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Abstract

The purpose of this study was to identify, at the voxel level, brain regions associated with the time 

to develop mild cognitive impairment (MCI) or Alzheimer’s disease (AD) from normal cognition. 

We analyzed incident MCI (n = 58) or AD (n = 151) in 292 cognitively normal participants in the 

Cardiovascular Health Study–Cognition Study (mean age = 79.2±3.6 years). We used segmented, 

modulated grey matter maps from 3D (spoiled gradient echo) MRI scans obtained in 1998/99 

(with clinical follow-up through 2012) that were smoothed with a 3-D 4 mm Gaussian filter. We 

fit approximately 1.92 million voxel-level Cox proportional hazard models to examine the grey 

matter volume effect on time to event, adjusting for age, sex, and diabetes. We used the 

significance threshold of p < 0.005 with contiguity threshold of at least 68 voxels (false detection 

probability <2.5 × 10−8). Areas within the mesial temporal lobe (MTL), anterior temporal lobe, 

hippocampus, and posterior cingulate gyrus were associated with time to MCI or AD. The 
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presence of white matter lesions (a marker of small vessel disease in the brain) was associated 

with the volumes of the MTL and precuneus; MRI-identified infarcts also predicted MTL volume. 

These findings are important because we identified critical brain regions that predict a person’s 

increased likelihood of developing MCI or AD over a decade prior to the onset of clinical 

symptoms; these critical brain regions were themselves affected by the presence of vascular 

disease.
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INTRODUCTION

The analysis of structural brain images, especially for predicting changes in 

neurodegenerative disease, generally falls into two camps. The first, a region of interest 

approach has the advantage of focused hypothesis testing to relate a specific set of regional 

brain measures to the disorder of interest (e.g., [1]). The region of interest approach has the 

additional advantage that volumes from preselected areas can then be used in traditional 

epidemiological analyses to predict, for example, the risk or hazard of an event—such as the 

development of mild cognitive impairment (MCI) or Alzheimer’s disease (AD)—from a 

state of normal cognition [2, 3]. The process is difficult, especially in the early stages of a 

neurodegenerative disease, if investigators do not select the appropriate or most critical brain 

regions of interest for analysis. The second major approach, whole brain analysis (or voxel-

level analysis), has the advantage that there are no a priori selected regions: the entire brain, 

or segmented tissue types (e.g., grey or white matter) can be exhaustively searched to find 

brain regions (assessed at the voxel level) that are linked to the disease. However, this 

process is made difficult because the identified clusters of significant voxels may not fall 

neatly into clearly defined anatomical regions. However, as our understanding of the 

pathology of MCI and AD continues to evolve, especially in terms of the sequence of events 

leading to clinical disorder [4], the whole brain, voxel-level approach may be the least 

affected by prior expectations.

The purpose of this report is to describe the results of nearly 2 million survival models that 

were run to identify those brain regions, in cognitively normal elders, that were linked to 

future development of MCI or AD. To accomplish this goal we combined whole-brain, 

voxel-level analysis with Cox proportional hazard modeling using procedures similar to 

those described by Vemuri and colleagues[5]. We did this in the context of the 

Cardiovascular Health Study-Cognition Study (CHS-CS) which provided research-level 

diagnoses and up to 14 years of clinical follow-up. By combining the statistical strengths of 

Cox proportional hazards modeling with higher resolution magnetic resonance imaging data 

(i.e., 1 mm3 voxels), we identified areas of the brain that significantly predict the increased 

likelihood of developing MCI or AD from normal cognition—in some cases, over a decade 

before the presence of any cognitive behavioral symptoms.
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MATERIALS AND METHODS

The Institutional Review Board of the University of Pittsburgh approved this study. Written 

informed consent was obtained from all participants before they underwent research 

procedures.

Subjects

The study sample was drawn from participants in the CHS-CS, which is nested within the 

larger Cardiovascular Health Study (CHS, http://www.chs-nhlbi.org/). The CHS was 

initiated in 1989–1990 as a prospective, population-based, longitudinal study of risk factors 

for coronary heart disease and stroke in adults aged 65 years and older. Subjects were 

recruited if they were over age 65, ambulatory, and non-institutionalized. The initial sample 

size was 5,888 persons.

