Iranian family. (A) Pedigree of the family 9000105 with ¢.1360C>T; p.Leu454Phe
mutation (B) Pedigree structure of the family 9000114 and facial appearance of the affected individuals with
€.1332_1333delGT; p. Tyr445Leufs*28 mutation. Full symbols denote affected individuals with ID.

doi:10.1371/journal.pone.0129631.g001

in an a-helix. The mutation converts the wild type residue (leucine) into phenylalanine that
does not prefer o-helices in its secondary structure. This residue is part of the so-called extra-
cellular LBD and is buried in the core of the domain itself. The phenylalanine residue is larger
in size than leucine residue and probably could not fit in the domain therefore resulting in pro-
tein folding problems (Fig 5).

Genotyping and linkage analysis of family 9000114 uncovered four homozygous genomic
intervals with a LOD score >2.5 (Fig 3B and S1 Table). Following the same approach used for
the family described above, WES was performed using DNA from individual V.2. After
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Table 1. Clinical features of affected individuals from family 9000105 with a mutation in the GRM1 gene.

Family
Individuals

GRM1 mutation
(NM_001114329)
Gender

Parental consanguinity
Origin

IV:1

¢.1360C>T, p.
Leu454Phe

Male

No

Iran, Ardabil province

Family 9000105
IvV:2
¢.1360C>T, p.
Leu454Phe
Male
No
Iran, Ardabil province

IvV:3

¢.1360C>T, p.
Leu454Phe

Male

No

Iran, Ardabil province

Families (Guergueltcheva et al., 2012)

€.2652_2654del, (p.Asn885del) c.2660
+2T>G

Males and Females
No

Five Roma originating from a small
subisolate group

Age at examination (yrs) 28 37 40 6 to 57

Age at simple sentences 10 11 11 2to 4

Height (cm) 150(-4 SD) 150 (-4 SD) 150 (-4 SD) 120-154
Weight (Kg) 55(-2.5 SD) 58(-1.5 SD) 60(-1.2 SD) 22-60

Head circumference (cm) 55(+1 SD) 54(+0.5 SD) 54(+0.5 SD) No data
Ataxia Yes Yes Yes Yes
Intellectual disability Severe (IQ = 40) Severe (IQ = 40) Moderate (IQ = 55) Mild-to-severe
Gait (0-8) 7 7 7 4108

Stance 6 6 5 2t06

Seizure At 1 year At six month At 1-2 years Variable
Oculomotor Signs Esotropia, Nystagmus  Nystagmus Nystagmus Nystagmus, Esotropia, Abduction deficit
Aggressive behaviour Yes Yes Yes No data

doi:10.1371/journal.pone.0129631.t001

Table 2. Clinical features of affected individuals from family 9000114 with a new mutation in the TRMT1 gene and from family M300 previously
reported (Najmabadi et al., 2011).

Family
Individuals
TRMT1 mutation
(NM_001136035)
Gender

Parental
consanguinity

Origin

Age at examination
(yrs.)

Height (cm)

Head circumference
(cm)

Weight

Intellectual disability
Developmental delay
Facial dysmorphism

Involvements of the
extremities

Others

V:2

¢.1332_1333 delGT, p.
Tr445Leu fs*28

Male

First cousin

Iran, Ardabil province
49

158 (>3% percentile)
55 (+0.7 SD)

54 (-2 SD)
Moderate (IQ = 55)
Yes

Synophrys broad nasal
bridge, hypoplastic ma
xilla

Yes

doi:10.1371/journal.pone.0129631.1002

Family 9000114
V4
¢.1332_1333 delGT, p.
Tr445Leu fs*28
Male
First cousin

Iran, Ardabil province
33

159 (>3% percentile)
54 (+0.5 SD)

65 (0.0 SD)
Mild (1Q = 70)
Yes

Synophrys, broad
nasal bridge,
hypoplastic maxilla

Yes

Hearing loss;
Polydipsia; Polyphagia

V5

¢.1332_1333 delGT, p.
Tr445Leu fs*28

Male

First cousin

Iran, Ardabil province
26

150 (-4 SD)
54 (+0.5 SD)

51 (-2 SD)
Moderate (IQ = 55)
Yes

Synophrys, broad
nasal bridge,
hypoplastic maxilla

Yes

Family M300
Iv:4 IV:10
€.657_688 del32, p. €.657_688 del32, p.
GIn219His fs*22 GIn219His fs*22
Male Female
First cousin First cousin

Iran, Ahvaz province
24

Iran, Ahvaz province
11

167 (+1 SD) 123

57 (+1 SD) 52 (-1 SD)
No data No data
Moderate Moderate
No No

Protrudes ear,
narrowing palpebral
fissure and broad
eyebrow

Yes

Protrudes ear,
narrowing palpebral
fissure and broad
eyebrow

Yes
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Fig 2. Braining imaging study. Brain imaging of the patient (IV: 4.1) with Congenital Cerebellar Ataxia; the
images in T1 and T2 show cerebellar atrophy and severe increased number of cerebellar cisterns.

doi:10.1371/journal.pone.0129631.g002

filtering and prioritization from candidate mutations, we ranked a homozygous 2 bp deletion
in TRMT1 gene [chr19.hg19: g.13220259_13220260delAC; NM_001136035.2:
€.1332_1333delGT; p.Tyr445Leufs*28] (coordinates used in hgl9) as responsible variant which
impact the function of gene. The TRMT1 alteration lies in a 5.6 Mbp homozygous linkage
interval on chromosome 19p13.12-13.2 (LOD score of 2.5) flanked by the heterozygous SNPs
rs7254567: A>G and rs17750057: C>A. (Figs 3 and 6).

Sanger sequencing analysis confirmed co-segregation of the two recent variants with the dis-
ease in the family and also the absence of the each variant in 100 individuals of ethnic specific
Iranian controls (Figs 4 and 6).

Conclusion

In theory, it is thought that many causative ID genes could participate in the common biologi-
cal processes and pathways that elucidate the genetic basis of cognitive functions [6]. Other
important genes could also have an impact on the chromatin modification process [26].
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Fig 3. Linkage analysis results. (A) Parametric linkage analysis for family 9000105: indicates peaks
(Lod>2.5) including an IBD (ldentical by descend) segment on chromosome 6. (B) Parametric linkage
analysis for family 9000114: indicates peaks (Lod>2.5), including a 5.6 Mb interval on chromosome 19.

doi:10.1371/journal.pone.0129631.g003

However, several studies have emphasized the role of synaptic- or neuron-specific gene defects
in the aetiology of ID [27, 28].

Our understanding of the metabotropic glutamate receptors role in the central nervous sys-
tem has grown rapidly in the past few decades [29]. Glutamatergic neurotransmission is
involved in most aspects of normal brain function and can be perturbed in many neuropatho-
logical conditions [30,31,32,33,34,35,36,37]. GRM1 is a G protein coupled receptor for gluta-
mate (GPCR). Interesting electrophysiological experiments in mGIuR1 -/-mice show
abnormal long-term potentiation and point to a critical role for mGlIuR1 in synaptic plasticity,
memory, and learning in other aspects [38]. Conversely, specific removal of mGluRs in the hip-
pocampus causes deficits in long-term depression in the cerebellum, and these mice have gait
disabilities [39, 40].

Among our comprehensive cohort of Iranian autosomal recessive ID (ARID) families, this
was the first time we identified a mutation in the GRM1 gene. The similarities between the
symptoms of individuals with congenital ataxia and additional features and those presented by
patients with a SCAR13 phenotype (Guergultcheva et al., 2012), delayed infancy development,
mild-to-profound ID with poor or absent speech, and gait and stance ataxia have been distin-
guished (Table 1). In silico analysis and 3D modelling of the mutant protein suggest a probable
pathogenic role of the p.Leu454Phe mutation, which is located in a region encoding the LBD of
the mGluR1 protein. All spontaneous mutations occurred in the LBD of the mGluR1, suggest-
ing a critical role for this domain in the ataxic gait problems [41].

PLOS ONE | DOI:10.1371/journal.pone.0129631 August 26, 2015 8/13
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Fig 4. The candidate mutation in the GRM1 gene and its segregation within the family. (A) Scheme of
the GRM1 gene structure; arrows indicated the mutation identified in this study (c.1360C>T) and those
published by Guerguelcheva et al. (B). Sequence chromatograms showing the complete segregation of the
missense mutation ¢.1360C>T in family 9000105 in the patients.

doi:10.1371/journal.pone.0129631.9g004

The binding of extracellular ligands, that is, peptides and neurotransmitters, to the LBD of
mGluR1 induces a conformational change in the G protein coupled receptors (GPCRs), which
can precipitate in a variety of signalling responses, including activation of G proteins, which
are composed of three subunits o, B and vy, and consequent downstream signalling cascades.
Hence, activation of G proteins has an effect on various functional agents such as transcription
factors, ion channels and enzymes. Inactivation of G proteins resulted in the exchange of GTP
for GDP [29]. Extensive studies to discover the mechanism of the activation and function of
GPCRs as well as the interacting protein models that modulate them, specifically the many
novel ligands, have also contributed to finding therapeutic perspectives in neurologic and psy-
chiatric disorders.