The CHS-CS began in 1998–1999 and was designed to identify subjects who had developed 

dementia or MCI since 1992/1994 [3, 6]. The sample was limited to the 3,608 participants 

who had a brain magnetic resonance imaging (MRI) scan between 1991 and 1994; of this 

group, 2,005 study participants were classified as cognitively normal. In 2002, the remaining 

non-demented subjects in Pittsburgh (i.e., normal cognition or MCI) were enrolled in the 

CHS-CS and were followed annually through 2012. For those individuals who could not 

return to the clinic, home visits were completed. For those individuals who refused home 

visits, telephone interviews were conducted using the Telephone Interview of Cognitive 

Status [7], and the informants were interviewed using standard procedures, including the 

Dementia Questionnaire [8] and Informant Questionnaire on Cognitive Decline in the 

Elderly [9]. 349 participants were cognitively normal at the onset of the study and each had 

an MRI scan in 1998/99 as well as apolipoprotein E genotyping. Data from 57 individuals 

were excluded due to technical difficulties with their imaging data; with exception of a 2-

point difference on the Modified Mini-Mental State Exam [10], there were no significant 

differences between the included and excluded subjects (see Table 1).

Cognitive classification

The diagnoses of dementia and MCI were made by an Adjudication Committee that used all 

available cognitive and laboratory data from each participant [11, 12]. The first step in the 

diagnostic process was to determine the presence of dementia [13–16]) and the specific 

types of dementia (if present) (e.g., [13, 17–20]). MCI was classified following the CHS-CS 

diagnostic criteria [11]. Cognitive functions in MCI represented a decline from a previous 

level, but overall were within normal limits. Individuals with mild alterations on 

instrumental activities of daily living could be classified with MCI, and all had impairments 

(defined as performance >1.5 S.D. below age/education appropriate means) in one or more 

cognitive domains (i.e., two or more tests abnormal), or one abnormal test (which could be a 

memory test) in at least two separate domains, without sufficient severity or loss of IADLs 

to constitute dementia. The year of onset of dementia was set after review of all prior 

records, including the reports of informants (e.g., Informant Questionnaire on Cognitive 

Decline in the Elderly [21] and Dementia Questionnaire [22]). Once a patient was diagnosed 
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with dementia, follow-up was limited to telephone contact and medical record review. 

Aclassification of MCI had no effect on the number or intensity of follow-up visits.

Brain imaging

Brain MRI scans were acquired using a single 1.5 Tesla GE scanner, as detailed elsewhere 

[23]. A 3-dimensional volumetric T1 weighted Spoiled Gradient Recall (SPGR) sequence 

was obtained (TE/TR =5/25, flip angle= 40°, NEX =1, slice thickness = 1.5 mm/0 mm 

interslice gap), with an in-plane acquisition matrix of 256 × 256 image elements and 124 

slices, 250 × 250 mm field of view and an in-plane voxel size of 0.98 mm × 0.98 mm.

Voxel-based morphometry

The MRI data were processed with a non-parametric non-uniform intensity normalization 

[24] to reduce between-scan intensity differences in the images. This was followed by a bias 

correction to improve spatial registration.

We used the Pittsburgh Normal Elderly Template [25] for spatial normalization; it also 

provided the prior probabilities of each tissue class (i.e., grey, white, cerebrospinal fluid) for 

use in the segmentation routines. We then used the VBM5 script (http://dbm.neuro.uni-

jena.de/vbm/vbm5-for-spm5/) for normalization and segmentation of the data; as part of the 

normalization routine, the voxels were resized to 1 mm3. The resulting maps of grey matter 

(GM) were modulated to render the values in each voxel as a volume; the data were 

smoothed using a 4 mm isotropic Gaussian filter prior to analysis. We then applied a binary 

GM mask to reduce the number of voxels in the search space to 1,915,936.

Prior to the voxel-level analysis, we examined the time to develop MCI/AD using total brain 

GM volume (adjusted for total intracranial volume), age, sex, education, race, high blood 

pressure, heart disease, diabetes, and white matter hyperintensities as covariates. A 

backward stepwise regression analysis found that male sex (Hazard Ratio =1.10, 95% CI 

=1.05–1.15), older age (1.54, 1.03–2.3) and the presence of diabetes (1.59, 1.02–2.47) 

significantly predicted time to event. Therefore, we used these three variables in all of the 

voxel-level analyses described below.

We obtained from the main CHS-CS database measures of white matter hyperintensities and 

MRI-identified infarcts. These are standardized CHS visual ratings [23] that have been used 

as both an independent (e.g., [26, 27] and outcome (dependent) ([26, 27]). White matter 

lesions and infarcts were defined using CHS criteria [28, 29]. White matter lesions were the 

total volume of periventricular and subcortical white matter signal abnormality on spin 

density–weighted axial images compared with 8 standard scans, with the severity of the 

lesions increasing from barely detectable white matter changes (grade 1) to extensive, 

confluent changes (grade 8). Scans with no white matter changes received grade 0, and those 

with changes worse than grade 8 received grade 9. We dichotomized the white matter lesion 

severity using a cut-point of +3. Presumed infarcts in any region were classified as “small 

infarct-like lesions” if <3 mm in size and as “MRI infarcts” when ≥3 mm in size. Cerebral 

white matter lesions are common in older adults, and they are associated with cerebral and 

systemic small vessel disease (i.e., arteriosclerosis) [29–34] and hypertension [35–37]. MRI-
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identified infarcts have a more heterogeneous etiology, reflecting, in part, arterio- and 

athero-sclerosis, as well as being a consequence of atrial fibrillation (for example).

Voxel-level data analysis

We fit per-voxel Cox models to two longitudinal data sets: one (234 subjects: 83 cognitively 

normal, 151 developed dementia) examining the per voxel GM volume predicting onset of 

dementia, and the other (141 subjects: 83 cognitively normal and 58 developed MCI) 

examining the per voxel GM predicting the onset of MCI while adjusting for age, sex, and 

diabetes in both sets.

Hazard functions, h(t), are the probability of an event at time t, conditional on the survival 

up to that time. In our study, it is the probability of developing MCI or dementia at time t 

given that a subject was cognitively normal up to that time. The main assumptions of the 

Hazard model are (1) a participant’s being censored (dropping out of the study or dying) is 

not related to the underlying medical condition modeled (AD or MCI), and (2) the 

regression coefficients do not depend on time, which is usually referred to as the 

proportional hazard assumption. The first assumption is satisfied for our study by its design, 

and we checked that the second assumption was satisfied by performing the chi-square test 

for the proportional hazard assumption [38] for each fitted model. This was done using the 

cox.zph function of the survival package in R (http://www.R-project.org), which performs a 

test of the proportional hazard assumption for each of the covariates in the model as well as 

a global test.

One of the most commonly used models for the hazard function is:

hi(t) = exp(β1 xi1 + ⋯ + βk xik)

We fit the per voxel Cox model as:

log(hijxl(t)) =β1j GMVij + β2 agei + β3 sexk + β4 diabetesl

where: i= 1,… , Ns is the subject number; for the transition from being cognitively normal to 

developing dementia, we had a total of Ns = 234 subjects, and for the transition from being 

cognitively normal to developing MCI, we had a total of Ns = 141 subjects; j=1 … Nt, with 

Nt = 157 x 189 x 156 = 4,628,988 (total number of GM voxels in search space). We applied 

a conservative binary mask where a voxel was classified as grey matter if the GM volume 

(averaged across subjects) was greater than 3, which reduced the number of voxels to 

1,915,936.