In one of the families reported in this study, a frameshift alteration in the TRMT1 gene
resulted in an allelic variant that lies within the TRM functional domain, which is responsible
for the enzymatic activity of the protein. This frameshift variant led to a premature termination
codon (PTC) that affected the splicing of all TRMT1 splice variants, which probably undergo
degradation mediated by nonsense-mediated mRNA decay (NMD).

Basel-Vanagaite et al. in 2003 identified a new locus in the chromosomal region
19p13.12-p13.2, which contains a critical 2.4 MB region between the proximal D19S547 and
distal D19S1165 loci, which resulted in autosomal recessive non-syndromic mental retardation
in four consanguineous families of Israeli Arab origin [42]. Surprisingly, the TRMT1 gene
maps onto the aforementioned region.

Interestingly, mutations in two genes encoding RNA-methyltransferases, NSUN2 and
FTS]1, are functionally similar to TRMT1 and are associated with perturbing the post-transla-
tion of tRNAs, causing the ID phenotype. Co-immunoprecipitation assays have also shown
protein-protein interactions between NSUN2 and FTS]1 (IntAct interaction database), sug-
gesting a common functional pathway [26, 14]. However, a functional study with TRMT1I has

PLOS ONE | DOI:10.1371/journal.pone.0129631 August 26, 2015 9/13
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Fig 5. mGIuR1 conserved protein isoforms with In silico analysis of GRM1 missense substitution. (A)
Partial nucleotide sequence alignment of human GRM1 and its homologues in the animal kingdom
(CLUSTAL2.1). The position of the missense mutation in family 9000105 is indicated by an arrow. (B) Partial
amino acid sequence alignment of the human mGluR1 protein and its homologues in the animal kingdom. (C)
mGIluR1 protein isoforms. Domain LBD/ATD = ligand binding domain/amino terminal domain,

C = cysteinerich domain in red domain, TMD = transmembrane domain, CTD = C-terminal domain,

H = Homer 1-binding motif.? (D) Ribbon presentation of the mGIuR1 protein. The protein is colored grey, the
side chain of the mutated residue, p.Leu454Phe, is colored magenta and shown as small balls. (E) Close-up
of the p.Leu454Phe mutation. The protein is colored grey, the side chains of both the wild-type and the
mutant residue are shown and colored green and red, respectively. The p.Leu454Phe position is indicated.

doi:10.1371/journal.pone.0129631.g005

not yet been performed to assess its role in human development; it would be beneficial to
research in the future.

As mentioned above, this is the second ARID family in which TRMT]I defect has been iden-
tified. The first family reported by Najmabadi et al.2011, consisted of five offspring, two of
whom were affected by moderate-to-severe ID. Upon examination, they showed pes planus
and slight facial dysmorphism, including protruding ears, narrowing palpebral fissure and
broad eyebrows. Spasticity in the lower limbs started at puberty and progressed gradually. The
clinical findings in our study are consistent with the phenotype of the family described by Naj-
mabadi et al., particularly the involvement of the upper and lower limbs and spasticity progres-
sion. The clinical features are summarized in Table 2. However, we did not observe any
obvious abnormal findings in the brain MRIs, though the previous study revealed dilated 4™
ventricle and cerebellar atrophy symptoms.

In this case and other similar cases, we believe that the identification of multiple patients
with overlapping clinical features and allelic mutations is suggestive of a pathogenic role of the
identified variants in the same gene. Our previous study [10] highlights the potential of linkage
analysis as a valid tool to map disease genes, in combination with deep sequencing strategy,
contributes to mutation discovery. Our findings also reveal that Iranian heterogeneous
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Fig 6. The novel TRMT1 gene alteration and its complete segregation in 9000114 family. (A) Scheme of
the TRMT1 gene structure; arrows indicated the mutation identified in this study (c.1332_1333delGT) and the
one published by Najmabadi et al. (see text). (B) Sequence chromatograms showing the complete
segregation of the homozygous ¢.1332-1333delGT in 900114 family in the patients (5.2, 5.4 and 5.5), the
healthy sibling (5.6) and mother (4.2) are heterozygous for deletion.

doi:10.1371/journal.pone.0129631.g006

population in combination with consanguineous marriages would lead to identification of dis-
ease-associated genes.
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