After fitting the models, we corrected for multiple comparisons for each voxel that had a 

significant β1j at α = 0.005 by (1) counting how many of its immediate 124 neighbors also 

had a significant coefficient and (2) classifying a voxel as statistically significant if it had at 

least 68/124 immediate neighbors that were also significant. This corresponds to a false 

detection probability of less than 2.5 × 10−8 for each voxel. All of the computations were 

carried out in R version 2.9.1 (http://www.R-project.org) and the survival package version 

2.37–4.
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RESULTS

We examined the characteristics of the study subjects in 1998/1999 as a function of their 

final study classification (see Table 2). All of the study subjects were cognitively normal in 

1998/1999. The individuals who remained cognitively normal were less likely to be women, 

and the participants who developed dementia had lower scores on the Digit Symbol 

Substitution Task [39] (Least Significant Difference (LSD) test, p < 0.05). Otherwise, there 

were no significant differences between the groups of subjects at the beginning of the 

observation period as a function of clinical outcome by the end of the observation period.

Transition to AD dementia

112,915 voxels (6.8% of analyzed voxels) were significant before adjusting for multiple 

comparisons; 6,683 were significant after adjusting for multiple comparisons using the 68 

immediate neighbors threshold. Voxels located within three brain regions showed a 

significant association with time to dementia: the mesial temporal lobe including the anterior 

hippocampus extending into the amygdala, and the posterior cingulate gyrus (retrosplenial 

neocortex, see Fig. 1). In each case, voxels in these three regions were significantly 

associated with time to dementia after controlling for age, sex, and diabetes (locations of 

peak voxels are presented in Table 3), with smaller GM volume corresponding to an 

increased likelihood of developing the condition.

Transition to MCI

Before adjusting for multiple comparisons 104,908 voxels were significant (5.5% of 

analyzed voxels); 3,253 voxels were significant after the adjustment for multiple 

comparisons, with smaller GM volume corresponding to an increased likelihood of 

developing MCI. There was an area in the left medial temporal lobe whose volume was 

associated with time to MCI (see Fig. 1). In two areas, voxels associated with time to MCI 

overlapped with those associated with time to dementia (see Fig. 2). These two regions were 

in the anterior hippocampus/amygdala and were fully contained within the regions 

associated with time to dementia.

Predictors of regional volumes

We then computed the volume in each of these four critical brain regions for each subject. 

At study entry, there were significant differences between the volumes in the three AD-

related regions as a function of study outcome (i.e., normal, AD, MCI; see Table 4). In these 

three regions, the volumes among the individuals who later developed dementia were 

significantly smaller than those of the individuals who remained cognitively normal (LSD 

test, p < 0.05). Finally, there were no significant differences in the volume of the region of 

the retrosplenial cortex that was related to time to develop MCI. However, there was a trend 

such that the volume of the normal controls was greater than that of the individuals who 

later developed dementia, which was greater than that of the individuals who later developed 

MCI.

We then regressed the total volumes in each of these four areas on total intracranial volume, 

age, female sex, non-Caucasian race, APOE ε4 allele (present), hypertension (present), heart 
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disease (present), abnormal white matter, and the presence of MRI-identified infarcts. Age, 

Race and Sex were forced into the models in the first step, then the other predictors were 

tested as a group. Age was significantly associated with the volume of the two regions in the 

mesial temporal lobe, and was marginally associated with the volume of the anterior 

temporal lobe and the posterior cingulate gyrus. However, of the critical predictors, 

abnormal white matter (an index of small vessel disease [40–42]) was significantly 

associated with the volume in the mesial temporal lobe, and in the retrosplenial cortex. 

Large infarcts were only significantly associated with the area in the mesial temporal lobe 

(see Table 5).

Validation of model assumptions

We performed the chi-square test for the proportional hazard assumption [38] for each of the 

roughly 2 million fitted models for both transitions. We found no more violations of the 

proportional hazard assumption for any of the covariates or globally than would be expected 

by chance (5% of the time at the 0.05 significance level).

DISCUSSION

We report here the results of nearly 1.92 million survival analyses to identify—at the voxel-

level—brain regions associated with time to MCI or AD [5] from a state of normal 

cognition. Critically, we demonstrated the presence of an association between GM volume 

and cognitive outcomes in cognitively normal individuals up to 13 years before the 

appearance of symptoms (as we were able to predict the increased likelihood of developing 

MCI/AD based on these GM volumes long before symptoms started), and the volumes of 

two of the regions were affected by cerebrovascular disease. These data are unique because 

for the first time we were able to: 1) study incident MCI and AD from a state of normal 

cognition; 2) use 14 years of follow-up from the time of the MRI scan with detailed clinical 

ascertainment; and 3) maintain the high precision of our voxel-level analyses by not down-

sampling the data and using a minimal smoothing filter.

We found voxels in four specific regions in the mesial temporal lobe and posterior cingulate 

gyrus that predict time to MCI and AD; two of these regions were affected by 

cerebrovascular disease, as indicated by white matter lesions or MRI-identified infarcts. 

After adjusting for these critical covariates (i.e., white matter lesions, large infarcts), 

hypertension was associated with the volume of the hippocampus that predicted increased 

likelihood of developing MCI.

As this was only the second implementation of these procedures in the context of aging and 

dementia, we focused our analyses on the first clinical outcome in the cognitively normal 

individuals from 1998/99. Consequently, we did not consider a dementia outcome when it 

followed MCI, and thus the median time to develop dementia (5 years) was shorter than the 

median time to develop MCI (13 years). These findings confirm our earlier observations 

[43] that while the volume of the ventral striatum was already significantly atrophic among 

cognitively normal individuals who developed dementia (as atrophic as that of AD patients), 

it was the volume of the hippocampal formation that predicted fast versus slow conversion 

(within a 4–5 year range).
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Like Vemuri and colleagues [5], we used proportional hazard models to determine whether 

voxel-level GM volumes predict the onset of AD and MCI. However, our implementation of 

the survival model differs in several important ways. First, we examined the transitions from 

normal cognition to both MCI and AD, rather than focusing on the transition from MCI to 

AD. This is important because MCI can exist for many years, and absence of information 

about duration of the syndrome can affect the outcome of survival models [2]. In addition, 

we did not downsample the pre-smoothed data, and used 1 mm3 voxels resulting in almost 2 

million models. We used minimal Gaussian smoothing (4 mm isotropic) to make the data 

more amenable to parametric models and to account for errors in spatial normalization. We 

modulated the GM voxels prior to analysis rendering the data closer to volumes than to 

density values (i.e., unmodulated). This has the further advantage that the voxel-level values 

were not limited to the range of 0.00–1.00, so we did not encounter any modeling issues that 

might have necessitated a transformation of the data. As we tested a large number of models 

(1.92 million), we wanted to reduce Type I error. We therefore adopted a “height” threshold 

for each voxel of p < 0.005 with an “extent” threshold of 68 voxels, resulting in a false 

detection probability of 2.5 × 10−8 (see discussion by Johnson and colleagues [44]). Using 

this stringent threshold, and the very conservative false positive probability corresponding to 

it, allows us to detect only the most important voxels.

There are alternative methods that could be used to analyze these data, including the general 

linear model with time to onset as the covariate of interest. In our study, the predicted 

variable (time to onset) is effectively categorical. Furthermore, the hazard model is generally 

preferred because it models the probability of developing MCI or AD at time t given the 

subject was normal prior to time t. The probability varies continuously between 0 and 1, and 

in this case the hazard model is more powerful than a GLM.

Many studies have sought to define the early biological manifestations of AD, particularly 

those that precede clinical dementia [45–49]; the normal progression of the disorder includes 

a prodromal period in which the disease is present without clinical signs and this may extend 

decades [45, 50]. The prodromal period typically progresses insidiously to an MCI phase, 

the earliest symptomatic indicator of an evolving AD [51, 52], and then to the clinical 

dementia syndrome. In this context, our results are important because we identified 

alterations in brain structure in cognitively normal individuals, as many as 13 years before 

the onset of a clinical syndrome (in the case of MCI).

Much of the research on the prodromal phase of AD has focused on alterations in the 

hippocampus and related structures [53–56]. Hippocampal atrophy in presymptomatic 

individuals predicts AD with a specificity of 91% and a sensitivity of 89% [57]. There are 

both structural and functional abnormalities in the mesial temporal lobes and other 

heteromodal association cortices in MCI subjects who progress to AD [43, 54, 58–68], and 

in normal subjects at risk for AD [69]. Ventral striatum and hippocampal volumes are 

associated with incident AD over a 4.5-year follow-up period [43], and hippocampal volume 

and MRI-infarcts are independent predictors of incident dementia [67]. Ventricular 

expansion is faster in subjects who develop MCI [70], and these rates can be increased by 

diabetes mellitus and hypertension [71]. Our data are important in this context because we 

found that hypertension and the presence of markers of cerebrovascular disease were 
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significant predictors of the volumes of the mesial temporal lobe and the precuneus. Thus, 

while there may be very early AD pathology in these individuals, it is becoming more 

certain that vascular factors affect brain structure and, ultimately time to MCI or AD.

We found that sex was associated with time to event at the whole brain level (and was thus 

included ion the voxel-level analyses), and was significantly associated with the volumes of 

the four regions identified by the Cox models. While it is tempting to ascribe biological 

significance to these associations, we take the more conservative view that in this case “sex” 

is, at least, an indicator variable for other factors. That is, there are sex and sex-by-age 

differences in the prevalence of cardio- and cerebro-vascular disease (and their clinical 

correlates) and these likely play a significant role in the clinical expression of MCI and AD 

dementia. In future studies we will work to model additional factors in the voxel-level 

analyses in order to disentangle the direct and indirect effects of sex on brain volumes and 

time to event.

Perhaps the most influential current model of the natural progression of AD includes a long 

asymptomatic phase, marked by the accumulation of amyloid-β, followed by brain structural 

changes, and ultimately MCI and dementia [72, 73]. However, this sequence of events is not 

as clear as once thought; for example, clinical dementia can develop relatively rapidly 

among individuals with low levels of amyloid [74]. Further, hippocampal atrophy is not 

necessarily a precondition for incident dementia [4]. Our data add to this discussion by 

showing that among cognitively normal individuals with an average age of 78 years, it is 

possible to detect associations between brain structural integrity and the development of 

MCI/AD as much as 13–14 years before the onset of symptoms. Obviously, the ideal data 

set would have included an in vivo measure of amyloid deposition (among other tools), but 

these techniques were not available in 1998/99. Hopefully, the longitudinal studies currently 

underway will be able to address this timing issue over the next 10–15 years.

This study advances current evidence of the important role of the structural integrity of the 

medial temporal lobe in the development of clinical dementia from a state of normal 

cognition. We tested nearly 2 million voxel-level survival models, giving us the power to 

examine time-to-event without a priori assumptions about which regions of interest are 

critical. Moving forward, the combination of these survival models (at the voxel level) using 

multiple imaging modalities simultaneously (e.g., in vivo amyloid, in vivo tau, 

magnetoencephalography [75]) may provide the best methods to test the relative merits of 

models of the temporal sequence of events associated with the transition from a state of 

brain health through clinical dementia (e.g., Jack and colleagues [72]).
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Fig. 1. 
The three brain regions whose volumes were significantly associated with time to develop 

dementia from normal cognition (the mesial temporal lobe including the anterior 

hippocampus extending into the amygdala, and the retrosplenial neocortex), and the region 

of the hippocampus associated with time to mild cognitive impairment. The significant 

voxels are overlaid onto the Colin template [77] for ease of visualization.
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Fig. 2. 
The two brain regions in the anterior hippocampus/amygdala related to time to MCI (in red) 

are shown overlapping with the regions associated with time to dementia (in yellow).
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Table 1

Characteristics of participants by inclusion status

Included Excluded Effect size1

n 292 57

Age 79.2 (3.6) 80.2 (4.5) 0.20

Education2 63.7 (186) 50.9 (29) 0.59

APOE ε43 24.8 (68) 22.4 (11) 1.14

Sex4 60.6 (177) 63.2 (36) 0.89

Race3 83.2 (243) 77.2 (44) 0.68

Estimated IQ 118.6 (8.7) 117.1 (8.4) 0.13

3MSE5 96.2 (4.0) 94.2 (6.9) 0.33*

DSST6 47.0 (12.3) 45.5 (10.7) 0.09

CES-D7 4.55 (4.0) 4.80 (4.3) 0.05

White matter grade3 34.9 (102) 31.6 (18) 1.16

Hypertension3 47.3 (138) 50.9 (29) 0.865

Diabetes3 13.7 (40) 8.9 (5) 1.62

Large Infarct3 26.0 (76) 15.8 (9) 1.88

1)
Cohen’s d for continuous data; relative risk for categorical data.

2)
Percent (n) Greater than High School.

3)
Percent (n) Yes/Present.

4)
Percent (n) Female.

5)
Modified Mini Mental Status Examination [10].

6)
Digit symbol substitution test [39].

7)
Center for Epidemiological Studies–Depression scale [76].
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Table 2

Characteristics of study subjects in 1998/99 as a function of outcome

Normal MCI AD Effect size1

n 83 55 151

Age 78.7 (3.9) 78.7 (3.4) 79.7 (3.5) 0.02

Education2 68.7 (57) 67.2 (39) 59.6 (90) 0.09

Sex2 44.6 (37) 63.8 (37) 68.2 (103) 0.21*

Race2 85.5 (71) 79.3 (46) 83.4 (126) 0.06

APOE ε42 23.1 (18) 21.8 (12) 27.0 (38) 0.05

Estimated IQ 119.9 (8.3) 120.3 (7.9) 117.3 (9.0) 0.03

3MSE3 96.6 (3.8) 97.0 (3.6) 95.8 (4.2) 0.02

DSST4 48.9 (11.5) 50.6 (13.3) 44.6 (12.0) 0.04*

CES-D5 4.09 (3.6) 4.01 (3.8) 5.00 (4.2) 0.01

Hypertension2 45.8 (38) 44.8 (26) 49.0 (74) 0.04

Diabetes2 9.6 (8) 12.1 (7) 16.6 (25) 0.09

White matter hyperintensities2 32.5 (27) 32.8 (19) 37.1 (56) 0.05

MRI-identified infarcts2 25.3 (21) 22.4 (13) 27.8 (42) 0.05

Whole brain grey matter6 37.2 (1.1) 37.4 (1.3) 37.3 (1.2) 0.01

1)
Cohen’s f for continuous data, Cramer’s V for categorical data.

2)
Percent (n) Present, Yes, Female, Caucasian, Greater than High School.

3)
Modified Mini Mental Status Examination [10].

4)
Digit symbol substitution test [39].

5)
Center for Epidemiological Studies–Depression scale [76].

6)
As a percentage of total intracranial volume.

*
p<0.05.
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Table 4

Volumes of critical regions associated with time to AD or MCI (adjusting for total intracranial volume)

Normal Developed AD Developed MCI Cohen’s f

MTL/anterior hippocampus 113.4 (2.5) 105.9 (2.3) 112.4 (3.0) 0.20*

Anterior temporal lobe 144.6 (2.3) 134.7 (1.7) 136.2 (2.7) 0.21*

Precuneus 59.3 (2.0) 52.7 (1.5) 56.4 (2.4) 0.20*

Hippocampus 123.6 (2.7) 119.7 (2.0) 115.5 (3.3) 0.11

MTL, Mesial temporal lobe.

*
p< 0.05.

J Alzheimers Dis. Author manuscript; available in PMC 2016 May 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zeifman et al. Page 21

Table 5

Standardized regression coefficients of models of predictors of grey matter volume

MTL/anterior hippocampus Anterior temporal lobe Precuneus Hippocampus

Age −0.20* −0.13* −0.12 −0.11

Sex (female) −0.02 −0.25* 0.08 −0.02

Race (non-Caucasian) −0.04 −0.03 −0.14* 0.04

Hypertension −0.18*

White matter lesions −0.26* −0.16*

Large infarcts −0.20*

Model R2 0.22* 0.05* 0.09* 0.05*

*
p< 0.05.

MTL, Mesial temporal lobe.

J Alzheimers Dis. Author manuscript; available in PMC 2016 May 07.


